
LAST: Locality-Aware Sector Translation for NAND Flash
Memory-Based Storage Systems

Sungjin Lee
School of Computer Science

and Engineering
Seoul National University

chamdoo@davinci.snu.ac.kr

Dongkun Shin
School of Information and

Communication Engineering
Sungkyunkwan University
dongkun@skku.edu

Young-Jin Kim
Department of Computer
Science and Engineering

Sun Moon University
youngkim@sunmoon.ac.kr

Jihong Kim
School of Computer Science

and Engineering
Seoul National University

jihong@davinci.snu.ac.kr

ABSTRACT
As flash memory technologies quickly improve, NAND flash mem-
ory-based storage devices are becoming a viable alternative as a
secondary storage solution for general-purpose computing systems
such as personal computers and enterprise server systems. Most ex-
isting flash translation layer (FTL) schemes are, however, ill-suited
for such systems because they were optimized for storage write pat-
terns of embedded systems only. In this paper, we propose a new
flash management technique called LAST which is optimized for
access characteristics of general-purpose computing systems. By
exploiting the locality of storage access patterns, LAST reduces
the garbage collection overhead significantly, thus increasing the
I/O performance of flash-based storage devices. Our experimen-
tal results show that the proposed technique reduces the garbage
collection overhead by 54% over the existing flash memory man-
agement techniques.

1. INTRODUCTION
Flash memory has been widely used as a storage device for mobile
embedded systems (such as MP3 players and PDAs) because of its
low-power consumption, nonvolatility, high random access perfor-
mance and high mobility. With continuing improvements in both
the capacity and the price of flash memory, flash memory is increas-
ingly popular in general-purpose computing markets. For exam-
ple, leading notebook vendors recently started replacing hard disk
drives with NAND flash memory-based solid state disks (SSD).
Furthermore, as the energy efficiency of the enterprise systems be-
comes more critical [1], the enterprise systems are also expected to
adopt more SSDs [2]. However, several limitations of flash mem-
ory make it difficult to replace hard disk drives with SSDs in a
straightforward fashion.

Generally, NAND flash memory consists of multiple blocks, and
each block is composed of multiple pages. Each page is a unit of
read and write operation, and each block is a unit of erase operation.
Unlike a traditional hard disk drive, flash memory does not support
overwrite operations because of its write-once nature. When the
data at a specific page is modified, the new data value is written to
another empty page and the page with the old data should be inval-
idated. This special feature of flash memory requires two storage
management schemes. First, we need to provide an address map-
ping scheme, which maps the logical address from the file system

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 1000 2000 3000 4000 5000 6000 7000

Lo
g

ic
a

l B
lo

ck
 A

d
d

re
ss

Virtual Time

L
o
g
ic
a
l
B
lo
ck
 A
d
d
re
ss

Virtual Time

(a) An MP3 player

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 1000 2000 3000 4000 5000 6000 7000

Lo
g

ic
a

l B
lo

ck
 A

d
d

re
ss

Virtual Time

L
o
g
ic
a
l
B
lo
ck
 A
d
d
re
ss

Virtual Time

(b) General-purpose applica-
tions

Figure 1: Logical block access patterns

to the physical address in flash memory by maintaining an address
mapping table. Second, we need a garbage collection scheme to re-
claim the invalidated pages. The garbage collection scheme should
select a block which has many invalid pages and erase the block
to be reused after migrating the valid pages in the block to a clean
block. In order to support these two management tasks, a flash
translation layer (FTL) is commonly used between the file system
and flash memory devices.

The FTL is often implemented in resource-constrained environ-
ments and the overall I/O performance of the FTL implementation
largely depends on its garbage collection efficiency. So, most exist-
ing FTL schemes were focusing on reducing the garbage collection
overhead using a small address mapping table.

Although the existing FTLs perform efficiently for their target con-
sumer electronics devices, the efficiency of their garbage collec-
tion scheme can be deteriorated when they were used in general-
purpose computing systems. For example, in our experiments, we
observed that the garbage collection overhead may account for 40%-
60% of the total I/O time. The main source of this inefficiency
comes from different write access patterns. As shown in Figure 1,
most write requests in an MP3 player are sequential with only a
small number of random writes. On the other hand, in general-
purpose applications, the write request pattern is more complex
with the following three characteristics. The first difference is that
there is a high temporal locality because there are many sectors
which are updated frequently. The second one is that the sequential
locality is also high (although it is not so high as in mobile con-

36

36

sumer applications) because there are many sequential writes. The
last one is that there are many random writes which are interposed
between sequential writes.

