Кандаминимум 010109 - ответы основной специальности — различия между версиями
(→Теория функциональных систем) |
(→Теория функциональных систем) |
||
Строка 198: | Строка 198: | ||
==== Проблема полноты. Теорема о полноте систем функций двузначной логики ''P''<sub>2</sub> ==== | ==== Проблема полноты. Теорема о полноте систем функций двузначной логики ''P''<sub>2</sub> ==== | ||
− | * Формула над системой {''f<sub>k</sub>''}: 1) ''f<sub>i</sub>''- формула 2) ''f<sub>i</sub>''(''A<sub>1</sub>'',…,''A<sub>n</sub>'') | + | * Формула над системой {''f<sub>k</sub>''}: 1) ''f<sub>i</sub>''- формула 2) ''f<sub>i</sub>''(''A<sub>1</sub>'',…,''A<sub>n</sub>'') — формула, где A — переменная либо формула. |
* Полнота системы {''f<sub>k</sub>''}: все функции из ''P''<sub>2</sub> можно выразить формулами над {''f<sub>k</sub>''}. | * Полнота системы {''f<sub>k</sub>''}: все функции из ''P''<sub>2</sub> можно выразить формулами над {''f<sub>k</sub>''}. | ||
− | * Замкнутый | + | * Замкнутый класс — все формулы над функциями из класса принадлежат тому же классу. |
* Замкнутые классы: ''T<sub>0</sub>'' (f(0,0…0)=0), ''T<sub>1</sub>'' (f(1,1…1)=1), ''S'' (f(!x<sub>1</sub>,!x<sub>2</sub>,…!x<sub>n</sub>) = !f(!x<sub>1</sub>,!x<sub>2</sub>,…!x<sub>n</sub>)), ''M'' (1й набор по всем переменным ≥ 2го, тогда f(1го)≥f(2го)), ''L'' (формула над +, &, 1, 0, оно же полином Жегалкина) | * Замкнутые классы: ''T<sub>0</sub>'' (f(0,0…0)=0), ''T<sub>1</sub>'' (f(1,1…1)=1), ''S'' (f(!x<sub>1</sub>,!x<sub>2</sub>,…!x<sub>n</sub>) = !f(!x<sub>1</sub>,!x<sub>2</sub>,…!x<sub>n</sub>)), ''M'' (1й набор по всем переменным ≥ 2го, тогда f(1го)≥f(2го)), ''L'' (формула над +, &, 1, 0, оно же полином Жегалкина) | ||
− | * Теорема о полноте: если система не входит полностью ни в одно из ''T<sub>0</sub>'', ''T<sub>1</sub>'', ''S'', ''M'', ''L'' | + | * Теорема о полноте: если система не входит полностью ни в одно из ''T<sub>0</sub>'', ''T<sub>1</sub>'', ''S'', ''M'', ''L'' — то она полна. Доказывается через получение констант 0 и 1 из не входящих в ''T<sub>0</sub>'', ''T<sub>1</sub>'' и ''S'', из них и функции, не принадлежащей ''L''- отрицания, и из них, отрицания и функции, не принадлежащей ''M'' — дизъюнкции. |
− | * | + | * Подробнее — в Яблонском, там много лемм. |
==== Алгоритм распознавания полноты систем функций ''k''-значной логики ''P<sub>k</sub>'' ==== | ==== Алгоритм распознавания полноты систем функций ''k''-значной логики ''P<sub>k</sub>'' ==== | ||
Строка 213: | Строка 213: | ||
* Предыдущий результат с практической т.з. бесполезен, ибо задолбаешься так проверять=) Поэтому мы сначала введем понятие функции, сохраняющей множество (см. опять же предыдущий вопрос, только тут не 0 и 1, а произвольные множества- причем замкнутость класса, сохраняющего множество, есть всегда, независимо от того, какое это множество), а потом! мы докажем теорему (о функциональной полноте) Кузнецова! про то, что и в k-значной логике можно построить аналоги 5 классов из бинарной(см. теорему о полноте на 1 вопрос выше), то есть если система полностью не вложена ни в 1 из них- то она полна. | * Предыдущий результат с практической т.з. бесполезен, ибо задолбаешься так проверять=) Поэтому мы сначала введем понятие функции, сохраняющей множество (см. опять же предыдущий вопрос, только тут не 0 и 1, а произвольные множества- причем замкнутость класса, сохраняющего множество, есть всегда, независимо от того, какое это множество), а потом! мы докажем теорему (о функциональной полноте) Кузнецова! про то, что и в k-значной логике можно построить аналоги 5 классов из бинарной(см. теорему о полноте на 1 вопрос выше), то есть если система полностью не вложена ни в 1 из них- то она полна. | ||
− | * И все равно нам это не поможет, потому что такие классы задолбаешься строить(вроде бы для 3 и 4-значной логики сделали, для остальных- нишмагли, но тут не уверен). Поэтому придумали теорему | + | * И все равно нам это не поможет, потому что такие классы задолбаешься строить(вроде бы для 3 и 4-значной логики сделали, для остальных- нишмагли, но тут не уверен). Поэтому придумали теорему Слупецкого… |
==== Теорема Слупецкого ==== | ==== Теорема Слупецкого ==== | ||
− | * | + | * …которая в обобщенном виде гласит, что если система содержит все функции 1й переменной, принимающие не более k-1 значений(в необобщенном виде- просто все функции 1й переменной), то для полноты н. и д., чтобы она содержала еще существенную(то есть зависящую от 2+ переменных) функцию, принимающую k значений. Подробнее про док-во- в Яблонском, там несколько длинных(по доказательству) лемм. |
− | * Это уже хорошо, но всех функций 1й переменной, принимающих не более k-1 значений, все равно очень много. Поэтому проще искать | + | * Это уже хорошо, но всех функций 1й переменной, принимающих не более k-1 значений, все равно очень много. Поэтому проще искать «базисы» для таких функций, примеры см. в Яблонском, с.64-65. |
==== Особенности ''k''-значных логик ==== | ==== Особенности ''k''-значных логик ==== |
Версия 00:16, 25 ноября 2009
Содержание
- 1 Математическое программирование
