kwin/xcbutils.h

1884 lines
60 KiB
C++

/*
KWin - the KDE window manager
This file is part of the KDE project.
SPDX-FileCopyrightText: 2012, 2013 Martin Gräßlin <mgraesslin@kde.org>
SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef KWIN_XCB_UTILS_H
#define KWIN_XCB_UTILS_H
#include <kwinglobals.h>
#include "main.h"
#include <QRect>
#include <QRegion>
#include <QScopedPointer>
#include <QVector>
#include <xcb/xcb.h>
#include <xcb/composite.h>
#include <xcb/randr.h>
#include <xcb/shm.h>
class TestXcbSizeHints;
namespace KWin {
template <typename T> using ScopedCPointer = QScopedPointer<T, QScopedPointerPodDeleter>;
namespace Xcb {
typedef xcb_window_t WindowId;
// forward declaration of methods
static void defineCursor(xcb_window_t window, xcb_cursor_t cursor);
static void setInputFocus(xcb_window_t window, uint8_t revertTo = XCB_INPUT_FOCUS_POINTER_ROOT, xcb_timestamp_t time = xTime());
static void moveWindow(xcb_window_t window, const QPoint &pos);
static void moveWindow(xcb_window_t window, uint32_t x, uint32_t y);
static void lowerWindow(xcb_window_t window);
static void selectInput(xcb_window_t window, uint32_t events);
/**
* @brief Variadic template to wrap an xcb request.
*
* This struct is part of the generic implementation to wrap xcb requests
* and fetching their reply. Each request is represented by two templated
* elements: WrapperData and Wrapper.
*
* The WrapperData defines the following types:
* @li reply_type of the xcb request
* @li cookie_type of the xcb request
* @li function pointer type for the xcb request
* @li function pointer type for the reply
* This uses variadic template arguments thus it can be used to specify any
* xcb request.
*
* As the WrapperData does not specify the actual function pointers one needs
* to derive another struct which specifies the function pointer requestFunc and
* the function pointer replyFunc as static constexpr of type reply_func and
* reply_type respectively. E.g. for the command xcb_get_geometry:
* @code
* struct GeometryData : public WrapperData< xcb_get_geometry_reply_t, xcb_get_geometry_cookie_t, xcb_drawable_t >
* {
* static constexpr request_func requestFunc = &xcb_get_geometry_unchecked;
* static constexpr reply_func replyFunc = &xcb_get_geometry_reply;
* };
* @endcode
*
* To simplify this definition the macro XCB_WRAPPER_DATA is provided.
* For the same xcb command this looks like this:
* @code
* XCB_WRAPPER_DATA(GeometryData, xcb_get_geometry, xcb_drawable_t)
* @endcode
*
* The derived WrapperData has to be passed as first template argument to Wrapper. The other
* template arguments of Wrapper are the same variadic template arguments as passed into
* WrapperData. This is ensured at compile time and will cause a compile error in case there
* is a mismatch of the variadic template arguments passed to WrapperData and Wrapper.
* Passing another type than a struct derived from WrapperData to Wrapper will result in a
* compile error. The following code snippets won't compile:
* @code
* XCB_WRAPPER_DATA(GeometryData, xcb_get_geometry, xcb_drawable_t)
* // fails with "static assertion failed: Argument miss-match between Wrapper and WrapperData"
* class IncorrectArguments : public Wrapper<GeometryData, uint8_t>
* {
* public:
* IncorrectArguments() = default;
* IncorrectArguments(xcb_window_t window) : Wrapper<GeometryData, uint8_t>(window) {}
* };
*
* // fails with "static assertion failed: Data template argument must be derived from WrapperData"
* class WrapperDataDirectly : public Wrapper<WrapperData<xcb_get_geometry_reply_t, xcb_get_geometry_request_t, xcb_drawable_t>, xcb_drawable_t>
* {
* public:
* WrapperDataDirectly() = default;
* WrapperDataDirectly(xcb_window_t window) : Wrapper<WrapperData<xcb_get_geometry_reply_t, xcb_get_geometry_request_t, xcb_drawable_t>, xcb_drawable_t>(window) {}
* };
*
* // fails with "static assertion failed: Data template argument must be derived from WrapperData"
* struct FakeWrapperData
* {
* typedef xcb_get_geometry_reply_t reply_type;
* typedef xcb_get_geometry_cookie_t cookie_type;
* typedef std::tuple<xcb_drawable_t> argument_types;
* typedef cookie_type (*request_func)(xcb_connection_t*, xcb_drawable_t);
* typedef reply_type *(*reply_func)(xcb_connection_t*, cookie_type, xcb_generic_error_t**);
* static constexpr std::size_t argumentCount = 1;
* static constexpr request_func requestFunc = &xcb_get_geometry_unchecked;
* static constexpr reply_func replyFunc = &xcb_get_geometry_reply;
* };
* class NotDerivedFromWrapperData : public Wrapper<FakeWrapperData, xcb_drawable_t>
* {
* public:
* NotDerivedFromWrapperData() = default;
* NotDerivedFromWrapperData(xcb_window_t window) : Wrapper<FakeWrapperData, xcb_drawable_t>(window) {}
* };
* @endcode
*
* The Wrapper provides an easy to use RAII API which calls the WrapperData's requestFunc in
* the ctor and fetches the reply the first time it is used. In addition the dtor takes care
* of freeing the reply if it got fetched, otherwise it discards the reply. The Wrapper can
* be used as if it were the reply_type directly.
*
* There are several command wrappers defined which either subclass Wrapper to add methods to
* simplify the usage of the result_type or use a typedef. To add a new typedef one can use the
* macro XCB_WRAPPER which creates the WrapperData struct as XCB_WRAPPER_DATA does and the
* typedef. E.g:
* @code
* XCB_WRAPPER(Geometry, xcb_get_geometry, xcb_drawable_t)
* @endcode
*
* creates a typedef Geometry and the struct GeometryData.
*
* Overall this allows to simplify the Xcb usage. For example consider the
* following xcb code snippet:
* @code
* xcb_window_t w; // some window
* xcb_connection_t *c = connection();
* const xcb_get_geometry_cookie_t cookie = xcb_get_geometry_unchecked(c, w);
* // do other stuff
* xcb_get_geometry_reply_t *reply = xcb_get_geometry_reply(c, cookie, nullptr);
* if (reply) {
* reply->x; // do something with the geometry
* }
* free(reply);
* @endcode
*
* With the help of the Wrapper class this can be simplified to:
* @code
* xcb_window_t w; // some window
* Xcb::Geometry geo(w);
* if (!geo.isNull()) {
* geo->x; // do something with the geometry
* }
* @endcode
*
* @see XCB_WRAPPER_DATA
* @see XCB_WRAPPER
* @see Wrapper
* @see WindowAttributes
* @see OverlayWindow
* @see WindowGeometry
* @see Tree
* @see CurrentInput
* @see TransientFor
*/
template <typename Reply,
typename Cookie,
typename... Args>
struct WrapperData
{
/**
* @brief The type returned by the xcb reply function.
*/
typedef Reply reply_type;
/**
* @brief The type returned by the xcb request function.
*/
typedef Cookie cookie_type;
/**
* @brief Variadic arguments combined as a std::tuple.
* @internal Used for verifying the arguments.
*/
typedef std::tuple<Args...> argument_types;
/**
* @brief The function pointer definition for the xcb request function.
*/
typedef Cookie (*request_func)(xcb_connection_t*, Args...);
/**
* @brief The function pointer definition for the xcb reply function.
*/
typedef Reply *(*reply_func)(xcb_connection_t*, Cookie, xcb_generic_error_t**);
/**
* @brief Number of variadic arguments.