In order to build a high performance FTL for general-purpose com-
puting systems, these three characteristics should be taken into ac-
count. In particular, both the temporal locality and sequential local-
ity should be efficiently exploited. To this end, we need to separate
the sequential access from the random access. Therefore, the ex-
isting FTLs optimized for the access patterns of consumer devices
should be redesigned to exploit write access patterns of general-
purpose computing systems.

Based on this observation, we propose a new FTL scheme using a
locality-aware sector translation (LAST). To exploit both temporal
locality and sequential locality1, we reorganize the flash memory
space into two regions depending on the type of locality and adopt
more intelligent garbage collection policies for each region. Exper-
imental results based on a trace-driven simulator show that LAST
reduces the garbage collection overhead by up to 54% over the ex-
isting FTLs for general purpose applications.

The rest of this paper is organized as follows. In Section 2, we
survey previous approaches in managing flash memory. Section 3
describes the details of the proposed LAST scheme. Experimen-
tal results are presented at Section 4. Section 5 concludes with a
summary and directions for future works.

2. BACKGROUND AND RELATED WORK
2.1 Flash Translation Layer
Generally, FTL schemes can be classified into three groups depend-
ing on the granularity of address mapping: page-level, block-level,
and hybrid-level FTL schemes. In the page-level FTL scheme [3,
4, 5], a logical page number (LPN) from the file system can be
mapped to a physical page number in flash memory. This mapping
approach shows a great garbage collection efficiency, but it is im-
practical due to its huge mapping table size. In the block-level FTL
scheme [6], only the logical block number of a logical address is
mapped to a physical block number and the page offset in a block
is not changed. By using more coarse-grained mapping units, it can
reduce a mapping table size significantly. However, when the data
of a page is to be modified, all the data in the corresponding block
as well as the new data should be written into another empty block.
This constraint results in high garbage collection overhead. In or-
der to overcome these disadvantages, the hybrid-level FTL scheme
was proposed. Log buffer-based FTLs [7, 8, 9] are representative
hybrid-level schemes. They show a high garbage collection effi-
ciency and require a small-sized mapping table.

2.2 Log buffer-based FTL schemes
In the log buffer-based FTL scheme, it distinguishes flash memory
blocks into data blocks and log blocks. Data blocks represent the
ordinary storage space, and are managed by the block-level map-
ping. Log blocks are the invisible storage space to be used for
storing log data, and handled by the page-level mapping. A set
of log blocks is called a log buffer. Because only the small fixed
number of log blocks is used, the memory overhead for the page-
level mapping is low. When a write request modifying the data in
a data block arrives, the log buffer-based FTL writes the new data
1In this paper, the sequential locality refers to the property that if an
access has been made to a particular location p, then it is likely that
an access will be made to the location (p + 1) in the near future.

0 1 2 3

Log Block

0 1 2 3

Data Block

0 1 2 3

Data Block

Free Free Free Free

Free Block

Change

Erase

Sequential writes
(LPN): 0,1,2,3

(a) Switch merge

0 1 2 Free

Log Block

0 1 2 3

Data Block

0 1 2 3

Data Block

Free Free Free Free

Free Block

Copy

Change

Erase

Semi-sequential writes
(LPN): 0,1,2

(b) Partial merge

4 0 5 1

Log Block 0 (LB0)

0 1 2 3

Data Block (DB0)

Random writes
(LPN): 4, 0, 5, 1, 4, 2, 5, 4

Free Free Free Free

4 2 5 4

4 5 6 7

4 2 5 4

4 5 6 7

Free Free Free Free

Erase
Change

Copy

Copy

0 1 2 3

Free Free Free Free

Log Block 1 (LB1)

Data Block (DB1)

Log Block 0 (LB0) Log Block 1 (LB1)

Data Block (DB0) Data Block (DB1)

(c) Full merge

Figure 2: Three types of merge operations

(log data) temporarily in the log buffer invalidating the correspond-
ing data in the data block. So, it can reduce the extra operations
required to maintaining the data block’s block-level mapping in-
formation. However, all the log blocks are exhausted, some of log
data in log blocks should be flushed into the data blocks to make
free space in the log buffer. The valid data in the data block and
the log data of the log block should be merged and rewritten into
an empty data block. We call this work as a merge operation.