- 1.1 Теоремы о достижении нижней грани функции (функционала) на множестве (в ЕN, в метрических пространствах, в гильбертовых пространствах)
- 1.2 Выпуклые множества, выпуклые функции, сильно выпуклые функции, их свойства
- 1.3 Критерии оптимальности в гладких выпуклых задачах минимизации
- 1.4 Правило множителей Лагранжа
- 1.5 Теорема Куна-Таккера, двойственная задача, ее свойства
- 1.6 Метод проекции градиента (в ЕN, в гильбертовом пространстве)
- 1.7 Метод Ньютона
- 1.8 Метод покоординатного спуска
- 1.9 Метод штрафных функций
- 1.10 Метод барьерных функций
- 1.11 Метод динамического программирования
- 1.12 Устойчивость задач оптимизации. Метод стабилизации (регуляризация по Тихонову)
- 1.13 Линейное программирование. Симплекс-метод. Двойственные задачи линейного программирования
- 2 Исследование операций, теория игр
- 2.1 Антагонистические игры. Матричные игры, теорема о минимаксе
- 2.2 Выпукло-вогнутые антагонистические игры. Теорема существования седловой точки
- 2.3 Бескоалиционные игры n лиц. Равновесие по Нэшу
- 2.4 Принцип гарантированного результата. Минимаксные задачи
- 2.5 Многокритериальная оптимизация. Оптимальность по Парето. Лексикографический подход
- 2.6 Кооперативные игры (с-ядро, вектор Шепли)
- 2.7 Задача распределения ресурсов (модель Гросса, принцип уравнивания Гермейера)
- 2.8 Иерархические игры
- 2.9 Потоки в сетях (теорема Форда-Фалкерсона, задача и алгоритмы поиска кратчайшего пути в графе, задача составления расписаний, транспортная задача)
- 3 Оптимальное управление
- 4 Дискретная оптимизация
- 4.1 Целочисленное линейное программирование (метод Гомори, свойства унимодулярности матрицы ограничений)
- 4.2 Метод ветвей и границ (на примере задач целочисленного или булева линейного программирования)
- 4.3 Временная сложность решения задач дискретной оптимизации. Основные классы сложности (P, NP, NPC)
- 4.4 NP-трудные задачи (задача о рюкзаке, задача коммивояжера)
- 5 Теория функциональных систем
- 5.1 Проблема полноты. Теорема о полноте систем функций двузначной логики P2
- 5.2 Алгоритм распознавания полноты систем функций k-значной логики Pk
- 5.3 Теорема Слупецкого
- 5.4 Особенности k-значных логик
- 5.5 Автоматы. Регулярные события и их представление в автоматах
- 5.6 Эксперименты с автоматами
- 5.7 Алгоритмическая неразрешимость проблемы полноты для автоматов
- 5.8 Вычислимые функции. Эквивалентность класса рекурсивных функций и класса функций, вычислимых на машинах Тьюринга
- 5.9 Алгоритмическая неразрешимость проблемы эквивалентности слов в ассоциативных исчислениях
- 6 Комбинаторный анализ и теория графов
- 6.1 Основные комбинаторные числа
- 6.2 Оценки и асимптотики для комбинаторных чисел
- 6.3 Графы и сети. Оценки числа графов и сетей различных типов
- 6.4 Плоские и планарные графы. Формула Эйлера для плоских графов. Необходимые условия планарности в теореме Понтрягина—Куратовского (без доказательства достаточности)
- 6.5 Экстремальная теория графов. Теорема Турана
- 6.6 Теорема Рамсея
- 7 Теория кодирования
- 7.1 Алфавитное кодирование. Критерии однозначности декодирования. Неравенство Крафта—Макмиллана
- 7.2 Оптимальное кодирование. Построение кодов с минимальной избыточностью
- 7.3 Самокорректирующиеся коды. Граница упаковки. Коды Хемминга, исправляющие единичную ошибку
- 7.4 Конечные поля и их основные свойства
- 7.5 Коды Боуза—Чоудхури—Хоквингема
- 8 Управляющие системы
- 9 Дизъюнктивные нормальные формы
- 10 Синтез и сложность управляющих систем
- 11 Эквивалентные преобразования управляющих систем
- 12 Надежность и контроль функционирования управляющих систем
- 13 Математическая экономика
- 13.1 Модель межотраслевого баланса В. В. Леонтьева. Продуктивные матрицы. Критерии продуктивности. Теорема Фробениуса—Перрона. Свойства числа Фробениуса—Перрона. Теорема об устойчивости примитивных матриц
- 13.2 Динамическая модель В. В. Леонтьева. Теорема о магистрали Моришимы. Экономическая интерпретация вектора Фробениуса — Перрона
- 13.3 Линейные задачи оптимального распределения ресурсов. Экономическая интерпретация двойственности в задачах линейного программирования
- 13.4 Модель Кокса—Росса—Рубинштейна. Оценка стоимости опциона
- 13.5 Модель олигополистической конкуренции Курно. Теорема Нэша
- 13.6 Модель Эрроу—Дебре. Конкурентное равновесие. Сведение вопроса о существовании конкурентного равновесия к решению задачи дополнительности. Замкнутость отображений спроса и предложения. Теорема Эрроу—Дебре
- 13.7 Неподвижные точки. Теоремы Брауэра и Какутани. Лемма Гейла — Никайдо — Дебре. Теорема Фань-Цзы
- 13.8 Оптимальность по Парето конкурентного равновесия (первая теорема теории благосостояния). Теорема Дебре (вторая теорема теории благосостояния). Сравнительная статика в моделях конкурентного равновесия
- 13.9 Проблемы коллективного выбора. Парадокс Эрроу
- 13.10 Индексы неравенства и кривая Лоренца. Теорема мажоризации
- 14 Основная литература
- 15 Дополнительная литература
Математическое программирование
По большей части берётся из лекций по МетОптам: Лекции по методам оптимизации 2003.pdf (application/pdf, 745 КБ). Другие источники описаны отдельно.