* @internal Used for verifying the arguments.
*/
static constexpr std::size_t argumentCount = sizeof...(Args);
};
/**
* @brief Partial template specialization for WrapperData with no further arguments.
*
* This will be used for xcb requests just taking the xcb_connection_t* argument.
*/
template <typename Reply,
typename Cookie>
struct WrapperData<Reply, Cookie>
{
typedef Reply reply_type;
typedef Cookie cookie_type;
typedef std::tuple<> argument_types;
typedef Cookie (*request_func)(xcb_connection_t*);
typedef Reply *(*reply_func)(xcb_connection_t*, Cookie, xcb_generic_error_t**);
static constexpr std::size_t argumentCount = 0;
};
/**
* @brief Abstract base class for the wrapper.
*
* This class contains the complete functionality of the Wrapper. It's only an abstract
* base class to provide partial template specialization for more specific constructors.
*/
template<typename Data>
class AbstractWrapper
{
public:
typedef typename Data::cookie_type Cookie;
typedef typename Data::reply_type Reply;
virtual ~AbstractWrapper() {
cleanup();
}
inline AbstractWrapper &operator=(const AbstractWrapper &other) {
if (this != &other) {
// if we had managed a reply, free it
cleanup();
// copy members
m_retrieved = other.m_retrieved;
m_cookie = other.m_cookie;
m_window = other.m_window;
m_reply = other.m_reply;
// take over the responsibility for the reply pointer
takeFromOther(const_cast<AbstractWrapper&>(other));
}
return *this;
}
inline const Reply *operator->() {
getReply();
return m_reply;
}
inline bool isNull() {
getReply();
return m_reply == nullptr;
}
inline bool isNull() const {
const_cast<AbstractWrapper*>(this)->getReply();
return m_reply == NULL;
}
inline operator bool() {
return !isNull();
}
inline operator bool() const {
return !isNull();
}
inline const Reply *data() {
getReply();
return m_reply;
}
inline const Reply *data() const {
const_cast<AbstractWrapper*>(this)->getReply();
return m_reply;
}
inline WindowId window() const {
return m_window;
}
inline bool isRetrieved() const {
return m_retrieved;
}
/**
* Returns the value of the reply pointer referenced by this object. The reply pointer of
* this object will be reset to null. Calling any method which requires the reply to be valid
* will crash.
*
* Callers of this function take ownership of the pointer.
*/
inline Reply *take() {
getReply();
Reply *ret = m_reply;
m_reply = nullptr;
m_window = XCB_WINDOW_NONE;
return ret;
}
protected:
AbstractWrapper()
: m_retrieved(false)
, m_window(XCB_WINDOW_NONE)
, m_reply(nullptr)
{
m_cookie.sequence = 0;
}
explicit AbstractWrapper(WindowId window, Cookie cookie)
: m_retrieved(false)
, m_cookie(cookie)
, m_window(window)
, m_reply(nullptr)
{
}
explicit AbstractWrapper(const AbstractWrapper &other)
: m_retrieved(other.m_retrieved)
, m_cookie(other.m_cookie)
, m_window(other.m_window)
, m_reply(nullptr)
{
takeFromOther(const_cast<AbstractWrapper&>(other));
}
void getReply() {
if (m_retrieved || !m_cookie.sequence) {
return;
}
m_reply = Data::replyFunc(connection(), m_cookie, nullptr);
m_retrieved = true;
}
private:
inline void cleanup() {
if (!m_retrieved && m_cookie.sequence) {
xcb_discard_reply(connection(), m_cookie.sequence);
} else if (m_reply) {
free(m_reply);
}
}
inline void takeFromOther(AbstractWrapper &other) {
if (m_retrieved) {
m_reply = other.take();
} else {
//ensure that other object doesn't try to get the reply or discards it in the dtor
other.m_retrieved = true;
other.m_window = XCB_WINDOW_NONE;
}
}
bool m_retrieved;
Cookie m_cookie;
WindowId m_window;
Reply *m_reply;
};
/**
* @brief Template to compare the arguments of two std::tuple.
*
* @internal Used by static_assert in Wrapper
*/
template <typename T1, typename T2, std::size_t I>
struct tupleCompare
{
typedef typename std::tuple_element<I, T1>::type tuple1Type;
typedef typename std::tuple_element<I, T2>::type tuple2Type;
/**
* @c true if both tuple have the same arguments, @c false otherwise.
*/
static constexpr bool value = std::is_same< tuple1Type, tuple2Type >::value && tupleCompare<T1, T2, I-1>::value;
};
/**
* @brief Recursive template case for first tuple element.
*/
template <typename T1, typename T2>
struct tupleCompare<T1, T2, 0>
{
typedef typename std::tuple_element<0, T1>::type tuple1Type;
typedef typename std::tuple_element<0, T2>::type tuple2Type;
static constexpr bool value = std::is_same< tuple1Type, tuple2Type >::value;
};
/**
* @brief Wrapper taking a WrapperData as first template argument and xcb request args as variadic args.
*/
template<typename Data, typename... Args>
class Wrapper : public AbstractWrapper<Data>
{
public:
static_assert(!std::is_same<Data, Xcb::WrapperData<typename Data::reply_type, typename Data::cookie_type, Args...> >::value,
"Data template argument must be derived from WrapperData");
static_assert(std::is_base_of<Xcb::WrapperData<typename Data::reply_type, typename Data::cookie_type, Args...>, Data>::value,
"Data template argument must be derived from WrapperData");
static_assert(sizeof...(Args) == Data::argumentCount,
"Wrapper and WrapperData need to have same template argument count");
static_assert(tupleCompare<std::tuple<Args...>, typename Data::argument_types, sizeof...(Args) - 1>::value,
"Argument miss-match between Wrapper and WrapperData");
Wrapper() = default;
explicit Wrapper(Args... args)
: AbstractWrapper<Data>(XCB_WINDOW_NONE, Data::requestFunc(connection(), args...))
{
}
explicit Wrapper(xcb_window_t w, Args... args)
: AbstractWrapper<Data>(w, Data::requestFunc(connection(), args...))
{
}
};
/**
* @brief Template specialization for xcb_window_t being first variadic argument.
*/
template<typename Data, typename... Args>
class Wrapper<Data, xcb_window_t, Args...> : public AbstractWrapper<Data>
{
public:
static_assert(!std::is_same<Data, Xcb::WrapperData<typename Data::reply_type, typename Data::cookie_type, xcb_window_t, Args...> >::value,
"Data template argument must be derived from WrapperData");
static_assert(std::is_base_of<Xcb::WrapperData<typename Data::reply_type, typename Data::cookie_type, xcb_window_t, Args...>, Data>::value,
"Data template argument must be derived from WrapperData");
static_assert(sizeof...(Args) + 1 == Data::argumentCount,
"Wrapper and WrapperData need to have same template argument count");
static_assert(tupleCompare<std::tuple<xcb_window_t, Args...>, typename Data::argument_types, sizeof...(Args)>::value,
"Argument miss-match between Wrapper and WrapperData");
Wrapper() = default;
explicit Wrapper(xcb_window_t w, Args... args)
: AbstractWrapper<Data>(w, Data::requestFunc(connection(), w, args...))
{
}
};
/**
* @brief Template specialization for no variadic arguments.
*
* It's needed to prevent ambiguous constructors being generated.