Figure 2 illustrates three types of merge operations: switch merge,
partial merge and full merge. In this figure, we assume that each
block is composed of four pages. The number within the small
boxes denotes a LPN of each page and the shaded box represents
a page with old data (invalid page). The switch merge is the most
cheap merge operation. As shown in Figure 2(a), the FTL simply
erases the data block with only invalid pages and changes the log
block into a data block. Therefore, it requires only one erase op-
eration. The switch merge is performed only when all the pages
in the data block are sequentially updated starting from the first
logical page to the last logical page. The partial merge is sim-
ilar to the switch merge. But, it requires additional copy oper-
ations, as depicted in Figure 2(b). After all the valid pages are
copied, we simply apply the switch merge. The partial merge typ-
ically occurs when the sequential write does not fill up one block
(semi-sequential). The full merge operation is most expensive. Fig-
ure 2(c) shows the snapshot of the full merge. There are two log
blocks, LB0 and LB1, and two data blocks, DB0 and DB1. We
assume that LB0 is selected as a victim log block. The FTL first al-
locates one free block and copies all the valid pages both from LB0

and from DB0 to the free block. Especially, the data block DB0

is called an associated data block of LB0 because it has the cor-
responding invalid page for a valid page in the victim block LB0.
The number of the associated data blocks can be increased up to
the number of pages per a single block. After copying all the valid
pages, the free block becomes a data block, and DB0 and LB0 are
erased. Therefore, the full merge requires several copy operations
and erase operations. The full merge is typically required when the
pages are updated in random order.

2.3 Related Work
Kim et al. have proposed a log buffer-based FTL scheme which
uses a block associative sector translation (BAST) [7]. In the BAST
scheme, one data block is associated with only one log block, i.e.,

37

37

Hot partition Sequential Log Buffer

Data Blocks

Locality
Detector

Write Requests

Random writes Sequential writes

Merge operation

Block-level
Mapping Table

Page-level
Mapping Table

Block-level
Mapping Table

Cold partition

Random Log BufferLog Buffers

Data Storage

Figure 3: The overall architecture of the LAST scheme

a log block can have log data only for a data block. If there is a
write request, its data is written into the corresponding log block
sequentially. The merge operation is triggered when there is no
associated log block for a write request and there is no free log
block. BAST provides an efficient garbage collection for consumer
devices whose access patterns are mainly sequential. This is be-
cause most merge operations can be performed by the cheap switch
merge. However, as the write pattern becomes more random, the
space utilization of the log buffer gets worse because even a single
page update of a data block requires a whole log block. So, when
a large number of small-sized random writes are issued from the
file system, most of log blocks are selected as victim blocks with
only a small portion of the block being utilized. This phenomenon
is called a log block thrashing problem [8]. Since all the under-
utilized log blocks should be merged by the full merge, the merge
cost is significantly increased.

In order to overcome this shortcoming of the BAST scheme, a fully
associative sector translation (FAST) [8] has been proposed. In
FAST, one log block can be shared by all the data blocks, and up-
date requests are sequentially written in a log block irrespective of
their corresponding blocks. The garbage collection is performed
only when there is no free space in the log buffer. This approach
efficiently removes the block thrashing problem, and then increases
the garbage collection efficiency for the random workload. FAST
also maintains a single log block, called sequential log block, to
manipulate the sequential writes. However, FAST does not con-
sider the multiple sequential write streams by multiple tasks and
does not efficiently handle the mixture of random write request and
sequential write request. In addition, it does not exploit the tempo-
ral locality of the random writes.

Recently, a SUPERBLOCK scheme [9] demonstrated that the tem-
poral locality can be exploited by allowing the page-level mapping
in a superblock which is a set of consecutive blocks. Then, the
cold data and the hot data are separated automatically into different
blocks within a superblock, thus the garbage collection efficiency is
improved by reducing the number of full merge operations. How-
ever, their approach does not efficiently distinguish the cold pages
from the hot pages. Moreover, the critical shortcoming of the SU-
PERBLOCK scheme is that the page-level mapping information
within a superblock should be maintained.

3. LOCALITY-AWARE SECTOR TRANSLA-
TION SCHEME

3.1 Overall Architecture

File System

Task1 Task2
A sequential write request

(LPN) : (1,2,3,4,5,6,7,8)
A random write request

(LPN) : (20, 21)

Mixed write requests (LPN) :
(1,2,3,4),(20,21),(5,6,7,8)

Flash Translation Layer

Host System
Storage System

Figure 4: Behaviors of write requests

As noted in Section 1, the typical workload in the general purpose
computing systems is a mixture of random writes and sequential
writes. Therefore, it is important to extract the sequential writes
from the mixture of different write requests so that more switch
merges and partial merges can be applied. Additionally, by iso-
lating the random writes, we can efficiently handle the temporal
locality of the random writes. To do that, LAST partitions the log
buffer into two parts; random log buffer and sequential log buffer
as shown in Figure 3. Upon the arrival of a write request, the local-
ity detector identifies the type of locality of the write request and
sends it into the sequential log buffer if it has a sequential locality.
Otherwise, LAST sends it into the random log buffer.

