cpp-btree/btree_test.h

941 lines
29 KiB
C++

// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef UTIL_BTREE_BTREE_TEST_H__
#define UTIL_BTREE_BTREE_TEST_H__
#include <stdio.h>
#include <algorithm>
#include <functional>
#include <type_traits>
#include <iosfwd>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gtest/gtest.h"
#include "gflags/gflags.h"
#include "btree_container.h"
DECLARE_int32(test_values);
DECLARE_int32(benchmark_values);
namespace std {
// Provide operator<< support for std::pair<T, U>.
template <typename T, typename U>
ostream& operator<<(ostream &os, const std::pair<T, U> &p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
// Provide pair equality testing that works as long as x.first is comparable to
// y.first and x.second is comparable to y.second. Needed in the test for
// comparing std::pair<T, U> to std::pair<const T, U>.
template <typename T, typename U, typename V, typename W>
bool operator==(const std::pair<T, U> &x, const std::pair<V, W> &y) {
return x.first == y.first && x.second == y.second;
}
// Partial specialization of remove_const that propagates the removal through
// std::pair.
template <typename T, typename U>
struct remove_const<pair<T, U> > {
typedef pair<typename remove_const<T>::type,
typename remove_const<U>::type> type;
};
} // namespace std
namespace btree {
// Select the first member of a pair.
template <class _Pair>
struct select1st : public std::unary_function<_Pair, typename _Pair::first_type> {
const typename _Pair::first_type& operator()(const _Pair& __x) const {
return __x.first;
}
};
// Utility class to provide an accessor for a key given a value. The default
// behavior is to treat the value as a pair and return the first element.
template <typename K, typename V>
struct KeyOfValue {
typedef select1st<V> type;
};
template <typename T>
struct identity {
inline const T& operator()(const T& t) const { return t; }
};
// Partial specialization of KeyOfValue class for when the key and value are
// the same type such as in set<> and btree_set<>.
template <typename K>
struct KeyOfValue<K, K> {
typedef identity<K> type;
};
// Counts the number of occurances of "c" in a buffer.
inline ptrdiff_t strcount(const char* buf_begin, const char* buf_end, char c) {
if (buf_begin == NULL)
return 0;
if (buf_end <= buf_begin)
return 0;
ptrdiff_t num = 0;
for (const char* bp = buf_begin; bp != buf_end; bp++) {
if (*bp == c)
num++;
}
return num;
}
// for when the string is not null-terminated.
inline ptrdiff_t strcount(const char* buf, size_t len, char c) {
return strcount(buf, buf + len, c);
}
inline ptrdiff_t strcount(const std::string& buf, char c) {
return strcount(buf.c_str(), buf.size(), c);
}
// The base class for a sorted associative container checker. TreeType is the
// container type to check and CheckerType is the container type to check
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
// CheckerType is expected to be {set,map,multiset,multimap}.
template <typename TreeType, typename CheckerType>
class base_checker {
typedef base_checker<TreeType, CheckerType> self_type;
public:
typedef typename TreeType::key_type key_type;
typedef typename TreeType::value_type value_type;
typedef typename TreeType::key_compare key_compare;
typedef typename TreeType::pointer pointer;
typedef typename TreeType::const_pointer const_pointer;
typedef typename TreeType::reference reference;
typedef typename TreeType::const_reference const_reference;
typedef typename TreeType::size_type size_type;
typedef typename TreeType::difference_type difference_type;
typedef typename TreeType::iterator iterator;
typedef typename TreeType::const_iterator const_iterator;
typedef typename TreeType::reverse_iterator reverse_iterator;
typedef typename TreeType::const_reverse_iterator const_reverse_iterator;
public:
// Default constructor.
base_checker()
: const_tree_(tree_) {
}
// Copy constructor.
base_checker(const self_type &x)
: tree_(x.tree_),
const_tree_(tree_),
checker_(x.checker_) {
}
// Range constructor.
template <typename InputIterator>
base_checker(InputIterator b, InputIterator e)
: tree_(b, e),
const_tree_(tree_),
checker_(b, e) {
}
// Iterator routines.