*/
template<typename Data>
class Wrapper<Data> : public AbstractWrapper<Data>
{
public:
static_assert(!std::is_same<Data, Xcb::WrapperData<typename Data::reply_type, typename Data::cookie_type> >::value,
"Data template argument must be derived from WrapperData");
static_assert(std::is_base_of<Xcb::WrapperData<typename Data::reply_type, typename Data::cookie_type>, Data>::value,
"Data template argument must be derived from WrapperData");
static_assert(Data::argumentCount == 0, "Wrapper for no arguments constructed with WrapperData with arguments");
explicit Wrapper()
: AbstractWrapper<Data>(XCB_WINDOW_NONE, Data::requestFunc(connection()))
{
}
};
class Atom
{
public:
explicit Atom(const QByteArray &name, bool onlyIfExists = false, xcb_connection_t *c = connection())
: m_connection(c)
, m_retrieved(false)
, m_cookie(xcb_intern_atom_unchecked(m_connection, onlyIfExists, name.length(), name.constData()))
, m_atom(XCB_ATOM_NONE)
, m_name(name)
{
}
Atom() = delete;
Atom(const Atom &) = delete;
~Atom() {
if (!m_retrieved && m_cookie.sequence) {
xcb_discard_reply(m_connection, m_cookie.sequence);
}
}
operator xcb_atom_t() const {
(const_cast<Atom*>(this))->getReply();
return m_atom;
}
bool isValid() {
getReply();
return m_atom != XCB_ATOM_NONE;
}
bool isValid() const {
(const_cast<Atom*>(this))->getReply();
return m_atom != XCB_ATOM_NONE;
}
inline const QByteArray &name() const {
return m_name;
}
private:
void getReply() {
if (m_retrieved || !m_cookie.sequence) {
return;
}
ScopedCPointer<xcb_intern_atom_reply_t> reply(xcb_intern_atom_reply(m_connection, m_cookie, nullptr));
if (!reply.isNull()) {
m_atom = reply->atom;
}
m_retrieved = true;
}
xcb_connection_t *m_connection;
bool m_retrieved;
xcb_intern_atom_cookie_t m_cookie;
xcb_atom_t m_atom;
QByteArray m_name;
};
/**
* @brief Macro to create the WrapperData subclass.
*
* Creates a struct with name @p __NAME__ for the xcb request identified by @p __REQUEST__.
* The variadic arguments are used to pass as template arguments to the WrapperData.
*
* The @p __REQUEST__ is the common prefix of the cookie type, reply type, request function and
* reply function. E.g. "xcb_get_geometry" is used to create:
* @li cookie type xcb_get_geometry_cookie_t
* @li reply type xcb_get_geometry_reply_t
* @li request function pointer xcb_get_geometry_unchecked
* @li reply function pointer xcb_get_geometry_reply
*
* @param __NAME__ The name of the WrapperData subclass
* @param __REQUEST__ The name of the xcb request, e.g. xcb_get_geometry
* @param __VA_ARGS__ The variadic template arguments, e.g. xcb_drawable_t
* @see XCB_WRAPPER
*/
#define XCB_WRAPPER_DATA( __NAME__, __REQUEST__, ... ) \
struct __NAME__ : public WrapperData< __REQUEST__##_reply_t, __REQUEST__##_cookie_t, __VA_ARGS__ > \
{ \
static constexpr request_func requestFunc = &__REQUEST__##_unchecked; \
static constexpr reply_func replyFunc = &__REQUEST__##_reply; \
};
/**
* @brief Macro to create Wrapper typedef and WrapperData.
*
* This macro expands the XCB_WRAPPER_DATA macro and creates an additional
* typedef for Wrapper with name @p __NAME__. The created WrapperData is also derived
* from @p __NAME__ with "Data" as suffix.
*
* @param __NAME__ The name for the Wrapper typedef
* @param __REQUEST__ The name of the xcb request, passed to XCB_WRAPPER_DATA
* @param __VA_ARGS__ The variadic template arguments for Wrapper and WrapperData
* @see XCB_WRAPPER_DATA
*/
#define XCB_WRAPPER( __NAME__, __REQUEST__, ... ) \
XCB_WRAPPER_DATA( __NAME__##Data, __REQUEST__, __VA_ARGS__ ) \
typedef Wrapper< __NAME__##Data, __VA_ARGS__ > __NAME__;
XCB_WRAPPER(WindowAttributes, xcb_get_window_attributes, xcb_window_t)
XCB_WRAPPER(OverlayWindow, xcb_composite_get_overlay_window, xcb_window_t)
XCB_WRAPPER_DATA(GeometryData, xcb_get_geometry, xcb_drawable_t)
class WindowGeometry : public Wrapper<GeometryData, xcb_window_t>
{
public:
WindowGeometry() : Wrapper<GeometryData, xcb_window_t>() {}
explicit WindowGeometry(xcb_window_t window) : Wrapper<GeometryData, xcb_window_t>(window) {}
inline QRect rect() {
const xcb_get_geometry_reply_t *geometry = data();
if (!geometry) {
return QRect();
}
return QRect(geometry->x, geometry->y, geometry->width, geometry->height);
}
inline QSize size() {
const xcb_get_geometry_reply_t *geometry = data();
if (!geometry) {
return QSize();
}
return QSize(geometry->width, geometry->height);
}
};
XCB_WRAPPER_DATA(TreeData, xcb_query_tree, xcb_window_t)
class Tree : public Wrapper<TreeData, xcb_window_t>
{
public:
explicit Tree(WindowId window) : Wrapper<TreeData, xcb_window_t>(window) {}
inline WindowId *children() {
if (isNull() || data()->children_len == 0) {
return nullptr;
}
return xcb_query_tree_children(data());
}
inline xcb_window_t parent() {
if (isNull())
return XCB_WINDOW_NONE;
return (*this)->parent;
}
};
XCB_WRAPPER(Pointer, xcb_query_pointer, xcb_window_t)
struct CurrentInputData : public WrapperData< xcb_get_input_focus_reply_t, xcb_get_input_focus_cookie_t >
{
static constexpr request_func requestFunc = &xcb_get_input_focus_unchecked;
static constexpr reply_func replyFunc = &xcb_get_input_focus_reply;
};
class CurrentInput : public Wrapper<CurrentInputData>
{
public:
CurrentInput() : Wrapper<CurrentInputData>() {}
inline xcb_window_t window() {
if (isNull())
return XCB_WINDOW_NONE;
return (*this)->focus;
}
};
struct QueryKeymapData : public WrapperData< xcb_query_keymap_reply_t, xcb_query_keymap_cookie_t >
{
static constexpr request_func requestFunc = &xcb_query_keymap_unchecked;
static constexpr reply_func replyFunc = &xcb_query_keymap_reply;
};
class QueryKeymap : public Wrapper<QueryKeymapData>
{
public:
QueryKeymap() : Wrapper<QueryKeymapData>() {}
};
struct ModifierMappingData : public WrapperData< xcb_get_modifier_mapping_reply_t, xcb_get_modifier_mapping_cookie_t >
{
static constexpr request_func requestFunc = &xcb_get_modifier_mapping_unchecked;
static constexpr reply_func replyFunc = &xcb_get_modifier_mapping_reply;
};
class ModifierMapping : public Wrapper<ModifierMappingData>
{
public:
ModifierMapping() : Wrapper<ModifierMappingData>() {}
inline xcb_keycode_t *keycodes() {
if (isNull()) {
return nullptr;
}
return xcb_get_modifier_mapping_keycodes(data());
}
inline int size() {
if (isNull()) {
return 0;
}
return xcb_get_modifier_mapping_keycodes_length(data());
}
};
XCB_WRAPPER_DATA(PropertyData, xcb_get_property, uint8_t, xcb_window_t, xcb_atom_t, xcb_atom_t, uint32_t, uint32_t)
class Property : public Wrapper<PropertyData, uint8_t, xcb_window_t, xcb_atom_t, xcb_atom_t, uint32_t, uint32_t>
{
public:
Property()
: Wrapper<PropertyData, uint8_t, xcb_window_t, xcb_atom_t, xcb_atom_t, uint32_t, uint32_t>()
, m_type(XCB_ATOM_NONE)
{
}
Property(const Property &other)
: Wrapper<PropertyData, uint8_t, xcb_window_t, xcb_atom_t, xcb_atom_t, uint32_t, uint32_t>(other)
, m_type(other.m_type)
{
}
explicit Property(uint8_t _delete, xcb_window_t window, xcb_atom_t property, xcb_atom_t type, uint32_t long_offset, uint32_t long_length)
: Wrapper<PropertyData, uint8_t, xcb_window_t, xcb_atom_t, xcb_atom_t, uint32_t, uint32_t>(window, _delete, window, property, type, long_offset, long_length)
, m_type(type)
{
}
Property &operator=(const Property &other) {
Wrapper<PropertyData, uint8_t, xcb_window_t, xcb_atom_t, xcb_atom_t, uint32_t, uint32_t>::operator=(other);
m_type = other.m_type;
return *this;
}
/**
* @brief Overloaded method for convenience.