The sequential log buffer consists of several sequential log blocks,
and one sequential log block is associated with only one data block
(block associative mapping) like BAST [7]. This is because the
block associative mapping is appropriate for the sequential access
patterns. The random log buffer is composed of several random log
blocks, and each random log block can be associated with multiple
data blocks (fully associative mapping) like FAST [8]. The fully
associative mapping is advantageous to manage the random access
patterns, especially when they have a high temporal locality. Ad-
ditionally, LAST divides the random log buffer into two partitions,
hot and cold, and redirects the arriving requests to either one de-
pending on their temporal localities. By clustering the data with
high temporal locality within the hot partition, we can reduce the
merge cost of the full merge, which mainly occurs in the random
write patterns.

3.2 Detecting the Locality Type
To exploit the different locality type of each request, we need a pol-
icy which determines the locality type of a write request. Figure 4
shows the typical behaviors of write requests which are generated
by multiple tasks and are sent to the FTL through the file system in
a general-purpose computing system. Since multiple I/O requests
are usually interleaved at the FTL due to a multi-tasking, we need
to know how the locality of each request may change.

From the observation on the characteristics of the I/O requests gath-
ered from the general-purpose computing system, we found that the
locality type of each request is deeply related to its size. Figure 5(a)
illustrates the relationship between the write update frequency and
the size of the request sent to the FTL. The update frequency of the
request of size s (sectors) represents the average number of update
operations over all requests of size s. As shown in Figure 5(a),
small writes have high temporal localities while large writes have
lower temporal localities.

Another observation is that small writes have little sequential lo-
calities. Figure 5(b) shows the relationship between the size of
each write request and the size of its original request. The original

38

38

0

2

4

6

8

10

12

1 2 4 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

1
1
2

1
2
0

1
2
8

U
p

d
a

te
 f
re

q
u

e
n

cy

Request size sent to the storage (sectors)

(a) A distribution of the update frequency over the re-
quest size

1

10

100

1000

10000

1 2 4 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

1
1
2

1
2
0

1
2
8

O
ri

g
in

a
l r

e
q

u
e

st
s

si
ze

 (
se

ct
o

rs
)

Request size sent to the storage (sectors)

(b) A distribution of the original request size over the
request size

Figure 5: Characteristics of write requests

request is a request issued by a task to the file system as shown in
Figure 4. The file system may divide a long sequential write request
into small write requests and send them to the FTL, interleaving a
write request from another task. So, the request size shown to the
FTL will be smaller than the original size of the write request gen-
erated by tasks. However, as shown in Figure 5(b), we notice that
small writes almost come from small original writes, and a large
write request is likely to be a part of a long sequential access. Since
I/O clustering strengthens the sequential property of each request in
a request queue within a device driver [10], if a write which arrives
at the FTL is small, we can assume that it is likely to have a ran-
dom access pattern. Therefore, we can presume that a small write
in general-purpose computing systems usually has a high temporal
and low sequential locality; on the other hand, a large write has a
relatively high sequential locality.

Based on these observations, we made a simple locality detecting
policy based on the request size without maintaining additional in-
formation for identifying the locality type of the write request. This
policy determines the locality type by comparing the size of each
request with a threshold value. If the size of the request is larger
than the threshold value, it is redirected to the sequential log buffer;
otherwise, it is written in the random log buffer. This threshold
value should be carefully determined. If the threshold is too small,
a large amount of small data will be frequently written in the se-
quential log buffer, incurring the block thrashing problem. If the
threshold is too large, sequential writes will be forwarded to the
random log buffer. Therefore, LAST may lose many chances for
the switch merge while it increases the number of the full merges
since the data written in the random log buffer should be evicted by
the full merge.

2

1

3

0

6

5

Free

4

14

13

Free

12①

②

③

④

⑤⑥

⑦

⑧

⑨

⑩ 2

1

3

0

6

5

7

4

14

13

15

12

LB0 LB1 LB2 DB0 DB1 DB2
Sequential Log Blocks Data Blocks

Data stream 1: 0~1
Data stream 2: 12~14
Data stream 3: 2~6

(a) Write process

6

5

Free

4

14

13

Free

12

LB0 LB1 LB2

Free

Free

Free

Free

6

5

7

4

14

13

15

12

DB0 DB1 DB2

2

1

3

0

Switch Merge

Sequential Log Blocks Data Blocks

(b) Switch merge

Figure 6: Operations in the sequential log buffer

In our experiment, we found that the overall merge cost is mini-
mized when the threshold value is 4 KB (i.e., 8 sectors), especially
for write request patterns on the Microsoft Windows XP operating
system when we assume that a single block size is 128KB.