iterator begin() { return tree_.begin(); }
const_iterator begin() const { return tree_.begin(); }
iterator end() { return tree_.end(); }
const_iterator end() const { return tree_.end(); }
reverse_iterator rbegin() { return tree_.rbegin(); }
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
reverse_iterator rend() { return tree_.rend(); }
const_reverse_iterator rend() const { return tree_.rend(); }
// Helper routines.
template <typename IterType, typename CheckerIterType>
IterType iter_check(
IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.end()) {
EXPECT_EQ(checker_iter, checker_.end());
} else {
EXPECT_EQ(*tree_iter, *checker_iter);
}
return tree_iter;
}
template <typename IterType, typename CheckerIterType>
IterType riter_check(
IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.rend()) {
EXPECT_EQ(checker_iter, checker_.rend());
} else {
EXPECT_EQ(*tree_iter, *checker_iter);
}
return tree_iter;
}
void value_check(const value_type &x) {
typename KeyOfValue<typename TreeType::key_type,
typename TreeType::value_type>::type key_of_value;
const key_type &key = key_of_value(x);
EXPECT_EQ(*find(key), x);
lower_bound(key);
upper_bound(key);
equal_range(key);
count(key);
}
void erase_check(const key_type &key) {
EXPECT_TRUE(tree_.find(key) == const_tree_.end());
EXPECT_TRUE(const_tree_.find(key) == tree_.end());
EXPECT_TRUE(tree_.equal_range(key).first ==
const_tree_.equal_range(key).second);
}
// Lookup routines.
iterator lower_bound(const key_type &key) {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
const_iterator lower_bound(const key_type &key) const {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
iterator upper_bound(const key_type &key) {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
const_iterator upper_bound(const key_type &key) const {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
std::pair<iterator,iterator> equal_range(const key_type &key) {
std::pair<typename CheckerType::iterator,
typename CheckerType::iterator> checker_res =
checker_.equal_range(key);
std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
std::pair<typename CheckerType::const_iterator,
typename CheckerType::const_iterator> checker_res =
checker_.equal_range(key);
std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
iterator find(const key_type &key) {
return iter_check(tree_.find(key), checker_.find(key));
}
const_iterator find(const key_type &key) const {
return iter_check(tree_.find(key), checker_.find(key));
}
size_type count(const key_type &key) const {
size_type res = checker_.count(key);
EXPECT_EQ(res, tree_.count(key));
return res;
}
// Assignment operator.
self_type& operator=(const self_type &x) {
tree_ = x.tree_;
checker_ = x.checker_;
return *this;
}
// Deletion routines.
int erase(const key_type &key) {
int size = tree_.size();
int res = checker_.erase(key);
EXPECT_EQ(res, tree_.count(key));
EXPECT_EQ(res, tree_.erase(key));
EXPECT_EQ(tree_.count(key), 0);
EXPECT_EQ(tree_.size(), size - res);
erase_check(key);
return res;
}
iterator erase(iterator iter) {
key_type key = iter.key();
int size = tree_.size();
int count = tree_.count(key);
typename CheckerType::iterator checker_iter = checker_.find(key);
for (iterator tmp(tree_.find(key)); tmp != iter; ++tmp) {
++checker_iter;
}
typename CheckerType::iterator checker_next = checker_iter;
++checker_next;
checker_.erase(checker_iter);
iter = tree_.erase(iter);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - 1);
EXPECT_EQ(tree_.count(key), count - 1);
if (count == 1) {
erase_check(key);
}
return iter_check(iter, checker_next);
}
void erase(iterator begin, iterator end) {
int size = tree_.size();
int count = distance(begin, end);
typename CheckerType::iterator checker_begin = checker_.find(begin.key());
for (iterator tmp(tree_.find(begin.key())); tmp != begin; ++tmp) {
++checker_begin;
}
typename CheckerType::iterator checker_end =
end == tree_.end() ? checker_.end() : checker_.find(end.key());
if (end != tree_.end()) {
for (iterator tmp(tree_.find(end.key())); tmp != end; ++tmp) {
++checker_end;
}
}
checker_.erase(checker_begin, checker_end);
tree_.erase(begin, end);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - count);
}
// Utility routines.
void clear() {
tree_.clear();
checker_.clear();
}
void swap(self_type &x) {
tree_.swap(x.tree_);
checker_.swap(x.checker_);
}
void verify() const {
tree_.verify();
EXPECT_EQ(tree_.size(), checker_.size());
// Move through the forward iterators using increment.