Теоремы о достижении нижней грани функции (функционала) на множестве (в ЕN, в метрических пространствах, в гильбертовых пространствах)
Они же Теоремы Вейерштрасса.
- Полунепрерывная снизу J(u) на компакте в метрическом пространстве достигает своей нижней грани, любая минимальная последовательность сходится к argmin по метрике.
- Слабый вариант. Гильбертово пространство, компакт слабый, п/н слабо. Слабые п.т. мин. последовательности в Argmin.
Выпуклые множества, выпуклые функции, сильно выпуклые функции, их свойства
- Опр. множество выпуклое; функция выпуклая, строго выпуклая, сильно выпуклая с k > 0.
- Т. лок.мин. выпуклой f на выпуклом U = глобальный на U. Argmin выпукло. Argmin={argmin} для строго выпуклой.
- Т. (сильно вып. Вейерштрасса) J(u) сильно выпукла и п.н. снизу на выпуклом и замкнутом U из Гильбертова H ⇒ достигает inf, Argmin={argmin}, .
- Т. (критерий вып. для диф-мых функций).
- Т. (критерий сильной вып. для диф-мых функций).
Критерии оптимальности в гладких выпуклых задачах минимизации
- Т. , U выпукло ⇒ (1), . Если (1) и J(u) выпукла — значит u argmin (то есть ⇐).
- Ещё там есть пара примеров.
Правило множителей Лагранжа
- rupedia:Метод множителей Лагранжа относится к методам снятия ограничений.
- Задача. J(u) → min при огр. gi ≤ 0.
- А мы будем минимизировать L(u,λ) = λ0J(u) + сумма λigi, λi — множители Лагранжа.
Теорема Куна-Таккера, двойственная задача, ее свойства
- Т. (Куна-Таккера) (обоснование метода Лагранжа) — всё существует, λi неотрицательно, λigi=0 (усл.доп.нежёсткости). Для достаточности ещё λi ≠ 0.
- Опр. Двойственная задача:
- Т. (свойства дв.задачи). . = только если L имеет седловую точку.
Метод проекции градиента (в ЕN, в гильбертовом пространстве)
- Условный минимум — минимизируем J(u) на множестве U. В лоб — метод град. спуска проецируем на U = prU(uk-akJ'(uk)).
- Т. (скорость сходимости)
Метод Ньютона
- Идея — градиентный (или скорейший) спуск по квадратичной аппроксимации функции J(u) в окрестности uk.
- Т. (скорость сходимости)
Метод покоординатного спуска
- Сдвигаемся на ak в одну из сторон по одной координате по очереди, пока удаётся. Потом переходим к следующей. Потом дробим a.
- Т. (обоснование сходимости)
Метод штрафных функций
- Можно также почитать mlwiki:Метод штрафных функций.
- Относится к методам снятия ограничений.
- Задача. J(u) → min при огр. gi ≤ 0 либо = 0 начиная с gm+1-ой.
- От задачи переходим к последовательности задач . P(u) — штраф, .
- Т. (обоснование) индив. штрафы должны давать огран. множество ⇒ всё сходится.
Метод барьерных функций
- Можно почитать mlwiki:Метод штрафных функций#Метод барьерных функций.
- По сути то же, что и метод штрафных функций, только штраф другого вида.
Метод динамического программирования
- Нет в МетОптах.
- Можно почитать книжку Пападимитриу, Стайглиц - Комбинаторная оптимизация.djvu (image/vnd.djvu, 5,6 МБ), страницы 461—464.
- Или просто Википедию.
- Идея — поиск пути по минному полю с конца к началу, ибо любой конец оптимальной траектории оптимален (принцип оптимальности Беллмана).
- Вообще-то ещё есть непрерывный аналог, идея та же, реализация на дифф.исчислении и ощутимо мохнатее.
Устойчивость задач оптимизации. Метод стабилизации (регуляризация по Тихонову)
- Опр. корректно пост.задача: 1) существует, 2) единственно, 3) из сходимости значений следует сходимость аргументов.
- Суть метода — в отсутствие (3) добавить к J(u) и минимизировать полученный функционал Тихонова.
- Т. (обоснование метода).
Линейное программирование. Симплекс-метод. Двойственные задачи линейного программирования
- Опр. ЗЛП, каноническая ЗЛП (u ≥ 0), угловая точка, невырожденная угловая точка, невырожденная задача.
- Т. (критерий угловой точки) (про линейную комбинацию r столбцов матрицы A)
- Симплекс-метод — идея перебора угловых точек в направлении минимизации функции.