3.3 Exploiting Sequential Locality
Figure 6(a) shows the write process in the sequential log buffer
when three sequential data streams are issued from the file sys-
tem. In this example, we assume that all the log blocks are initially
empty. The write sequence of each page is denoted within a small
circle. When all the sequential log blocks are exhausted, LAST first
searches the log block where all the pages are valid data, and does
the switch merge. If there is no such a log block, LAST selects the
victim log block using LRU replacement policy and then applies
the partial merge. Figure 6(b) shows the switch merge operation.
Since all the pages in the LB0 are occupied by newly updated data,
LB0 is selected as the victim.

Usually, in general-purpose computing environments, several se-
quential write streams are simultaneously issued from the file sys-
tem. By maintaining several sequential log blocks, we can ac-
commodate multiple sequential write streams in the sequential log
buffer. So, we can reduce the number of the partial merges due to
the contention between multiple sequential streams. For instance,
in Figure 6, if there is only one sequential log block like FAST [8],
each sequential data stream will expel the other data stream from
the one sequential log block. So, its performance degrades in the
general-purpose computing systems.

3.4 Exploiting Temporal Locality
In the random log buffer, the full merge inevitably occurs. To re-
duce the full merge cost, LAST utilized the temporal locality. Be-
fore describing how to exploit the temporal locality, it is necessary
to know which factor determines the full merge cost.

3.4.1 Modeling the Full Merge Cost
As shown in Eq. (1), the full merge cost consists of the page migra-
tion cost and the block erase cost. Before the full merge, we first
select the victim log block, and identify the set of associated data
blocks of the victim block. In this paper, we define the number of
associated data blocks as an associativity degree, and denote it as
Na. Each page in an associated data block should be migrated into
empty data block from the associated block if it is valid in the data
block or from the log block if it is invalid in the data block. Then,
the number of page migrations for each associated data block is Np

when there is no free page in the data block, where Np is the num-
ber of pages per a single block. After copying all the valid pages,
we erase associated data blocks and the victim log block. There-
fore, we can express the full merge cost as Eq. (2) where Ce means

39

39

the cost for erasing a single block and Cc is the cost for copying a
single page.

full merge cost =migration cost + erase cost (1)
=Na × {(Np × Cc) + Ce}+ Ce (2)

From Eq. (2), we can know that the overall full merge cost deeply
depends on the associativity degree Na. Consequently, how to re-
duce the overall associativity degree is a critical point in reducing
the full merge cost.

In this paper, we use the temporal locality of random writes as a
key consideration in reducing the associativity degree. The first
approach is to cluster pages with high temporal locality (hot pages)
into the same log block. The hot pages are frequently updated than
other pages (cold pages), thus make a large number of invalid pages
within the random log buffer. Then, we can increase the number
of log blocks which has no associated data blocks, and get a free
block without the page migration. The second approach is to wait
until the associativity degree of a log block is decreased if it has the
possibility. Since the hot pages are likely to be invalidated by the
frequent writes, it is more beneficial to select the victim among the
cold blocks whose associativity degree will rarely be changed. In
the LAST scheme, these two ideas are implemented by the random
log buffer partitioning policy and random log buffer replacement
policy, respectively.

3.4.2 Random Log Buffer Partitioning Policy
The random log buffer partitioning policy is proposed to efficiently
remove invalid pages from the random log buffer. We found that
a large amount of invalid pages (above 50%) occupy the random
log buffer space, and most of them are originated from hot pages
whose data is updated frequently. However, if the invalid pages are
distributed into several log blocks, a random log block will have
both invalid pages and valid pages. Then, a full merge should be
performed to reclaim such a log block.

To make the invalid pages to be generated mainly in a small portion
of log blocks, we divide the random log buffer into two partitions,
one for hot pages (hot partition) and the other for cold ones (cold
partition), and redirects arriving request into different partitions de-
pending on their temporal localities. Since hot pages are frequently
rewritten, all the hot pages within the same log block are likely to
be invalidated in the near future. When a log block only has invalid
pages, we call it dead block. A dead block is not associated with
any data blocks (Na = 0), therefore, only one erase operation is re-
quired to merge it. Since a lot of dead blocks are generated from
the hot partition, by aggressively evicting dead blocks, we can re-
duce the full merge cost. In addition, this approach also delays
the merge operation on the cold partition. This delayed merge is
usually beneficial to reduce the full merge cost since lots of pages
that belong to the cold partition can be invalidated during this delay
time, decreasing the overall associativity degree of the cold parti-
tion. Figure 7 shows the write processes in the random log buffer
with two partitions, and compares it with a single partition.