*
* Uses the type which got passed into the ctor and derives the format from the sizeof(T).
* Note: for the automatic format detection the size of the type T may not vary between
* architectures. Thus one needs to use e.g. uint32_t instead of long. In general all xcb
* data types can be used, all Xlib data types can not be used.
*
* @param defaultValue The default value to return in case of error
* @param ok Set to @c false in case of error, @c true in case of success
* @return The read value or @p defaultValue in error case
*/
template <typename T>
inline typename std::enable_if<!std::is_pointer<T>::value, T>::type value(T defaultValue = T(), bool *ok = nullptr) {
return value<T>(sizeof(T) * 8, m_type, defaultValue, ok);
}
/**
* @brief Reads the property as a POD type.
*
* Returns the first value of the property data. In case of @p format or @p type mismatch
* the @p defaultValue is returned. The optional argument @p ok is set
* to @c false in case of error and to @c true in case of successful reading of
* the property.
*
* @param format The expected format of the property value, e.g. 32 for XCB_ATOM_CARDINAL
* @param type The expected type of the property value, e.g. XCB_ATOM_CARDINAL
* @param defaultValue The default value to return in case of error
* @param ok Set to @c false in case of error, @c true in case of success
* @return The read value or @p defaultValue in error case
*/
template <typename T>
inline typename std::enable_if<!std::is_pointer<T>::value, T>::type value(uint8_t format, xcb_atom_t type, T defaultValue = T(), bool *ok = nullptr) {
T *reply = value<T*>(format, type, nullptr, ok);
if (!reply) {
return defaultValue;
}
return reply[0];
}
/**
* @brief Overloaded method for convenience.
*
* Uses the type which got passed into the ctor and derives the format from the sizeof(T).
* Note: for the automatic format detection the size of the type T may not vary between
* architectures. Thus one needs to use e.g. uint32_t instead of long. In general all xcb
* data types can be used, all Xlib data types can not be used.
*
* @param defaultValue The default value to return in case of error
* @param ok Set to @c false in case of error, @c true in case of success
* @return The read value or @p defaultValue in error case
*/
template <typename T>
inline typename std::enable_if<std::is_pointer<T>::value, T>::type value(T defaultValue = nullptr, bool *ok = nullptr) {
return value<T>(sizeof(typename std::remove_pointer<T>::type) * 8, m_type, defaultValue, ok);
}
/**
* @brief Reads the property as an array of T.
*
* This method is an overload for the case that T is a pointer type.
*
* Return the property value casted to the pointer type T. In case of @p format
* or @p type mismatch the @p defaultValue is returned. Also if the value length
* is @c 0 the @p defaultValue is returned. The optional argument @p ok is set
* to @c false in case of error and to @c true in case of successful reading of
* the property. Ok will always be true if the property exists and has been
* successfully read, even in the case the property is empty and its length is 0
*
* @param format The expected format of the property value, e.g. 32 for XCB_ATOM_CARDINAL
* @param type The expected type of the property value, e.g. XCB_ATOM_CARDINAL
* @param defaultValue The default value to return in case of error
* @param ok Set to @c false in case of error, @c true in case of success
* @return The read value or @p defaultValue in error case
*/
template <typename T>
inline typename std::enable_if<std::is_pointer<T>::value, T>::type value(uint8_t format, xcb_atom_t type, T defaultValue = nullptr, bool *ok = nullptr) {
if (ok) {
*ok = false;
}
const PropertyData::reply_type *reply = data();
if (!reply) {
return defaultValue;
}
if (reply->type != type) {
return defaultValue;
}
if (reply->format != format) {
return defaultValue;
}
if (ok) {
*ok = true;
}
if (xcb_get_property_value_length(reply) == 0) {
return defaultValue;
}
return reinterpret_cast<T>(xcb_get_property_value(reply));
}
/**
* @brief Reads the property as string and returns a QByteArray.
*
* In case of error this method returns a null QByteArray.
*/
inline QByteArray toByteArray(uint8_t format = 8, xcb_atom_t type = XCB_ATOM_STRING, bool *ok = nullptr) {
bool valueOk = false;
const char *reply = value<const char*>(format, type, nullptr, &valueOk);
if (ok) {
*ok = valueOk;
}
if (valueOk && !reply) {
return QByteArray("", 0); // valid, not null, but empty data
} else if (!valueOk) {
return QByteArray(); // Property not found, data empty and null
}
return QByteArray(reply, xcb_get_property_value_length(data()));
}
/**
* @brief Overloaded method for convenience.
*/
inline QByteArray toByteArray(bool *ok) {
return toByteArray(8, m_type, ok);
}
/**
* @brief Reads the property as a boolean value.
*
* If the property reply length is @c 1 the first element is interpreted as a boolean
* value returning @c true for any value unequal to @c 0 and @c false otherwise.
*
* In case of error this method returns @c false. Thus it is not possible to distinguish
* between error case and a read @c false value. Use the optional argument @p ok to
* distinguish the error case.
*
* @param format Expected format. Defaults to 32.
* @param type Expected type Defaults to XCB_ATOM_CARDINAL.
* @param ok Set to @c false in case of error, @c true in case of success
* @return bool The first element interpreted as a boolean value or @c false in error case
* @see value
*/
inline bool toBool(uint8_t format = 32, xcb_atom_t type = XCB_ATOM_CARDINAL, bool *ok = nullptr) {
bool *reply = value<bool*>(format, type, nullptr, ok);
if (!reply) {
return false;
}
if (data()->value_len != 1) {
if (ok) {
*ok = false;
}
return false;
}
return reply[0] != 0;
}
/**
* @brief Overloaded method for convenience.
*/
inline bool toBool(bool *ok) {
return toBool(32, m_type, ok);
}
private:
xcb_atom_t m_type;
};
class StringProperty : public Property
{
public:
StringProperty() = default;
explicit StringProperty(xcb_window_t w, xcb_atom_t p)
: Property(false, w, p, XCB_ATOM_STRING, 0, 10000)
{
}
operator QByteArray() {
return toByteArray();
}
};
class TransientFor : public Property
{
public:
explicit TransientFor(WindowId window)
: Property(0, window, XCB_ATOM_WM_TRANSIENT_FOR, XCB_ATOM_WINDOW, 0, 1)
{
}
/**
* @brief Fill given window pointer with the WM_TRANSIENT_FOR property of a window.
* @param prop WM_TRANSIENT_FOR property value.