Исследование операций, теория игр
Источники — две книжки по тиграм (теории игр) Васина и Морозова:
- А.А.Васин, В.В.Морозов - Теория игр и модели математической экономики.djvu (image/vnd.djvu, 1,16 МБ)
- Васин, Морозов - Дополнительные главы теории операций - Глава 5 - Теория принятия решений.djvu (image/vnd.djvu, 248 КБ) (только 5-я глава).
Антагонистические игры. Матричные игры, теорема о минимаксе
- Опр. седловая точка F(x, y); антаг. игра <X,Y,F(x,y)>; игра имеет решение; значение игры; матричная игра; нижнее и верхнее значения игры (sup inf и inf sup); максиминная, минимаксная стратегии.
- Л. значение игры не зависит от выбора решения.
- Л. нижнее значение ≤ верхнего.
- Т. (о минимаксе) 1) есть с.т. ⇔ max inf = min sup. 2) с.т. = стратегии максиминная и минимаксная.
Выпукло-вогнутые антагонистические игры. Теорема существования седловой точки
- Опр. игра с вогнутой, выпуклой функцией выигрыша.
- Т.
- Т. (существование решения)
Бескоалиционные игры n лиц. Равновесие по Нэшу
- Опр. игра n лиц.
- Опр. (равновесие по Нэшу) от него никому невыгодно отклоняться в одиночку.
- Т. (существования равновесия)
Принцип гарантированного результата. Минимаксные задачи
- Из книжки 2.
- Можно почитать http://www.intuit.ru/department/algorithms/opres/2/.
- Опр. оптимальная стратегия (в предположении пессимизма) (так Гермейер стратегии сравнивал); ε-оптимальная стратегия, абсолютно оптимальная стратегия.
- Т. F1 ≤ F2 ≤ F3 ≤ F4. Противник знает x → не знает → мы знаем y.
Многокритериальная оптимизация. Оптимальность по Парето. Лексикографический подход
- Из книжки 2.
- Многокритериальная оптимизация — как выбрать стратегию, если критериев качества несколько?
- Опт. по Парето = «не улучшишь хотя бы один критерий».
- Опт. по Слейтеру = «не улучшишь все критерии разом».
- Лексикографический подход — упорядочиваем их по важности и ORDER BY.
Кооперативные игры (с-ядро, вектор Шепли)
- Игроки делят выручку.
- Опр. коалиции, хар.функция, супераддитивная, игра, игра с постоянной суммой, вектор дележа, эквив. игры (масштаб-сдвиг), 0-1 редуц. форма игры.
- Индивидуальная разумность — выручку в коалиции не меньше, чем индивидуальная игрока.
- Групповая разумность — выручка любой подкоалиации не меньше, чем её индивидуальная.
- Ядро (c-ядро) — дележи, удовлетворяющие групповой разумности.
- Вектор Шепли — состоит из компонент, равных мат.ожиданиям вкладов конкретных игроков.
Задача распределения ресурсов (модель Гросса, принцип уравнивания Гермейера)
- Из книжки 2.
- Задача 1: максимизируем минимум эффекта по всем пунктам.
- Т. (пр. ур. Гермейера) оптимальное решение существует и единственно — идея: вначале распределяем ресурсы по наиболее слабым пунктам так, чтобы эффекта им досталось поровну.
- Задача 2: максимизируем сумму эффекта по всем пунктам.
- Т. (критерий Гросса) аналог уравнивания для производных.
Иерархические игры
- Опр. иерархической игры (есть обмен информацией о стратегиях).
- Г1: x → y(x) — Y знает стратегию X.
- Г2: f(y) → y(f(y)) → x=f(y).
- Г3: f1(g(x)) → g(x) → x=f(g(x)).
- Т. (Гермейера). В Г2 гарантированный результат игрока X = максимум из 1) гарантированного результата X при наилучшем ответе Y на стратегию наказания, применяемую к нему X и 2) лучшего результата X в случае, если он позволит Y получить больше, чем в первом случае.
Потоки в сетях (теорема Форда-Фалкерсона, задача и алгоритмы поиска кратчайшего пути в графе, задача составления расписаний, транспортная задача)
- В книжках нет.
- Можно почитать rupedia:Теорема Форда — Фалкерсона, rupedia:Транспортная задача, rupedia:Алгоритм Дейкстры.
- Опр. транспортная сеть, поток, сечение графа, величина сечения.
- Т. (Ф-Ф, очевидная — «пропускная способность определяется слабым звеном») максимальный поток между истоком и стоком равен величине минимального сечения.
- Решение транспортной задачи аналогично Ф-Ф.
- Поиск кратчайшего пути — динамическое программирование, алгоритм Дейкстры (жадный).
Оптимальное управление
- Постановка задач оптимального управления, их классификация.
- Принцип максимума Понтрягина. Краевая задача принципа максимума.
- Линейная задача быстродействия, ее свойства (существование решения, число переключений).
- Принцип максимума и вариационное исчисление.
- Управляемость и наблюдаемость в линейных системах, их взаимосвязь (взаимодвойственность). Теоремы Калмана, Красовского.
- Метод динамической регуляризации в задаче наблюдения.
- Дифференциальные игры.
Дискретная оптимизация
Берётся из Пападимитриу, Стайглиц - Комбинаторная оптимизация.djvu (image/vnd.djvu, 5,6 МБ), а также из Алексеев - лекции по сложности комбинаторных алгоритмов.pdf (application/pdf, 535 КБ).
Целочисленное линейное программирование (метод Гомори, свойства унимодулярности матрицы ограничений)
- Опр. задача ЦЛП (ЛП + x ∈ Z), унимодулярность матрицы (|det|=1).