When partitioning the log buffer, we need to determine which pages
should be regarded as hot. As shown in Figure 7(b), LAST distin-
guishes the hotness of each page based on its update interval. The
update interval can be measured by a page distance between the
most recently written page and the page with old data of the re-
quested page. To evaluate whether an update interval is frequent or
infrequent, we define an index k as a criterion. If the update interval
of the requested page is smaller than k, we regard it as a hot page;

2 9612 9518 2723 141

Write

Write (LPN) : 9

(a) A single partition

92165 9873 241 1 221

Cold partition Hot partition

Index k = 4 Most recently
written pageWrite

Write (LPN) : 9
An update interval =1 <

Index k = 4

Write

(b) Two partitions (Hot/Cold)

Figure 7: Write processes in two types of the random log
buffers

otherwise, it is regarded as a cold page. Once a page is regarded as
hot, it remains in the hot partition until it is evicted. For example, in
Figure 7(a), the data of the requested page is sequentially written to
the random log buffer regardless of its hotness. On the other hand,
in Figure 7(b), pages 1, 2 and 9 are treated as hot pages because
their update intervals are smaller than k, and thus clustered into the
hot partition.

The index k should be periodically adjusted depending on the work-
load pattern to effectively identify the hot pages. Moreover, we also
need to redefine the size of the hot partition since as the k value
changes, the amount of data to be written in the hot partition also
changes. To control them, we refer to a space utilization of each
partition (Uhot and Ucold) and the number of dead blocks in the hot
partition (Nd). The space utilization can be formally defined as the
ratio of the valid pages in each partition.

Assuming that the hot pages are properly identified, the size of the
hot partition is changed in the following two cases. The first case
is when Nd is being increased. Because it means that too many log
blocks are assigned to the hot partition, we reduce the size of the
hot partition. If Nd is reduced while Uhot is increased, it means
a large number of hot pages remain as a valid status due to the
lack of the space in the hot partition. Therefore, we increase the
hot partition size. Assuming that the size of hot partition is large
enough to accommodate the hot data, the k value can be changed
in the following cases. If Nd is being reduced and Uhot remain
relatively low, it means that a number of cold pages are distributed
in the hot partition. Therefore, we reduce the k value. If Ucold is
being reduced, it means that a number of hot pages are written in
the cold partition. So, we increase the k value.

3.4.3 Random Log Buffer Replacement Policy
The random log buffer replacement policy is proposed to provide a
more intelligent victim block selection. The victim selection policy
is composed of two steps. In the first step, we determine a victim
partition, where the victim log block is to be selected. If there
is a dead block in the hot partition, we select the hot partition as
the victim partition; otherwise, we choose the cold partition. The
rationale behind this approach is to delay the eviction of the hot
pages in the hot partition as long as possible. However, when there

40

40

Table 1: Key parameters of the target large block NAND flash
memory (K9WBG08U1M)

NAND flash memory
organization

Block size 128 KB
Page size 2 KB
Number of pages per block 64

Access time for each
operation

Read operation (1 page) 25 usec
Write operation (1 page) 200 usec
Erase operation (1 block) 2000 usec

are pages which were hot pages but lose their temporal localities
and changed into cold pages, we should evict them. To do this, if
there is a log block whose updated time is smaller than a certain
threshold time, we select the hot partition as the victim partition.

The second step is to select the victim log block from the victim
partition. If the victim partition is the hot partition, we select a
dead block as the victim log block. If there is no dead block, we
choose a least recently updated log block. For the cold partition,
we choose the log block with the lowest merge cost as the victim.
By recycling this block, we do the full merge at the lowest cost, and
expect log blocks with higher merge cost to remain in the random
log buffer until their full merge costs become small enough. To
do this, we need to maintain a merge cost table. Each entry of the
merge cost table keeps the associativity degree of each log block,
and only requires log2 Np bits.

After merging the victim, we reassign the reclaimed log block to
either partition. If the victim is a dead block from the hot partition,
it means that there are enough dead blocks, thus give a free block
to the cold partition. If not, we give a free block to the hot partition.

Before finishing this section, we need to mention wear-leveling is-
sues related to the LAST scheme. Typically, each block of NAND
flash memory has a finite number of erase-write cycles, and a block
becomes unreliable after the limit. In the LAST scheme, since hot
pages are likely to be kept in the hot partition, blocks that belong to
the hot partition are intensively erased. On the other hand, blocks
with cold data are rarely updated, thus erase counts of these blocks
will be much smaller than those of other blocks. Due to this, we
need to adopt a hot-cold swapping algorithm, which tries to bal-
ance erase cycles by periodically swapping the blocks containing
hot data with blocks having cold data.

