Изменения

Перейти к: навигация, поиск

Производительность Ceph

7585 байтов добавлено, 15:34, 21 мая 2023
Нет описания правки
«А почему так мало…» — см.ниже сагу про конденсаторы.
[[Файл:Warning icon.svg|32px|link=]] Когда разворачиваете Ceph OSD на SSD — очень разумно не отдавать её под Ceph целиком, а оставить небольшой раздел (10-20 гб) пустым для будущего использования под бенчмаркинг. Ибо  Ибо SSD имеют свойство со временем (или при забивании данными под 80%) начинать тормозить. Очень удобно иметь возможность гонять fio на пустом никем не используемом разделе. ==== Лирическое отступление ==== Почему нужно тестировать именно так? Ведь в целом производительность диска зависит от многих параметров:* Размер блока* Режим — чтение, запись или смешанный режим чтение+запись в разных пропорциях* Параллелизм — размер очереди и число потоков, то есть, в целом число одновременно запрашиваемых у диска операций* Длительность теста* Исходное состояние — пуст, заполнен линейной записью, заполнен случайной записью, заполнен случайной записью на протяжении какого-то времени и т. п.* Распределение данных — например, 10% горячих данных и 90% холодных — или, например, определённое расположение горячих данных (в начале диска)* Другие смешанные режимы тестов, например, тестирование одновременно с разными размерами блоков Также и результаты можно интерпретировать с разной степенью детализации — вместо простого среднего числа операций или мегабайт в секунду можно также приводить графики, гистограммы, перцентили и так далее — это, естественно, даст больше информации о поведении тестируемого образца. Есть и философская сторона тестов — например, производители серверных SSD иногда заявляют о необходимости подготовки диска к тестам путём 2-х кратной полной случайной перезаписи, чтобы нагрузить слой трансляции адресов диска, а я считаю, что это на самом деле ставит SSD в неправдоподобно плохие по сравнению с реальной нагрузкой условия; есть сторонники рисования графиков формата «задержка в зависимости от числа операций в секунду», что я считаю немного странным, но тоже возможным подходом — в нём, по сути, строится график F1(q) в зависимости от F2(q) и график обычно получается достаточно замысловатый — но для каких-то применений, может быть, и тоже разумный. В общем, бенчмаркингом заниматься можно бесконечно, и уж несколько дней, чтобы предоставить полную информацию, точно уйдёт. Этим обычно и занимаются ресурсы типа 3dnews в своих обзорах SSD. А мы не хотим сидеть несколько дней. Мы хотим обозначить набор тестов, которые можно провести быстро и сразу составить примерное представление о производительности. Посему общая идея — выделить несколько наиболее «крайних» режимов, протестировать диск в них и представить, что остальная часть «амплитудно-скоростной характеристики» диска является некоторой гладкой функцией в пределах изменения параметров между крайними точками. Тем более, что каждому из крайних режимов соответствует и реальное применение в своей категории приложений:# Использующих в основном линейный или крупноблочный доступ. Для таких приложений наиболее важная характеристика — производительность линейного доступа в мегабайтах в секунду. Отсюда режим тестирования линейным доступом 4 МБ блоком со средней очередью — 16-32 операции. Результаты — только в МБ/с.# Использующих случайный доступ мелким блоком и при этом способных к распараллеливанию. Отсюда — режимы тестирования случайным доступом 4 КБ блоком (стандартный блок для большинства ФС и, плюс-минус, СУБД) с большой очередью — 128 операций или, если диск не удаётся нагрузить одним потоком CPU с глубиной очереди 128 — тогда в несколько (2-4-8 или больше) потоков по 128 операций. Результаты — только в iops. Задержку (latency) указывать не нужно, так как в данном тесте её можно произвольно увеличить, просто подняв размер очереди — задержка жёстко связана с iops формулой latency=queue/iops.