- К ней можно многое свести (коммивояжера, расписание, выполнимость КНФ), а вот решать округлением лучше не надо :) также к ней сводятся «нелинейности» — барьер, дихотомия, дискретные переменные.
- Т. A унимод. ⇒ для целых b угловые точки целочисленны.
- Метод отсечений Гомори — добавляем ограничения, не отсекающие целочисленных точек — целая часть i-ой строки с = заменённым на ≥.
Метод ветвей и границ (на примере задач целочисленного или булева линейного программирования)
- Идея — разбиваем задачу на две взаимодополняющих задачи (либо нецелая xi ≤ целой части, либо ≥ целой части + 1).
- Вторая идея — при ветвлениях можно не идти во всю глубину, так как меньше чем найденное не-целочисленное решение уже не будет. Если есть другое решение, дающее лучший результат — стоп.
- Ещё пример — алгоритм Дейкстры. ЦЛП здесь не важно.
Временная сложность решения задач дискретной оптимизации. Основные классы сложности (P, NP, NPC)
- Опр. f полиномиально сводится к g, P, NP, NP-полные (NPC).
NP-трудные задачи (задача о рюкзаке, задача коммивояжера)
- Можно также почитать rupedia:Задача о ранце, rupedia:Задача коммивояжёра.
- ЗР: из неограниченного множества предметов со свойствами «стоимость» и «вес», требуется отобрать некое число предметов таким образом, чтобы получить максимальную суммарную стоимость при одновременном соблюдении ограничения на суммарный вес.
- ЗК: отыскание самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город.
Теория функциональных систем
Проблема полноты. Теорема о полноте систем функций двузначной логики P2
- Формула над системой {fk}: 1) fi- формула 2) fi(A1,…,An) — формула, где A — переменная либо формула.
- Полнота системы {fk}: все функции из P2 можно выразить формулами над {fk}.
- Замкнутый класс — все формулы над функциями из класса принадлежат тому же классу.
- Замкнутые классы: T0 (f(0,0…0)=0), T1 (f(1,1…1)=1), S (f(!x1,!x2,…!xn) = !f(!x1,!x2,…!xn)), M (1й набор по всем переменным ≥ 2го, тогда f(1го)≥f(2го)), L (формула над +, &, 1, 0, оно же полином Жегалкина)
- Теорема о полноте: если система не входит полностью ни в одно из T0, T1, S, M, L — то она полна. Доказывается через получение констант 0 и 1 из не входящих в T0, T1 и S, из них и функции, не принадлежащей L- отрицания, и из них, отрицания и функции, не принадлежащей M — дизъюнкции.
- Подробнее — в Яблонском, там много лемм.
Алгоритм распознавания полноты систем функций k-значной логики Pk
- Полнота, замкнутость- см. на 1(один) вопрос выше=)
- Теорема: существует алгоритм анализа системы на полноту. Док-во: пошагово строим мн-ва функций от 2х переменных, подставляя в функции из нашей системы либо функции от 2х переменных с предыдущего шага, либо просто переменную x1 или x2. Так как функций k-значной логики у нас конечное количество, то рано или поздно множество окажется замкнутым. Если оно совпадает со всеми функциями 2х переменных- то система полна, иначе нет.
- Предыдущий результат с практической т.з. бесполезен, ибо задолбаешься так проверять=) Поэтому мы сначала введем понятие функции, сохраняющей множество (см. опять же предыдущий вопрос, только тут не 0 и 1, а произвольные множества- причем замкнутость класса, сохраняющего множество, есть всегда, независимо от того, какое это множество), а потом! мы докажем теорему (о функциональной полноте) Кузнецова! про то, что и в k-значной логике можно построить аналоги 5 классов из бинарной(см. теорему о полноте на 1 вопрос выше), то есть если система полностью не вложена ни в 1 из них- то она полна.
- И все равно нам это не поможет, потому что такие классы задолбаешься строить(вроде бы для 3 и 4-значной логики сделали, для остальных- нишмагли, но тут не уверен). Поэтому придумали теорему Слупецкого…
Теорема Слупецкого
- …которая в обобщенном виде гласит, что если система содержит все функции 1й переменной, принимающие не более k-1 значений(в необобщенном виде- просто все функции 1й переменной), то для полноты н. и д., чтобы она содержала еще существенную(то есть зависящую от 2+ переменных) функцию, принимающую k значений. Подробнее про док-во- в Яблонском, там несколько длинных(по доказательству) лемм.
- Это уже хорошо, но всех функций 1й переменной, принимающих не более k-1 значений, все равно очень много. Поэтому проще искать «базисы» для таких функций, примеры см. в Яблонском, с.64-65.
Особенности k-значных логик
Автоматы. Регулярные события и их представление в автоматах
Эксперименты с автоматами
Алгоритмическая неразрешимость проблемы полноты для автоматов
Вычислимые функции. Эквивалентность класса рекурсивных функций и класса функций, вычислимых на машинах Тьюринга
Алгоритмическая неразрешимость проблемы эквивалентности слов в ассоциативных исчислениях
Комбинаторный анализ и теория графов
Берётся из книжек:
- Яблонский - Введение в дискретную математику.djvu (image/vnd.djvu, 7,02 МБ)
- Оре - Теория графов.djvu (image/vnd.djvu, 4,3 МБ)
Основные комбинаторные числа
Число подмножеств множества = 2|M|.
Число размещений элементов из n по k = (n)k (убывающий факториал).
Число перестановок n элементов = n!.
e =
Число сочетаний из n по k, или же биномиальный коэффициент .