typename CheckerType::const_iterator
checker_iter(checker_.begin());
const_iterator tree_iter(tree_.begin());
for (; tree_iter != tree_.end();
++tree_iter, ++checker_iter) {
EXPECT_EQ(*tree_iter, *checker_iter);
}
// Move through the forward iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
iter_check(tree_iter, checker_iter);
--tree_iter;
--checker_iter;
}
EXPECT_TRUE(tree_iter == tree_.begin());
EXPECT_TRUE(checker_iter == checker_.begin());
// Move through the reverse iterators using increment.
typename CheckerType::const_reverse_iterator
checker_riter(checker_.rbegin());
const_reverse_iterator tree_riter(tree_.rbegin());
for (; tree_riter != tree_.rend();
++tree_riter, ++checker_riter) {
EXPECT_EQ(*tree_riter, *checker_riter);
}
// Move through the reverse iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
riter_check(tree_riter, checker_riter);
--tree_riter;
--checker_riter;
}
EXPECT_EQ(tree_riter, tree_.rbegin());
EXPECT_EQ(checker_riter, checker_.rbegin());
}
// Access to the underlying btree.
const TreeType& tree() const { return tree_; }
// Size routines.
size_type size() const {
EXPECT_EQ(tree_.size(), checker_.size());
return tree_.size();
}
size_type max_size() const { return tree_.max_size(); }
bool empty() const {
EXPECT_EQ(tree_.empty(), checker_.empty());
return tree_.empty();
}
size_type height() const { return tree_.height(); }
size_type internal_nodes() const { return tree_.internal_nodes(); }
size_type leaf_nodes() const { return tree_.leaf_nodes(); }
size_type nodes() const { return tree_.nodes(); }
size_type bytes_used() const { return tree_.bytes_used(); }
double fullness() const { return tree_.fullness(); }
double overhead() const { return tree_.overhead(); }
protected:
TreeType tree_;
const TreeType &const_tree_;
CheckerType checker_;
};
// A checker for unique sorted associative containers. TreeType is expected to
// be btree_{set,map} and CheckerType is expected to be {set,map}.
template <typename TreeType, typename CheckerType>
class unique_checker : public base_checker<TreeType, CheckerType> {
typedef base_checker<TreeType, CheckerType> super_type;
typedef unique_checker<TreeType, CheckerType> self_type;
public:
typedef typename super_type::iterator iterator;
typedef typename super_type::value_type value_type;
public:
// Default constructor.
unique_checker()
: super_type() {
}
// Copy constructor.
unique_checker(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
unique_checker(InputIterator b, InputIterator e)
: super_type(b, e) {
}
// Insertion routines.
std::pair<iterator,bool> insert(const value_type &x) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator,bool> checker_res =
this->checker_.insert(x);
std::pair<iterator,bool> tree_res = this->tree_.insert(x);
EXPECT_EQ(*tree_res.first, *checker_res.first);
EXPECT_EQ(tree_res.second, checker_res.second);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + tree_res.second);
return tree_res;
}
iterator insert(iterator position, const value_type &x) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator,bool> checker_res =
this->checker_.insert(x);
iterator tree_res = this->tree_.insert(position, x);
EXPECT_EQ(*tree_res, *checker_res.first);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + checker_res.second);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
// A checker for multiple sorted associative containers. TreeType is expected
// to be btree_{multiset,multimap} and CheckerType is expected to be
// {multiset,multimap}.
template <typename TreeType, typename CheckerType>
class multi_checker : public base_checker<TreeType, CheckerType> {
typedef base_checker<TreeType, CheckerType> super_type;
typedef multi_checker<TreeType, CheckerType> self_type;
public:
typedef typename super_type::iterator iterator;
typedef typename super_type::value_type value_type;
public:
// Default constructor.
multi_checker()
: super_type() {
}
// Copy constructor.
multi_checker(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
multi_checker(InputIterator b, InputIterator e)
: super_type(b, e) {
}
// Insertion routines.