4. EXPERIMENTAL RESULTS
To evaluate the performance of the LAST scheme, we have devel-
oped a trace-driven FTL simulator. We compared LAST over three
existing FTL schemes: BAST [7], FAST [8] and SUPERBLOCK [9].
The flash memory model used in the simulation is Samsung large
block NAND flash memory. Important parameters are listed in
Table 1. The workloads used for our experiments were extracted
from Microsoft Windows XP-based a notebook PC and a desktop
PC, running several applications, such as documents editors, music
players, web browsers and games. In addition, we also captured
storage access patterns while running the TPC-C benchmarks to
reflect the workload of an enterprise server system. We compared
the number of copy operations and the number of erase operations
during the merge operations. The garbage collection overhead is
calculated by multiplying the number of each operation by the cor-
responding time value listed in Table 1.

Figure 8 shows the normalized garbage collection overhead for
each FTL scheme when the log buffer size is 512 MB (=4096 log

0

10

20

30

40

50

60

70

80

90

100

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

Application Set 1 Application Set 2 Application Set 3 TPC-C

N
o

rm
a

li
ze

d
 G

a
rb

a
g

e
 C

o
ll

e
c
ti

o
n

 O
ve

rh
e

a
d

 (
%

)

Switch Merge Partial Merge Full Merge

Figure 8: Normalized garbage collection overhead

blocks). If we assume that the total capacity of flash memory is 32
GB, the ratio of the log buffer is less than 1.56% of total flash mem-
ory space. The sequential log buffer size is set as 32 MB (=256 log
blocks), and the remaining log blocks are assigned to the random
log buffer. Among all the evaluated schemes, LAST shows the best
garbage collection efficiency. LAST reduces the garbage collection
overhead by 46-67% compared with the SUPERBLOCK scheme.

BAST shows the worst garbage collection efficiency compared to
other FTLs. This is because BAST cannot efficiently handle ran-
dom write patterns. As mentioned in Section 2, the block associa-
tivity mapping results in the block thrashing problem for the work-
loads containing a large amount of random writes. Therefore, the
overall cost of the full merge is significantly increased in BAST. Al-
though the LAST scheme uses the block associativity mapping for
managing the sequential log buffer, most of the random writes can
be filtered by the locality detector. So, the block thrashing problem
does not occur in LAST.

FAST exhibits a better garbage collection performance than BAST
by efficiently removing the block thrashing problem. However, it
cannot outperform LAST because it does not exploit the locality of
traces. First of all, it does not exploit the temporal locality of the
random writes. Therefore, its full merge cost is the largest among
all the schemes, except for the BAST scheme. FAST also shows
high partial merge cost. This is because the sequential locality of
the sequential write patterns is likely to be broken by the random
write requests. As a result, it reduces the chance of the switch
merge operation, and thus increases the overall merge cost. On the
other hand, in the LAST scheme, since the locality detector isolates
the sequential writes from the random writes, we can take advan-
tage of the switch merge for reducing the overall garbage collection
overhead.

The SUPERBLOCK scheme exhibits more improved garbage col-
lection performance compared with FAST. Especially, its partial
merge cost is much smaller than that of the LAST scheme. In the
LAST scheme, semi-sequential writes are redirected into the se-
quential log buffer. Therefore, when they are evicted from the se-
quential log buffer, the partial merge is required for merging them.
This is reason why the LAST scheme yields more increased par-
tial merge cost than the SUPERBLOCK scheme. However, by
removing the semi-sequential writes from the random log buffer,
LAST can reduce the full merge cost significantly. Consequently,

41

41

0

10

20

30

40

50

60

70

80

90

100

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

Application Set 1 Application Set 2 Application Set 3 TPC-C

T
h

e
 r

a
ti

o
 o

f
e

a
c
h

 m
e

rg
e

 o
p

e
ra

ti
o

n
 (

%
)

Switch Merge Partial Merge Full Merge Dead Blocks

Figure 9: The ratio of each merge operation

due to the reduced full merge cost, LAST can outperform SU-
PERBLOCK. In addition, more efficient hot/cold separation poli-
cies used on the LAST scheme contribute to reducing the full merge
cost.

The LAST scheme also shows the best garbage collection effi-
ciency in TPC-C benchmark. The workload of TPC-C was col-
lected while executing the undo operations on an Oracle relational
database system. The access patterns of TPC-C are categorized into
two types: random writes with high temporal locality and sequen-
tial writes. Because these two types of write requests are simulta-
neously issued from the file system, they arrive at the FTL layer
in mixed patterns of random and sequential accesses. LAST effi-
ciently extracts the sequential writes from the random writes and
isolates them into the different log buffer. Due to high temporal
locality of the random writes, a large number of dead blocks are
generated from the random log buffer. On the other hand, in the se-
quential log buffer, most of the merge operations can be performed
by the switch merge.