Число сочетаний с повторениями из n по k
Число разбиений n-элементного множества на множества мощностей равняется .
Число разбиений n-элементного множества на k множеств (число Стирлинга) и число всех разбиений (число Белла)
Оценки и асимптотики для комбинаторных чисел
- Т. (логарифм факториала) ln n! ~ (n+0.5) ln n
- Т. (формула Стирлинга) n! ~
- Т. (корень квадратный из пи)
- Т. (число сочетаний)
- Т. (сумма числа сочетаний)
- Т. (числа Белла)
Графы и сети. Оценки числа графов и сетей различных типов
- Опр. граф, цикл, петля, связный граф, сеть, степень сети, степенная структура сети
- Т. число графов c h рёбрами без изол.вершин меньше a(bh)h, a, b = Const.
- Т. число укладок деревьев с h рёбрами меньше 4h.
- Т. (Лупанова) число сетей с заданной степ.структурой ≤ chh(μ-1)h, c зависит только от числа полюсов, средней степени и числа наборов.
Плоские и планарные графы. Формула Эйлера для плоских графов. Необходимые условия планарности в теореме Понтрягина—Куратовского (без доказательства достаточности)
- Можно почитать rupedia:Планарный граф.
- Т. (П-К) — это про то, что граф планарен, если не содержит гомеоморфных K5 и K3,3 подграфов.
- Т. (ф-ла Эйлера) Вершин − Ребёр + Граней = 2 у всякого связного плоского графа.
Экстремальная теория графов. Теорема Турана
- Можно также почитать rupedia:Теорема Турана.
- Т. (Турана) (макс. количество ребёр в графе, не содержащем полного n-вершинного подграфа)
Теорема Рамсея
- Можно также почитать rupedia:Теорема Рамсея.
- Т. (Рамсея) («полная неупорядоченность невозможна») для любого набора классов сочетаний r элементов в любом достаточно большом множестве всегда найдётся подмножество, все сочетания r элементов которого будут принадлежать одному классу.
- Условно говоря, если на вечеринке 6 человек, то либо какие-то 3 из них все друг с другом знакомы, либо какие-то 3 из них друг с другом незнакомы.
- Правда «достаточно большое множество» — очень большое.
Теория кодирования
Первые 3 вопроса берутся из Яблонский - Введение в дискретную математику.djvu (image/vnd.djvu, 7,02 МБ), можно также (но хуже) из лекций Алексеева: Алексеев - лекции по дискретной математике 2002.pdf (application/pdf, 752 КБ).
Другие 2 можно прочитать в Макмиллан, Слоэн - Теория кодов, исправляющих ошибки.djvu (image/vnd.djvu, 8,46 МБ).
Алфавитное кодирование. Критерии однозначности декодирования. Неравенство Крафта—Макмиллана
- Опр. кодирование: алфавитное, взаимно однозначное, равномерное, префиксное, постфиксное; неприводимое слово.
- Т. (Маркова) если кодирование неоднозначно, существуют два слова не длиннее целой части 0.5(W+1)(L-r+2), имеющие одинаковый код.
- Т. (Макмиллана) если кодирование однозначно, то .
Оптимальное кодирование. Построение кодов с минимальной избыточностью
- Опр. цена кода, оптимальный код, код Хаффмана.
- У. если существует оптимальный код, существует оптимальный префиксный код с теми же длинами слов.
- Алгоритм построения кода с мин.избыточностью — редукция списка вероятностей.
- Отсебятина: а ещё есть арифметик…
Самокорректирующиеся коды. Граница упаковки. Коды Хемминга, исправляющие единичную ошибку
- Опр. самокорректирующиеся коды.
- rupedia:Код Хемминга — исправляющий одну ошибку равномерный код, в котором i-ый контрольный разряд — сумма информационных разрядов с номерами, включающими 1 в i-ой позиции двоичной записи.
- Т. расстояние между любыми двумя кодовыми словами кода Хэмминга ≥ 3.
- Т. расстояние между кодовыми словами кода, исправляющего k ошибок ≥ 2k+1.
Конечные поля и их основные свойства
- Можно почитать rupedia:Кольцо (математика), rupedia:Конечное поле.
- Поле — коммутативное кольцо с единицей, в котором для всякого ненулевого элемента есть обратный.
- Поле Галуа GF(n) — конечное поле.
- Для каждого простого числа p и натурального n существует конечное поле из q = pn элементов, единственное с точностью до изоморфизма. Это поле изоморфно полю разложения многочлена xq-x.
Коды Боуза—Чоудхури—Хоквингема
- Можно почитать rupedia:Код Боуза — Чоудхури — Хоквингема, rupedia:Циклический код (а в CD-ROM’ах используется rupedia:Код Рида — Соломона).
- Коды БЧХ — «обобщение» Хэмминга на случай двух ошибок. Требование решения системы уравнений относительно i и j (позиций ошибок) как раз и приводит к полям…
- Коды БЧХ — циклические коды, задаваемые порождающим полиномом.
Управляющие системы
Вопрос тут один, ёмкий, аки нецензурное послание: Понятие управляющей системы. Основные модельные классы управляющих систем: дизъюнктивные нормальные формы, формулы, контактные схемы, схемы из функциональных элементов, автоматы, машины Тьюринга, операторные алгоритмы. Основные проблемы теории управляющих систем. Берётся он из Ложкин С.А. - Лекции по основам кибернетики 2004.djvu (image/vnd.djvu, 1,18 МБ).
- Управляющая система — типа задаёт поведение некоторой системы.