iterator insert(const value_type &x) {
int size = this->tree_.size();
typename CheckerType::iterator checker_res = this->checker_.insert(x);
iterator tree_res = this->tree_.insert(x);
EXPECT_EQ(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
iterator insert(iterator position, const value_type &x) {
int size = this->tree_.size();
typename CheckerType::iterator checker_res = this->checker_.insert(x);
iterator tree_res = this->tree_.insert(position, x);
EXPECT_EQ(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
char* GenerateDigits(char buf[16], int val, int maxval) {
EXPECT_LE(val, maxval);
int p = 15;
buf[p--] = 0;
while (maxval > 0) {
buf[p--] = '0' + (val % 10);
val /= 10;
maxval /= 10;
}
return buf + p + 1;
}
template <typename K>
struct Generator {
int maxval;
Generator(int m)
: maxval(m) {
}
K operator()(int i) const {
EXPECT_LE(i, maxval);
return i;
}
};
template <>
struct Generator<std::string> {
int maxval;
Generator(int m)
: maxval(m) {
}
std::string operator()(int i) const {
char buf[16];
return GenerateDigits(buf, i, maxval);
}
};
template <typename T, typename U>
struct Generator<std::pair<T, U> > {
Generator<typename std::remove_const<T>::type> tgen;
Generator<typename std::remove_const<U>::type> ugen;
Generator(int m)
: tgen(m),
ugen(m) {
}
std::pair<T, U> operator()(int i) const {
return std::make_pair(tgen(i), ugen(i));
}
};
// Generate values for our tests and benchmarks. Value range is [0, maxval].
const std::vector<int>& GenerateNumbers(int n, int maxval) {
static std::vector<int> values;
static std::set<int> unique_values;
if (values.size() < n) {
for (int i = values.size(); i < n; i++) {
int value;
do {
value = rand() % (maxval + 1);
} while (unique_values.find(value) != unique_values.end());
values.push_back(value);
unique_values.insert(value);
}
}
return values;
}
// Generates values in the range
// [0, 4 * min(FLAGS_benchmark_values, FLAGS_test_values)]
template <typename V>
std::vector<V> GenerateValues(int n) {
int two_times_max = 2 * std::max(FLAGS_benchmark_values, FLAGS_test_values);
int four_times_max = 2 * two_times_max;
EXPECT_LE(n, two_times_max);
const std::vector<int> &nums = GenerateNumbers(n, four_times_max);
Generator<V> gen(four_times_max);
std::vector<V> vec;
for (int i = 0; i < n; i++) {
vec.push_back(gen(nums[i]));
}
return vec;
}
template <typename T, typename V>
void DoTest(const char *name, T *b, const std::vector<V> &values) {
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
T &mutable_b = *b;
const T &const_b = *b;
// Test insert.
for (int i = 0; i < values.size(); ++i) {
mutable_b.insert(values[i]);
mutable_b.value_check(values[i]);
}
assert(mutable_b.size() == values.size());
const_b.verify();
printf(" %s fullness=%0.2f overhead=%0.2f bytes-per-value=%0.2f\n",
name, const_b.fullness(), const_b.overhead(),
double(const_b.bytes_used()) / const_b.size());
// Test copy constructor.
T b_copy(const_b);
EXPECT_EQ(b_copy.size(), const_b.size());
EXPECT_LE(b_copy.height(), const_b.height());
EXPECT_LE(b_copy.internal_nodes(), const_b.internal_nodes());
EXPECT_LE(b_copy.leaf_nodes(), const_b.leaf_nodes());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_copy.find(key_of_value(values[i])), values[i]);
}
// Test range constructor.
T b_range(const_b.begin(), const_b.end());
EXPECT_EQ(b_range.size(), const_b.size());
EXPECT_LE(b_range.height(), const_b.height());
EXPECT_LE(b_range.internal_nodes(), const_b.internal_nodes());
EXPECT_LE(b_range.leaf_nodes(), const_b.leaf_nodes());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test range insertion for values that already exist.
b_range.insert(b_copy.begin(), b_copy.end());
b_range.verify();
// Test range insertion for new values.
b_range.clear();
b_range.insert(b_copy.begin(), b_copy.end());
EXPECT_EQ(b_range.size(), b_copy.size());
EXPECT_EQ(b_range.height(), b_copy.height());
EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test assignment to self. Nothing should change.
b_range.operator=(b_range);
EXPECT_EQ(b_range.size(), b_copy.size());
EXPECT_EQ(b_range.height(), b_copy.height());
EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
// Test assignment of new values.
b_range.clear();
b_range = b_copy;
EXPECT_EQ(b_range.size(), b_copy.size());
EXPECT_EQ(b_range.height(), b_copy.height());
EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
// Test swap.
b_range.clear();
b_range.swap(b_copy);
EXPECT_EQ(b_copy.size(), 0);
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
}
b_range.swap(b_copy);
// Test erase via values.