* @returns @c true on success, @c false otherwise
*/
inline bool getTransientFor(WindowId *prop) {
WindowId *windows = value<WindowId*>();
if (!windows) {
return false;
}
*prop = *windows;
return true;
}
};
class GeometryHints
{
public:
GeometryHints() = default;
void init(xcb_window_t window) {
Q_ASSERT(window);
if (m_window) {
// already initialized
return;
}
m_window = window;
fetch();
}
void fetch() {
if (!m_window) {
return;
}
m_sizeHints = nullptr;
m_hints = NormalHints(m_window);
}
void read() {
m_sizeHints = m_hints.sizeHints();
}
bool hasPosition() const {
return testFlag(NormalHints::SizeHints::UserPosition) || testFlag(NormalHints::SizeHints::ProgramPosition);
}
bool hasSize() const {
return testFlag(NormalHints::SizeHints::UserSize) || testFlag(NormalHints::SizeHints::ProgramSize);
}
bool hasMinSize() const {
return testFlag(NormalHints::SizeHints::MinSize);
}
bool hasMaxSize() const {
return testFlag(NormalHints::SizeHints::MaxSize);
}
bool hasResizeIncrements() const {
return testFlag(NormalHints::SizeHints::ResizeIncrements);
}
bool hasAspect() const {
return testFlag(NormalHints::SizeHints::Aspect);
}
bool hasBaseSize() const {
return testFlag(NormalHints::SizeHints::BaseSize);
}
bool hasWindowGravity() const {
return testFlag(NormalHints::SizeHints::WindowGravity);
}
QSize maxSize() const {
if (!hasMaxSize()) {
return QSize(INT_MAX, INT_MAX);
}
return QSize(qMax(m_sizeHints->maxWidth, 1), qMax(m_sizeHints->maxHeight, 1));
}
QSize minSize() const {
if (!hasMinSize()) {
// according to ICCCM 4.1.23 base size should be used as a fallback
return baseSize();
}
return QSize(m_sizeHints->minWidth, m_sizeHints->minHeight);
}
QSize baseSize() const {
// Note: not using minSize as fallback
if (!hasBaseSize()) {
return QSize(0, 0);
}
return QSize(m_sizeHints->baseWidth, m_sizeHints->baseHeight);
}
QSize resizeIncrements() const {
if (!hasResizeIncrements()) {
return QSize(1, 1);
}
return QSize(qMax(m_sizeHints->widthInc, 1), qMax(m_sizeHints->heightInc, 1));
}
xcb_gravity_t windowGravity() const {
if (!hasWindowGravity()) {
return XCB_GRAVITY_NORTH_WEST;
}
return xcb_gravity_t(m_sizeHints->winGravity);
}
QSize minAspect() const {
if (!hasAspect()) {
return QSize(1, INT_MAX);
}
// prevent division by zero
return QSize(m_sizeHints->minAspect[0], qMax(m_sizeHints->minAspect[1], 1));
}
QSize maxAspect() const {
if (!hasAspect()) {
return QSize(INT_MAX, 1);
}
// prevent division by zero
return QSize(m_sizeHints->maxAspect[0], qMax(m_sizeHints->maxAspect[1], 1));
}
private:
/**
* NormalHints as specified in ICCCM 4.1.2.3.
*/
class NormalHints : public Property
{
public:
struct SizeHints {
enum Flags {
UserPosition = 1,
UserSize = 2,
ProgramPosition = 4,
ProgramSize = 8,
MinSize = 16,
MaxSize = 32,
ResizeIncrements = 64,
Aspect = 128,
BaseSize = 256,
WindowGravity = 512
};
qint32 flags = 0;
qint32 pad[4] = {0, 0, 0, 0};
qint32 minWidth = 0;
qint32 minHeight = 0;
qint32 maxWidth = 0;
qint32 maxHeight = 0;
qint32 widthInc = 0;
qint32 heightInc = 0;
qint32 minAspect[2] = {0, 0};
qint32 maxAspect[2] = {0, 0};
qint32 baseWidth = 0;
qint32 baseHeight = 0;
qint32 winGravity = 0;
};
explicit NormalHints() : Property() {};
explicit NormalHints(WindowId window)
: Property(0, window, XCB_ATOM_WM_NORMAL_HINTS, XCB_ATOM_WM_SIZE_HINTS, 0, 18)
{
}
inline SizeHints *sizeHints() {
return value<SizeHints*>(32, XCB_ATOM_WM_SIZE_HINTS, nullptr);
}
};
friend TestXcbSizeHints;
bool testFlag(NormalHints::SizeHints::Flags flag) const {
if (!m_window || !m_sizeHints) {
return false;
}
return m_sizeHints->flags & flag;
}
xcb_window_t m_window = XCB_WINDOW_NONE;
NormalHints m_hints;
NormalHints::SizeHints *m_sizeHints = nullptr;
};
class MotifHints
{
public:
MotifHints(xcb_atom_t atom) : m_atom(atom) {}
void init(xcb_window_t window) {
Q_ASSERT(window);
if (m_window) {
// already initialized
return;
}
m_window = window;
fetch();
}
void fetch() {
if (!m_window) {
return;
}
m_hints = nullptr;
m_prop = Property(0, m_window, m_atom, m_atom, 0, 5);
}
void read() {
m_hints = m_prop.value<MwmHints*>(32, m_atom, nullptr);
}
bool hasDecoration() const {
if (!m_window || !m_hints) {
return false;
}
return m_hints->flags & uint32_t(Hints::Decorations);
}
bool noBorder() const {
if (!hasDecoration()) {
return false;
}
return !m_hints->decorations;
}
bool resize() const {
return testFunction(Functions::Resize);
}
bool move() const {
return testFunction(Functions::Move);
}
bool minimize() const {
return testFunction(Functions::Minimize);
}
bool maximize() const {
return testFunction(Functions::Maximize);
}
bool close() const {
return testFunction(Functions::Close);
}
private:
struct MwmHints {
uint32_t flags;
uint32_t functions;
uint32_t decorations;
int32_t input_mode;
uint32_t status;
};
enum class Hints {
Functions = (1L << 0),
Decorations = (1L << 1)
};
enum class Functions {
All = (1L << 0),
Resize = (1L << 1),
Move = (1L << 2),
Minimize = (1L << 3),
Maximize = (1L << 4),
Close = (1L << 5)
};
bool testFunction(Functions flag) const {
if (!m_window || !m_hints) {
return true;
}
if (!(m_hints->flags & uint32_t(Hints::Functions))) {
return true;
}
// if MWM_FUNC_ALL is set, other flags say what to turn _off_
const bool set_value = ((m_hints->functions & uint32_t(Functions::All)) == 0);
if (m_hints->functions & uint32_t(flag)) {
return set_value;
}
return !set_value;
}
xcb_window_t m_window = XCB_WINDOW_NONE;
Property m_prop;
xcb_atom_t m_atom;
MwmHints *m_hints = nullptr;
};
namespace RandR
{
XCB_WRAPPER(ScreenInfo, xcb_randr_get_screen_info, xcb_window_t)
XCB_WRAPPER_DATA(ScreenResourcesData, xcb_randr_get_screen_resources, xcb_window_t)
class ScreenResources : public Wrapper<ScreenResourcesData, xcb_window_t>
{
public:
explicit ScreenResources(WindowId window) : Wrapper<ScreenResourcesData, xcb_window_t>(window) {}
inline xcb_randr_crtc_t *crtcs() {
if (isNull()) {
return nullptr;
}
return xcb_randr_get_screen_resources_crtcs(data());
}
inline xcb_randr_mode_info_t *modes() {
if (isNull()) {
return nullptr;
}
return xcb_randr_get_screen_resources_modes(data());
}
inline uint8_t *names() {
if (isNull()) {
return nullptr;
}
return xcb_randr_get_screen_resources_names(data());
}
};
XCB_WRAPPER_DATA(CrtcGammaData, xcb_randr_get_crtc_gamma, xcb_randr_crtc_t)
class CrtcGamma : public Wrapper<CrtcGammaData, xcb_randr_crtc_t>
{
public:
explicit CrtcGamma(xcb_randr_crtc_t c) : Wrapper<CrtcGammaData, xcb_randr_crtc_t>(c) {}
inline uint16_t *red() {
return xcb_randr_get_crtc_gamma_red(data());
}
inline uint16_t *green() {