- Опр. элементарные конъюнкции, ДНФ, КНФ; формула; эквивалентные формулы; КС; эквивалентные КС (⇔ эквив. все формулы); СФЭ; автомат; МТ (ДМТ, НМТ?).
- Операторные алгоритмы — последовательность приказов, приказ = операция + два номера других приказа (ветвление определён / не определён), либо «СТОП».
- Основные задачи:
- Синтез минимальных по сложности систем.
- Эквивалентные преобразования.
- Контроль и надёжность.
Дизъюнктивные нормальные формы
- Проблема минимизации булевых функций. Дизъюнктивные нормальные формы (ДНФ). Постановка задачи в геометрической форме.
- Локальные алгоритмы построения ДНФ. Построение ДНФ ∑Т (сумма тупиковых) с помощью локального алгоритма.
- Невозможность построения ДНФ ∑М (сумма минимальных) в классе локальных алгоритмов.
Синтез и сложность управляющих систем
- Асимптотически оптимальный метод синтеза схем из функциональных элементов.
- Асимптотически оптимальный метод синтеза контактных схем.
- Инвариантные классы и их свойства.
- Синтез схем для функций из некоторых инвариантных классов.
- Нижние оценки сложности реализации булевых функций параллельно-последовательными контактными схемами.
- Нижние оценки сложности реализации булевых функций формулами в произвольном базисе.
Эквивалентные преобразования управляющих систем
- Эквивалентные преобразования формул двузначной логики Р2.
- Эквивалентные преобразования контактных схем.
- Эквивалентные преобразования операторных алгоритмов.
- Пример Линдона.
Надежность и контроль функционирования управляющих систем
- Построение надежных контактных схем из ненадежных контактов.
- Логический подход к контролю исправности и диагностике неисправностей управляющих систем. Тесты.
Математическая экономика
Почти вся берётся из лекций Шананина: Шананин А.А. - Лекции по математическим моделям в экономике 1999.pdf (application/pdf, 446 КБ).
Модель межотраслевого баланса В. В. Леонтьева. Продуктивные матрицы. Критерии продуктивности. Теорема Фробениуса—Перрона. Свойства числа Фробениуса—Перрона. Теорема об устойчивости примитивных матриц
- x-Ax=w, w≥0, x≥0 — модель Леонтьева.
- Опр. продуктивная матрица (∃x: x-Ax>0 или Dx>0), разложимая матрица.
- Т. (критерии продуктивности) (про любое w и миноры — условия Хокинса-Саймона)
- Т. (Ф-П — про ограничения модулем с.з.) A≥0 ⇒ есть с.з. и с.в.≥0, (pE-A)-1>0 ⇔ p > λ(A), Ay ≥ μy ⇔ μ ≤ λ(A), |с.з| ≤ λ(A).
- Т. (свойства) не меняется от T; сохраняет умножение, степень, ≥ для полож.опр.; =0 когда матрица степенью уходит в 0.
- T. (об уст.матрицах)
Динамическая модель В. В. Леонтьева. Теорема о магистрали Моришимы. Экономическая интерпретация вектора Фробениуса — Перрона
- Опр. динам.модель Леонтьева (cx → max, Ax(t+1) ≤ x(t)); магистраль (отклоняется не больше чем на заданный угол).
- Т. (Моришимы) вектор Ф-П матрицы A — магистраль для семейства решений д.м. Л.
Линейные задачи оптимального распределения ресурсов. Экономическая интерпретация двойственности в задачах линейного программирования
- Прямая задача — максимизируем прибыль при ограничениях на трудозатраты (не больше).
- Обратная задача — минимизируем зарплату при ограничениях на внутренние цены (не меньше).
Модель Кокса—Росса—Рубинштейна. Оценка стоимости опциона
- Типа, сколько надо просить за опцион, чтобы потом было на что реализовать право покупателя.
- Упрощённая модель, есть две цены акции — «верхняя» и «нижняя».
Модель олигополистической конкуренции Курно. Теорема Нэша
- Опр. (бояны) игра N игроков, равновесие по Нэшу.
- Т. (Нэша) (боян) игра с непрерывной вогнутой по каждому x функцией имеет равновесие по Нэшу.
- Модель Курно: чем больше берём, тем меньше платим.
— целевая функция (ci — издержки). - Т. (существования решения) c(x) и P(x) ∈ C², издержки возрастают и выпуклы, P(x) неотрицательна и убывает в 0 (есть насыщение) ⇒ ∃! равновесие по Нэшу.
Модель Эрроу—Дебре. Конкурентное равновесие. Сведение вопроса о существовании конкурентного равновесия к решению задачи дополнительности. Замкнутость отображений спроса и предложения. Теорема Эрроу—Дебре
- Опр. совершенная конкуренция.
- Т. (Э-Д) (существования конкурентного равновесия с кучей условий)
Неподвижные точки. Теоремы Брауэра и Какутани. Лемма Гейла — Никайдо — Дебре. Теорема Фань-Цзы
- Отсебятина: на неподвижных точках, между прочим, фрактальное сжатие работает. Правда, не на Брауэре, а на Банахе, но это не важно.
- Т. (Брауэра) у непрерывного отображения выпуклого компакта в себя есть неподвижная точка (f(x)=x).
- Опр. многозначное отображение, замкнутое м/о.
- Т. (Какутани) у замкнутого непустого (∄ x: f(x) = ∅) м/о, существует неподвижная точка (x ∈ f(x)).
- Л. (Г-Н-Д) замкнутое непустое выпуклое (∀x f(x) выпукло) м/о из пространства весовых векторов (сумма неотриц. компонент=1) в 2Rn и такое, что ∀p, u∈f(p) pu≥0 переводит хотя бы один x хотя бы в один неотрицательный вектор.