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(key_of_value(values[i]));
// Erasing a non-existent key should have no effect.
EXPECT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
}
const_b.verify();
EXPECT_EQ(const_b.internal_nodes(), 0);
EXPECT_EQ(const_b.leaf_nodes(), 0);
EXPECT_EQ(const_b.size(), 0);
// Test erase via iterators.
mutable_b = b_copy;
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(mutable_b.find(key_of_value(values[i])));
}
const_b.verify();
EXPECT_EQ(const_b.internal_nodes(), 0);
EXPECT_EQ(const_b.leaf_nodes(), 0);
EXPECT_EQ(const_b.size(), 0);
// Test insert with hint.
for (int i = 0; i < values.size(); i++) {
mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
}
const_b.verify();
// Test dumping of the btree to an ostream. There should be 1 line for each
// value.
std::stringstream strm;
strm << mutable_b.tree();
EXPECT_EQ(mutable_b.size(), strcount(strm.str(), '\n'));
// Test range erase.
mutable_b.erase(mutable_b.begin(), mutable_b.end());
EXPECT_EQ(mutable_b.size(), 0);
const_b.verify();
// First half.
mutable_b = b_copy;
typename T::iterator mutable_iter_end = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_b.begin(), mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
const_b.verify();
// Second half.
mutable_b = b_copy;
typename T::iterator mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
mutable_b.erase(mutable_iter_begin, mutable_b.end());
EXPECT_EQ(mutable_b.size(), values.size() / 2);
const_b.verify();
// Second quarter.
mutable_b = b_copy;
mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
mutable_iter_end = mutable_iter_begin;
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_iter_begin, mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
const_b.verify();
mutable_b.clear();
}
template <typename T>
void ConstTest() {
typedef typename T::value_type value_type;
typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
T mutable_b;
const T &const_b = mutable_b;
// Insert a single value into the container and test looking it up.
value_type value = Generator<value_type>(2)(2);
mutable_b.insert(value);
EXPECT_TRUE(mutable_b.find(key_of_value(value)) != const_b.end());
EXPECT_TRUE(const_b.find(key_of_value(value)) != mutable_b.end());
EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
EXPECT_TRUE(const_b.upper_bound(key_of_value(value)) == const_b.end());
EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
// We can only create a non-const iterator from a non-const container.
typename T::iterator mutable_iter(mutable_b.begin());
EXPECT_TRUE(mutable_iter == const_b.begin());
EXPECT_TRUE(mutable_iter != const_b.end());
EXPECT_TRUE(const_b.begin() == mutable_iter);
EXPECT_TRUE(const_b.end() != mutable_iter);
typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
EXPECT_TRUE(mutable_riter == const_b.rbegin());
EXPECT_TRUE(mutable_riter != const_b.rend());
EXPECT_TRUE(const_b.rbegin() == mutable_riter);
EXPECT_TRUE(const_b.rend() != mutable_riter);
// We can create a const iterator from a non-const iterator.
typename T::const_iterator const_iter(mutable_iter);
EXPECT_TRUE(const_iter == mutable_b.begin());
EXPECT_TRUE(const_iter != mutable_b.end());
EXPECT_TRUE(mutable_b.begin() == const_iter);
EXPECT_TRUE(mutable_b.end() != const_iter);
typename T::const_reverse_iterator const_riter(mutable_riter);
EXPECT_EQ(const_riter, mutable_b.rbegin());
EXPECT_TRUE(const_riter != mutable_b.rend());
EXPECT_EQ(mutable_b.rbegin(), const_riter);
EXPECT_TRUE(mutable_b.rend() != const_riter);
// Make sure various methods can be invoked on a const container.