return xcb_randr_get_crtc_gamma_green(data());
}
inline uint16_t *blue() {
return xcb_randr_get_crtc_gamma_blue(data());
}
};
XCB_WRAPPER_DATA(CrtcInfoData, xcb_randr_get_crtc_info, xcb_randr_crtc_t, xcb_timestamp_t)
class CrtcInfo : public Wrapper<CrtcInfoData, xcb_randr_crtc_t, xcb_timestamp_t>
{
public:
CrtcInfo() = default;
CrtcInfo(const CrtcInfo&) = default;
explicit CrtcInfo(xcb_randr_crtc_t c, xcb_timestamp_t t) : Wrapper<CrtcInfoData, xcb_randr_crtc_t, xcb_timestamp_t>(c, t) {}
inline QRect rect() {
const CrtcInfoData::reply_type *info = data();
if (!info || info->num_outputs == 0 || info->mode == XCB_NONE || info->status != XCB_RANDR_SET_CONFIG_SUCCESS) {
return QRect();
}
return QRect(info->x, info->y, info->width, info->height);
}
inline xcb_randr_output_t *outputs() {
const CrtcInfoData::reply_type *info = data();
if (!info || info->num_outputs == 0 || info->mode == XCB_NONE || info->status != XCB_RANDR_SET_CONFIG_SUCCESS) {
return nullptr;
}
return xcb_randr_get_crtc_info_outputs(info);
}
};
XCB_WRAPPER_DATA(OutputInfoData, xcb_randr_get_output_info, xcb_randr_output_t, xcb_timestamp_t)
class OutputInfo : public Wrapper<OutputInfoData, xcb_randr_output_t, xcb_timestamp_t>
{
public:
OutputInfo() = default;
OutputInfo(const OutputInfo&) = default;
explicit OutputInfo(xcb_randr_output_t c, xcb_timestamp_t t) : Wrapper<OutputInfoData, xcb_randr_output_t, xcb_timestamp_t>(c, t) {}
inline QString name() {
const OutputInfoData::reply_type *info = data();
if (!info || info->num_crtcs == 0 || info->num_modes == 0 || info->status != XCB_RANDR_SET_CONFIG_SUCCESS) {
return QString();
}
return QString::fromUtf8(reinterpret_cast<char*>(xcb_randr_get_output_info_name(info)), info->name_len);
}
};
XCB_WRAPPER_DATA(CurrentResourcesData, xcb_randr_get_screen_resources_current, xcb_window_t)
class CurrentResources : public Wrapper<CurrentResourcesData, xcb_window_t>
{
public:
explicit CurrentResources(WindowId window) : Wrapper<CurrentResourcesData, xcb_window_t>(window) {}
inline xcb_randr_crtc_t *crtcs() {
if (isNull()) {
return nullptr;
}
return xcb_randr_get_screen_resources_current_crtcs(data());
}
inline xcb_randr_mode_info_t *modes() {
if (isNull()) {
return nullptr;
}
return xcb_randr_get_screen_resources_current_modes(data());
}
};
XCB_WRAPPER(SetCrtcConfig, xcb_randr_set_crtc_config, xcb_randr_crtc_t, xcb_timestamp_t, xcb_timestamp_t, int16_t, int16_t, xcb_randr_mode_t, uint16_t, uint32_t, const xcb_randr_output_t*)
}
class ExtensionData
{
public:
ExtensionData();
int version;
int eventBase;
int errorBase;
int majorOpcode;
bool present;
QByteArray name;
QVector<QByteArray> opCodes;
QVector<QByteArray> errorCodes;
};
class KWIN_EXPORT Extensions
{
public:
bool isShapeAvailable() const {
return m_shape.version > 0;
}
bool isShapeInputAvailable() const;
int shapeNotifyEvent() const;
bool hasShape(xcb_window_t w) const;
bool isRandrAvailable() const {
return m_randr.present;
}
int randrNotifyEvent() const;
bool isDamageAvailable() const {
return m_damage.present;
}
int damageNotifyEvent() const;
bool isCompositeAvailable() const {
return m_composite.version > 0;
}
bool isCompositeOverlayAvailable() const;
bool isRenderAvailable() const {
return m_render.version > 0;
}
bool isFixesAvailable() const {
return m_fixes.version > 0;
}
int fixesCursorNotifyEvent() const;
int fixesSelectionNotifyEvent() const;
bool isFixesRegionAvailable() const;
bool isSyncAvailable() const {
return m_sync.present;
}
int syncAlarmNotifyEvent() const;
QVector<ExtensionData> extensions() const;
bool hasGlx() const {
return m_glx.present;
}
int glxEventBase() const {
return m_glx.eventBase;
}
int glxMajorOpcode() const {
return m_glx.majorOpcode;
}
static Extensions *self();
static void destroy();
private:
Extensions();
~Extensions();
void init();
template <typename reply, typename T, typename F>
void initVersion(T cookie, F f, ExtensionData *dataToFill);
void extensionQueryReply(const xcb_query_extension_reply_t *extension, ExtensionData *dataToFill);
ExtensionData m_shape;
ExtensionData m_randr;
ExtensionData m_damage;
ExtensionData m_composite;
ExtensionData m_render;
ExtensionData m_fixes;
ExtensionData m_sync;
ExtensionData m_glx;
static Extensions *s_self;
};
/**
* This class is an RAII wrapper for an xcb_window_t. An xcb_window_t hold by an instance of this class
* will be freed when the instance gets destroyed.
*
* Furthermore the class provides wrappers around some xcb methods operating on an xcb_window_t.
*
* For the cases that one is more interested in wrapping the xcb methods the constructor which takes
* an existing window and the @ref reset method allow to disable the RAII functionality.
*/
class Window
{
public:
/**
* Takes over responsibility of @p window. If @p window is not provided an invalid Window is
* created. Use @ref create to set an xcb_window_t later on.
*
* If @p destroy is @c true the window will be destroyed together with this object, if @c false
* the window will be kept around. This is useful if you are not interested in the RAII capabilities
* but still want to use a window like an object.
*
* @param window The window to manage.
* @param destroy Whether the window should be destroyed together with the object.
* @see reset
*/
Window(xcb_window_t window = XCB_WINDOW_NONE, bool destroy = true);
/**
* Creates an xcb_window_t and manages it. It's a convenient method to create a window with
* depth, class and visual being copied from parent and border being @c 0.
* @param geometry The geometry for the window to be created
* @param mask The mask for the values
* @param values The values to be passed to xcb_create_window
* @param parent The parent window
*/
Window(const QRect &geometry, uint32_t mask = 0, const uint32_t *values = nullptr, xcb_window_t parent = rootWindow());
/**
* Creates an xcb_window_t and manages it. It's a convenient method to create a window with
* depth and visual being copied from parent and border being @c 0.
* @param geometry The geometry for the window to be created
* @param windowClass The window class
* @param mask The mask for the values
* @param values The values to be passed to xcb_create_window
* @param parent The parent window
*/
Window(const QRect &geometry, uint16_t windowClass, uint32_t mask = 0, const uint32_t *values = nullptr, xcb_window_t parent = rootWindow());
Window(const Window &other) = delete;
~Window();
/**
* Creates a new window for which the responsibility is taken over. If a window had been managed
* before it is freed.