Оптимальность по Парето конкурентного равновесия (первая теорема теории благосостояния). Теорема Дебре (вторая теорема теории благосостояния). Сравнительная статика в моделях конкурентного равновесия
- Можно почитать rupedia:Первая теорема благосостояния, rupedia:Вторая теорема благосостояния.
- Т. (1-ая) конкурентное равновесие оптимально по Парето.
- Т. (2-ая) на рынке Парето-оптимальное состояние можно реализовать в качестве равновесия.
- Сравнительная статика: по идее это сравнение «снимков» состояния без прямого учёта фактора времени, но где почитать именно про равновесие — неизвестно.
Проблемы коллективного выбора. Парадокс Эрроу
- Можно почитать rupedia:Теорема Эрроу, rupedia:Парадокс Кондорсе.
- Есть избиратели, сортирующие кандидатов. Есть система выборов, строящая заключительный список, отсортированный по «общему убыванию».
- Классная вещь — Эрроу доказал, что такие выборы чисто математически не могут быть «разумными»!
- Не может быть одновременно: универсальность + отсутствие диктатора + независимость от посторонних альтернатив + принцип единогласия.
- Также не может быть: универсальность + полнота + монотонность + отсутствие диктатора + независимость от посторонних альтернатив.
Индексы неравенства и кривая Лоренца. Теорема мажоризации
- Можно почитать стр.11-21 книжки Маршалл, Олкин - Неравенства - теория мажоризации и ее приложения.djvu (image/vnd.djvu, 7,33 МБ).
- По сути: один конечный ряд (y) мажорирует другой (x), если сумма та же, а кривая x лежит ниже y.
- Началось со сравнения Лоренцом распределения богатства — чем больше концентрация богатства, тем кривее.
- И попёрли развивать какую-то левую теорию, мажоризация, слабая мажоризация, мажоризация как частичное упорядочение, такая мажоризация, сякая мажоризация, групповая мажоризация, любительская мажоризация, извращённая мажоризация…
Основная литература
- Яблонский С. В. Введение в дискретную математику. М.: Высш. школа, 2001.
- Кудрявцев В.В, Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.
- Мальцев А. И. Алгоритмы и вычислимые функции. М.: Наука, 1986.
- Оре О. Теория графов. М.: Наука, 1980.
- Кибернетический сборник. 1960—1990. Вып. 1—9; вып. 1—28 (новая серия). М.: Мир.
- Дискретная математика и математические вопросы кибернетики. Т. 1. / Под общ. ред. С. В. Яблонского и О. Б. Лупанова. М.: Наука, 1974.
- Нигматуллин Р. Г. Сложность булевых функций. М.: Наука, 1991.
- Проблемы кибернетики. 1959—1984. Вып. 1—41. М.: Наука.
- Лекции по теории графов / В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич. М.: Наука, 1990.
- Труды Математического института им. В. А. Стеклова. Т. 51. М.: Изд-во АН СССР, 1958.
- Математические вопросы кибернетики. 1988—2001. Вып. 1—10. М.: Наука.
- Гермейер Ю. Б. Введение в теорию исследования операций. М.: Наука, 1969.
- Сухарев А. Г., Тимохов А. В., Федоров В. В. Курс методов оптимизации. М.: Наука, 1986.
- Васильев Ф. П. Методы оптимизации. М.: Факториал, 2002.
- Карманов В. Г. Математическое программирование. М.: Наука, 2000.
- Понтрягин Л. Избранные научные труды. Т. 2. М.: Наука, 1988.
- Тихомиров В. М., Фомин С. В., Алексеев В. М. Оптимальное управление. М.: Наука, 1979.
- Краснощеков П. С., Петров А. А. Принципы построения моделей. М.: Фазис, 2002.
- Подиновский В. В., Ногин В. Д. Парето-оптимальные решения многокритериальных задач. М.: Наука, 1981.
- Морозов В. В. Основы теории игр. М.: Изд-во МГУ, 2002.
- Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. М.: Наука, 198 .
- Никайдо Х. Выпуклые структуры и математическая экономика. М.: Мир, 1972.
- Ашманов С. А. Введение в математическую экономику. М.: Наука, 1984.
- Экланд И. Элементы математической экономики. М.: Мир, 1983.
- Обен Ж.-П. Нелинейный анализ и его экономические приложения. М.: Мир, 1988.
- Маршалл А., Олкин И. Неравенства, теория мажоризации и ее приложения. М.: Мир, 1983.
- Мельников А. В. Стохастический анализ и расчет производных ценных бумаг. М.: ТВП, 1997.
Дополнительная литература
- МакВильмс Ф. Дж., Слоэн Н. Дж. Теория кодов, исправляющих ошибки. М.: Связь, 1979.
- Лупанов О. Б. Асимптотические оценки сложности управляющих систем. М.: Изд-во МГУ, 1984.
- Сэведж Дж. Э. Сложность вычислений. М.: Факториал, 1998.
- Марков А. А. Введение в теорию кодирования. М.: Наука, 1982.
- Орлов В. А. Простое доказательство алгоритмической неразрешимости некоторых задач о полноте автоматных базисов. //Кибернетика. 1973. № 4. С. 109—113.
- Редькин Н. П. Надежность и диагностика схем. М.: Изд-во МГУ, 1992.
- Соловьев Н. А. Тесты (теория, построение, применения). Новосибирск: Наука, 1978.
- Поляк Б. Т. Введение в оптимизацию. М.: Наука, 1984.