const_b.verify();
EXPECT_FALSE(const_b.empty());
EXPECT_EQ(const_b.size(), 1);
EXPECT_GT(const_b.max_size(), 0);
EXPECT_EQ(const_b.height(), 1);
EXPECT_EQ(const_b.count(key_of_value(value)), 1);
EXPECT_EQ(const_b.internal_nodes(), 0);
EXPECT_EQ(const_b.leaf_nodes(), 1);
EXPECT_EQ(const_b.nodes(), 1);
EXPECT_GT(const_b.bytes_used(), 0);
EXPECT_GT(const_b.fullness(), 0);
EXPECT_GT(const_b.overhead(), 0);
}
template <typename T, typename C>
void BtreeTest() {
ConstTest<T>();
typedef typename std::remove_const<typename T::value_type>::type V;
std::vector<V> random_values = GenerateValues<V>(FLAGS_test_values);
unique_checker<T, C> container;
// Test key insertion/deletion in sorted order.
std::vector<V> sorted_values(random_values);
sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test key insertion/deletion in reverse sorted order.
reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test key insertion/deletion in random order.
DoTest("random: ", &container, random_values);
}
template <typename T, typename C>
void BtreeMultiTest() {
ConstTest<T>();
typedef typename std::remove_const<typename T::value_type>::type V;
const std::vector<V>& random_values = GenerateValues<V>(FLAGS_test_values);
multi_checker<T, C> container;
// Test keys in sorted order.
std::vector<V> sorted_values(random_values);
sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test keys in reverse sorted order.
reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test keys in random order.
DoTest("random: ", &container, random_values);
// Test keys in random order w/ duplicates.
std::vector<V> duplicate_values(random_values);
duplicate_values.insert(
duplicate_values.end(), random_values.begin(), random_values.end());
DoTest("duplicates:", &container, duplicate_values);
// Test all identical keys.
std::vector<V> identical_values(100);
fill(identical_values.begin(), identical_values.end(), Generator<V>(2)(2));
DoTest("identical: ", &container, identical_values);
}
template <typename T, typename Alloc = std::allocator<T> >
class TestAllocator : public Alloc {
public:
typedef typename Alloc::pointer pointer;
typedef typename Alloc::size_type size_type;
TestAllocator() : bytes_used_(NULL) { }
TestAllocator(int64_t *bytes_used) : bytes_used_(bytes_used) { }
// Constructor used for rebinding
template <class U>
TestAllocator(const TestAllocator<U>& x)
: Alloc(x),
bytes_used_(x.bytes_used()) {
}
pointer allocate(size_type n, std::allocator<void>::const_pointer hint = 0) {
EXPECT_TRUE(bytes_used_ != NULL);
*bytes_used_ += n * sizeof(T);
return Alloc::allocate(n, hint);
}
void deallocate(pointer p, size_type n) {
Alloc::deallocate(p, n);
EXPECT_TRUE(bytes_used_ != NULL);
*bytes_used_ -= n * sizeof(T);
}
// Rebind allows an allocator<T> to be used for a different type
template <class U> struct rebind {
typedef TestAllocator<U, typename Alloc::template rebind<U>::other> other;
};
int64_t* bytes_used() const { return bytes_used_; }
private:
int64_t *bytes_used_;
};
template <typename T>
void BtreeAllocatorTest() {
typedef typename T::value_type value_type;
int64_t alloc1 = 0;
int64_t alloc2 = 0;
T b1(typename T::key_compare(), &alloc1);
T b2(typename T::key_compare(), &alloc2);
// This should swap the allocators!
swap(b1, b2);
for (int i = 0; i < 1000; i++) {
b1.insert(Generator<value_type>(1000)(i));
}
// We should have allocated out of alloc2!
EXPECT_LE(b1.bytes_used(), alloc2 + sizeof(b1));
EXPECT_GT(alloc2, alloc1);
}
template <typename T>
void BtreeMapTest() {
typedef typename T::value_type value_type;
typedef typename T::mapped_type mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void) m;
T b;
// Verify we can insert using operator[].
for (int i = 0; i < 1000; i++) {
value_type v = Generator<value_type>(1000)(i);
b[v.first] = v.second;
}
EXPECT_EQ(b.size(), 1000);
// Test whether we can use the "->" operator on iterators and
// reverse_iterators. This stresses the btree_map_params::pair_pointer
// mechanism.
EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
}
template <typename T>
void BtreeMultiMapTest() {
typedef typename T::mapped_type mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void) m;
}
} // namespace btree
#endif // UTIL_BTREE_BTREE_TEST_H__