*
* Depth, class and visual are being copied from parent and border is @c 0.
* @param geometry The geometry for the window to be created
* @param mask The mask for the values
* @param values The values to be passed to xcb_create_window
* @param parent The parent window
*/
void create(const QRect &geometry, uint32_t mask = 0, const uint32_t *values = nullptr, xcb_window_t parent = rootWindow());
/**
* Creates a new window for which the responsibility is taken over. If a window had been managed
* before it is freed.
*
* Depth and visual are being copied from parent and border is @c 0.
* @param geometry The geometry for the window to be created
* @param windowClass The window class
* @param mask The mask for the values
* @param values The values to be passed to xcb_create_window
* @param parent The parent window
*/
void create(const QRect &geometry, uint16_t windowClass, uint32_t mask = 0, const uint32_t *values = nullptr, xcb_window_t parent = rootWindow());
/**
* Frees the existing window and starts to manage the new @p window.
* If @p destroy is @c true the new managed window will be destroyed together with this
* object or when reset is called again. If @p destroy is @c false the window will not
* be destroyed. It is then the responsibility of the caller to destroy the window.
*/
void reset(xcb_window_t window = XCB_WINDOW_NONE, bool destroy = true);
/**
* @returns @c true if a window is managed, @c false otherwise.
*/
bool isValid() const;
inline const QRect &geometry() const { return m_logicGeometry; }
/**
* Configures the window with a new geometry.
* @param geometry The new window geometry to be used
*/
void setGeometry(const QRect &geometry);
void setGeometry(uint32_t x, uint32_t y, uint32_t width, uint32_t height);
void move(const QPoint &pos);
void move(uint32_t x, uint32_t y);
void resize(const QSize &size);
void resize(uint32_t width, uint32_t height);
void raise();
void lower();
void map();
void unmap();
void reparent(xcb_window_t parent, int x = 0, int y = 0);
void changeProperty(xcb_atom_t property, xcb_atom_t type, uint8_t format, uint32_t length,
const void *data, uint8_t mode = XCB_PROP_MODE_REPLACE);
void deleteProperty(xcb_atom_t property);
void setBorderWidth(uint32_t width);
void grabButton(uint8_t pointerMode, uint8_t keyboardmode,
uint16_t modifiers = XCB_MOD_MASK_ANY,
uint8_t button = XCB_BUTTON_INDEX_ANY,
uint16_t eventMask = XCB_EVENT_MASK_BUTTON_PRESS,
xcb_window_t confineTo = XCB_WINDOW_NONE,
xcb_cursor_t cursor = XCB_CURSOR_NONE,
bool ownerEvents = false);
void ungrabButton(uint16_t modifiers = XCB_MOD_MASK_ANY, uint8_t button = XCB_BUTTON_INDEX_ANY);
/**
* Clears the window area. Same as xcb_clear_area with x, y, width, height being @c 0.
*/
void clear();
void setBackgroundPixmap(xcb_pixmap_t pixmap);
void defineCursor(xcb_cursor_t cursor);
void focus(uint8_t revertTo = XCB_INPUT_FOCUS_POINTER_ROOT, xcb_timestamp_t time = XCB_TIME_CURRENT_TIME);
void selectInput(uint32_t events);
void kill();
operator xcb_window_t() const;
private:
xcb_window_t doCreate(const QRect &geometry, uint16_t windowClass, uint32_t mask = 0, const uint32_t *values = nullptr, xcb_window_t parent = rootWindow());
void destroy();
xcb_window_t m_window;
bool m_destroy;
QRect m_logicGeometry;
};
inline
Window::Window(xcb_window_t window, bool destroy)
: m_window(window)
, m_destroy(destroy)
{
}
inline
Window::Window(const QRect &geometry, uint32_t mask, const uint32_t *values, xcb_window_t parent)
: m_window(doCreate(geometry, XCB_COPY_FROM_PARENT, mask, values, parent))
, m_destroy(true)
{
}
inline
Window::Window(const QRect &geometry, uint16_t windowClass, uint32_t mask, const uint32_t *values, xcb_window_t parent)
: m_window(doCreate(geometry, windowClass, mask, values, parent))
, m_destroy(true)
{
}
inline
Window::~Window()
{
destroy();
}
inline
void Window::destroy()
{
if (!isValid() || !m_destroy) {
return;
}
xcb_destroy_window(connection(), m_window);
m_window = XCB_WINDOW_NONE;
}
inline
bool Window::isValid() const
{
return m_window != XCB_WINDOW_NONE;
}
inline
Window::operator xcb_window_t() const
{
return m_window;
}
inline
void Window::create(const QRect &geometry, uint16_t windowClass, uint32_t mask, const uint32_t *values, xcb_window_t parent)
{
destroy();
m_window = doCreate(geometry, windowClass, mask, values, parent);
}
inline
void Window::create(const QRect &geometry, uint32_t mask, const uint32_t *values, xcb_window_t parent)
{
create(geometry, XCB_COPY_FROM_PARENT, mask, values, parent);
}
inline
xcb_window_t Window::doCreate(const QRect &geometry, uint16_t windowClass, uint32_t mask, const uint32_t *values, xcb_window_t parent)
{
m_logicGeometry = geometry;
xcb_window_t w = xcb_generate_id(connection());
xcb_create_window(connection(), XCB_COPY_FROM_PARENT, w, parent,
geometry.x(), geometry.y(), geometry.width(), geometry.height(),
0, windowClass, XCB_COPY_FROM_PARENT, mask, values);
return w;
}
inline
void Window::reset(xcb_window_t window, bool shouldDestroy)
{
destroy();
m_window = window;
m_destroy = shouldDestroy;
}
inline
void Window::setGeometry(const QRect &geometry)
{
setGeometry(geometry.x(), geometry.y(), geometry.width(), geometry.height());
}
inline
void Window::setGeometry(uint32_t x, uint32_t y, uint32_t width, uint32_t height)
{
m_logicGeometry.setRect(x, y, width, height);
if (!isValid()) {
return;
}
const uint16_t mask = XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y | XCB_CONFIG_WINDOW_WIDTH | XCB_CONFIG_WINDOW_HEIGHT;
const uint32_t values[] = { x, y, width, height };
xcb_configure_window(connection(), m_window, mask, values);
}
inline
void Window::move(const QPoint &pos)
{
move(pos.x(), pos.y());
}
inline
void Window::move(uint32_t x, uint32_t y)
{
m_logicGeometry.moveTo(x, y);
if (!isValid()) {
return;
}
moveWindow(m_window, x, y);
}
inline
void Window::resize(const QSize &size)
{
resize(size.width(), size.height());
}
inline
void Window::resize(uint32_t width, uint32_t height)
{
m_logicGeometry.setSize(QSize(width, height));
if (!isValid()) {
return;
}
const uint16_t mask = XCB_CONFIG_WINDOW_WIDTH | XCB_CONFIG_WINDOW_HEIGHT;
const uint32_t values[] = { width, height };
xcb_configure_window(connection(), m_window, mask, values);
}
inline
void Window::raise()
{
const uint32_t values[] = { XCB_STACK_MODE_ABOVE };
xcb_configure_window(connection(), m_window, XCB_CONFIG_WINDOW_STACK_MODE, values);
}
inline
void Window::lower()
{
lowerWindow(m_window);
}
inline
void Window::map()
{
if (!isValid()) {
return;
}
xcb_map_window(connection(), m_window);
}
inline
void Window::unmap()
{