Figure 9 shows the ratio of each merge operation. For the LAST
scheme, we also denote the number of dead blocks occurred during
the merge operations. In the BAST scheme, most of the merge op-
erations are performed by the full merge operation because of the
block thrashing. In the FAST scheme, the full merge and partial
merge account for about 50% of the total merge operations, re-
spectively. In the SUPERBLOCK and LAST schemes, most of the
merge operations are performed by the switch and partial merge.
However, the number of the full merges in LAST is much smaller
than that of SUPERBLOCK since a large number of dead blocks
are generated in the random log buffer.

Finally, we compare the mapping table size of each FTL scheme.
When the total capacity of flash memory is 32 GB and the log
buffer size is 512 MB, the mapping table size of LAST (1.96 MB)
is slight smaller than those of other schemes (2.0 MB). This is be-
cause LAST handles the sequential log buffer using the block-level
mapping instead of the page-level mapping. Additional memory
space required for the merge cost table is quite small (3 KB).

5. CONCLUSION
We have proposed a new FTL scheme called LAST which is de-
signed to support a more efficient garbage collection in general-
purpose computing systems with flash memory as a secondary stor-

age. By exploiting both temporal locality and sequential locality,
LAST reduces the garbage collection overhead by 54% over the
existing FTLs.

The proposed LAST scheme can be further improved in several di-
rections. First, in this paper, we fixed the size of the sequential log
buffer as 32 MB. However, we observed that the overall garbage
collection overhead can be further reduced by adjusting the size of
the sequential log buffer dynamically. Second, the proposed local-
ity detector cannot efficiently identify sequential writes when the
small-sized write has a sequential locality. Therefore, we are de-
veloping a more intelligent locality detection algorithm.

6. ACKNOWLEDGEMENTS
This work was supported in part by the Brain Korea 21 Project
in 2008. This work was also supported by the Korea Science and
Engineering Foundation (KOSEF) grant funded by the Korea gov-
ernment (MOST) (No. R0A-2007-000-20116-0). The ICT at Seoul
National University provides research facilities for this study.

7. REFERENCES
[1] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis.

“JouleSort: a balanced energy-efficiency benchmark,” in Proc.
ACM SIGMOD International Conference on Management of
Data, 2007.

[2] E. Spanjer. “Enterprise SSD - the next killer app,”
http://www.flashmemorysummit.com/English/Collaterals/Pre
sentations/2007/20070807_Issues_Spanjer.pdf, 2007.

[3] M. Wu and W. Zwaenepoel. “eNVy: a non-volatile, main
memory storage system,” in Proc. Architectural Support for
Programming Languages and Operating Systems, pp. 86-97,
1994.

[4] H. Kim and S. Lee. “A new flash memory management for
flash storage system,” in Proc. Computer Software and
Applications Conference, pp. 284-289, 1999.

[5] M. L. Chiang, P. C. H. Lee, and R. C. Chang. “Cleaning
policies in mobile computers using flash memory,” Journal of
Systems and Software, vol. 48, no. 3, pp. 213-231, 1999.

[6] A. Ban. “Flash file system,” United States Patent, no.
5,404,485, April, 1995.

[7] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. “A
space-efficient flash translation layer for compact flash
systems,” IEEE Transactions on Consumer Electronics, vol.
48, no. 2, pp. 366-375, 2002.

[8] S. W. Lee, D. J. Park, T. S. Chung, W. K. Choi, D. H. Lee, S.
W. Park, and H. J. Song. “A log buffer based flash translation
layer using fully associative sector translation,” ACM
Transactions on Embedded Computing Systems, vol. 6, no. 3,
2007.

[9] J. U. Kang, H. Jo, J. S. Kim, and J. Lee. “A superblock-based
flash translation layer for NAND flash memory,” in Proc.
International Conference on Embedded Software, pp.
161-170, 2006.

[10] D. P. Bovet and M. Cesati. “Understanding the linux kernel,”
O’Reilly, 3rd edition, 2005.

42

42

	TOC_200806_FINAL.pdf
	Inside front cover 20080307.pdf
	A_ALL_acmosr-speed08.pdf
	Workshop_Report_on_SPEED_2008.pdf
	Storage and I/O Virtualization, Performance, Energy, Evaluation and Dependability (SPEED08)

	overview.pdf
	1. INTRODUCTION
	2. PAPERS
	3. ACKNOWLEDGMENTS

	overview.pdf
	
	
	1. INTRODUCTION
	2. PAPERS
	3. ACKNOWLEDGMENTS

	B_ALL_wos_at_osr.pdf
	C_All_Education.pdf
	C1_robbins.pdf
	C2_vaandrager.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [603.000 783.000]
>> setpagedevice