if (!isValid()) {
return;
}
xcb_unmap_window(connection(), m_window);
}
inline
void Window::reparent(xcb_window_t parent, int x, int y)
{
if (!isValid()) {
return;
}
xcb_reparent_window(connection(), m_window, parent, x, y);
}
inline
void Window::changeProperty(xcb_atom_t property, xcb_atom_t type, uint8_t format, uint32_t length, const void *data, uint8_t mode)
{
if (!isValid()) {
return;
}
xcb_change_property(connection(), mode, m_window, property, type, format, length, data);
}
inline
void Window::deleteProperty(xcb_atom_t property)
{
if (!isValid()) {
return;
}
xcb_delete_property(connection(), m_window, property);
}
inline
void Window::setBorderWidth(uint32_t width)
{
if (!isValid()) {
return;
}
xcb_configure_window(connection(), m_window, XCB_CONFIG_WINDOW_BORDER_WIDTH, &width);
}
inline
void Window::grabButton(uint8_t pointerMode, uint8_t keyboardmode, uint16_t modifiers,
uint8_t button, uint16_t eventMask, xcb_window_t confineTo,
xcb_cursor_t cursor, bool ownerEvents)
{
if (!isValid()) {
return;
}
xcb_grab_button(connection(), ownerEvents, m_window, eventMask,
pointerMode, keyboardmode, confineTo, cursor, button, modifiers);
}
inline
void Window::ungrabButton(uint16_t modifiers, uint8_t button)
{
if (!isValid()) {
return;
}
xcb_ungrab_button(connection(), button, m_window, modifiers);
}
inline
void Window::clear()
{
if (!isValid()) {
return;
}
xcb_clear_area(connection(), false, m_window, 0, 0, 0, 0);
}
inline
void Window::setBackgroundPixmap(xcb_pixmap_t pixmap)
{
if (!isValid()) {
return;
}
const uint32_t values[] = {pixmap};
xcb_change_window_attributes(connection(), m_window, XCB_CW_BACK_PIXMAP, values);
}
inline
void Window::defineCursor(xcb_cursor_t cursor)
{
Xcb::defineCursor(m_window, cursor);
}
inline
void Window::focus(uint8_t revertTo, xcb_timestamp_t time)
{
setInputFocus(m_window, revertTo, time);
}
inline
void Window::selectInput(uint32_t events)
{
Xcb::selectInput(m_window, events);
}
inline
void Window::kill()
{
xcb_kill_client(connection(), m_window);
}
// helper functions
static inline void moveResizeWindow(WindowId window, const QRect &geometry)
{
const uint16_t mask = XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y | XCB_CONFIG_WINDOW_WIDTH | XCB_CONFIG_WINDOW_HEIGHT;
const uint32_t values[] = {
static_cast<uint32_t>(geometry.x()),
static_cast<uint32_t>(geometry.y()),
static_cast<uint32_t>(geometry.width()),
static_cast<uint32_t>(geometry.height())
};
xcb_configure_window(connection(), window, mask, values);
}
static inline void moveWindow(xcb_window_t window, const QPoint& pos)
{
moveWindow(window, pos.x(), pos.y());
}
static inline void moveWindow(xcb_window_t window, uint32_t x, uint32_t y)
{
const uint16_t mask = XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y;
const uint32_t values[] = { x, y };
xcb_configure_window(connection(), window, mask, values);
}
static inline void lowerWindow(xcb_window_t window)
{
const uint32_t values[] = { XCB_STACK_MODE_BELOW };
xcb_configure_window(connection(), window, XCB_CONFIG_WINDOW_STACK_MODE, values);
}
static inline WindowId createInputWindow(const QRect &geometry, uint32_t mask, const uint32_t *values)
{
WindowId window = xcb_generate_id(connection());
xcb_create_window(connection(), 0, window, rootWindow(),
geometry.x(), geometry.y(), geometry.width(), geometry.height(),
0, XCB_WINDOW_CLASS_INPUT_ONLY,
XCB_COPY_FROM_PARENT, mask, values);
return window;
}
static inline void restackWindows(const QVector<xcb_window_t> &windows)
{
if (windows.count() < 2) {
// only one window, nothing to do
return;
}
for (int i=1; i<windows.count(); ++i) {
const uint16_t mask = XCB_CONFIG_WINDOW_SIBLING | XCB_CONFIG_WINDOW_STACK_MODE;
const uint32_t stackingValues[] = {
windows.at(i-1),
XCB_STACK_MODE_BELOW
};
xcb_configure_window(connection(), windows.at(i), mask, stackingValues);
}
}
static inline void restackWindowsWithRaise(const QVector<xcb_window_t> &windows)
{
if (windows.isEmpty()) {
return;
}
const uint32_t values[] = { XCB_STACK_MODE_ABOVE };
xcb_configure_window(connection(), windows.first(), XCB_CONFIG_WINDOW_STACK_MODE, values);
restackWindows(windows);
}
static inline int defaultDepth()
{
static int depth = 0;
if (depth != 0) {
return depth;
}
int screen = Application::x11ScreenNumber();
for (xcb_screen_iterator_t it = xcb_setup_roots_iterator(xcb_get_setup(connection()));
it.rem;
--screen, xcb_screen_next(&it)) {
if (screen == 0) {
depth = it.data->root_depth;
break;
}
}
return depth;
}
static inline xcb_rectangle_t fromQt(const QRect &rect)
{
xcb_rectangle_t rectangle;
rectangle.x = rect.x();
rectangle.y = rect.y();
rectangle.width = rect.width();
rectangle.height = rect.height();
return rectangle;
}
static inline QVector<xcb_rectangle_t> regionToRects(const QRegion &region)
{
QVector<xcb_rectangle_t> rects;
rects.reserve(region.rectCount());
for (const QRect &rect : region) {
rects.append(Xcb::fromQt(rect));
}
return rects;
}
static inline void defineCursor(xcb_window_t window, xcb_cursor_t cursor)
{
xcb_change_window_attributes(connection(), window, XCB_CW_CURSOR, &cursor);
}
static inline void setInputFocus(xcb_window_t window, uint8_t revertTo, xcb_timestamp_t time)
{
xcb_set_input_focus(connection(), revertTo, window, time);
}
static inline void setTransientFor(xcb_window_t window, xcb_window_t transient_for_window)
{
xcb_change_property(connection(), XCB_PROP_MODE_REPLACE, window, XCB_ATOM_WM_TRANSIENT_FOR,
XCB_ATOM_WINDOW, 32, 1, &transient_for_window);
}
static inline void sync()
{
auto *c = connection();
const auto cookie = xcb_get_input_focus(c);
xcb_generic_error_t *error = nullptr;
ScopedCPointer<xcb_get_input_focus_reply_t> sync(xcb_get_input_focus_reply(c, cookie, &error));
if (error) {
free(error);
}
}
void selectInput(xcb_window_t window, uint32_t events)
{
xcb_change_window_attributes(connection(), window, XCB_CW_EVENT_MASK, &events);
}
/**
* @brief Small helper class to encapsulate SHM related functionality.
*/
class Shm
{
public:
Shm();
~Shm();
int shmId() const;
void *buffer() const;
xcb_shm_seg_t segment() const;
bool isValid() const;
uint8_t pixmapFormat() const;
private:
bool init();
int m_shmId;
void *m_buffer;
xcb_shm_seg_t m_segment;
bool m_valid;
uint8_t m_pixmapFormat;
};
inline
void *Shm::buffer() const
{
return m_buffer;
}
inline
bool Shm::isValid() const
{
return m_valid;
}
inline
xcb_shm_seg_t Shm::segment() const
{
return m_segment;
}
inline
int Shm::shmId() const
{
return m_shmId;
}
inline
uint8_t Shm::pixmapFormat() const
{
return m_pixmapFormat;
}
} // namespace X11
} // namespace KWin
#endif // KWIN_X11_UTILS_H