# Использующих случайный доступ мелким блоком и при этом НЕспособных к распараллеливанию. Таких приложений больше, чем вы могли подумать — например, в части записи сюда относятся все транзакционные СУБД. Отсюда вытекают режимы тестирования случайным доступом 4 КБ блоком с очередью 1 и, для записи, с fsync после каждой операции, чтобы диск/СХД не могли нас обмануть и положить запись во внутренний кэш. Результаты — iops или latency, по желанию — но выберите что-то одно, так как числа, опять же, жёстко связанные.
=== Тестирование кластера Ceph ===
== Конденсаторы ==
Нас спасёт такое чудо инженерной мысли, как '''SSD с конденсаторами''' (точнее, обычно или с суперконденсаторами — ионисторами). Которые на M.2 SSD, кстати, прекрасно видны невооружённым глазом(только тут это не ионисторы :)):
[[File:Micron 5100 sata m2.jpg]]
=== Про размер block.db ===
Кто задолбался '''Внимание:''' актуально до Ceph 14. Начиная с Ceph 15, благодаря добавленным «allocation hints» RocksDB, Bluestore стал нормально утилизировать раздел block.db. Для истории — это коммит 5f72c376deb64562e5e88be2f22339135ac7372b, там добавили опцию bluestore_volume_selection_policy. Дальше стоит читать, только если у вас всё ещё проблемы со спилловерами? Все задолбались со спилловерами! :)spillover-ами.
Спилловер — это когда вы собрали Bluestore на SSD+HDD, выделив SSD под базу (block.db), но при этом эта самая база постоянно частично утекает на HDD. При этом она, вроде бы, даже влезает в SSD с запасом — но всё равно утекает. Начиная, кажется, с Ceph 14 Nautilus, о спилловерах предупреждает <tt>ceph -s</tt>, а с Ceph 15 Octopus авторы попытались победить spillover-ы через дополнительные «allocation hint»-ы RocksDB (надо потестировать: коммит 5f72c376deb64562e5e88be2f22339135ac7372b, добавили опцию bluestore_volume_selection_policy).
Когда случается спилловер в SSD+HDD конфигурациях, работа кластера замедляется — в большей или меньшей степени, в зависимости от размеров RocksDB и паттерна нагрузки, так как когда метаданных не очень много, они влезают в кэш OSD — либо onode cache, либо rocksdb cache, либо, если включено bluefs buffered io — то ещё и в системный page cache. Если кэш-промахов достаточно много, или если OSD упирается в compaction RocksDB, могут даже появляться slow ops-ы.
Так в чём же дело и как это победить? А дело в том, что с выбором раздела для очередного файла БД (RocksDB организована в виде набора файлов) «есть нюанс», точнее, даже два.
'''Нюанс № 1№ 1:''' RocksDB кладёт файл на быстрый диск только когда считает, что на быстром диске хватит места под все файлы этого же уровня (для тех, кто ещё не в курсе — RocksDB это [https://github.com/facebook/rocksdb/wiki/Leveled-Compaction LSM база]).
Дефолтные настройки цефа:
Иными словами, имеют смысл только размеры раздела block.db 4 ГБ, 30 ГБ, 286 ГБ. Все промежуточные значения бессмысленны — место сверх предыдущего граничного значения использоваться не будет. Например, если БД занимает 10 ГБ, а раздел SSD — 20 ГБ, то фактически на SSD ляжет только WAL (1 ГБ), L1 и L2 (256 МБ + 2.56 ГБ). L3, составляющий бОльшую часть базы, уедет на HDD и будет тормозить работу.
При этом 4 ГБ — слишком мало, 286 ГБ — слишком много. Так что, по сути, правильно делать block.db размером 30 ГБ для OSD любого размера. Ещё раз повторюсь: это актуально до Ceph 14, с Ceph 15 уже не актуально.
Кстати, из этого же следует то, что официальная рекомендация — выделять под block.db то ли 2 %, то ли 4 % от размера устройства данных — полный отстой.
Но что делать, если у вас разделы другого размера? Например, 80 ГБ, и вы по каким-то причинам не хотите делать bcache, но хотите использовать эти 80 ГБ по максимуму. В этом случае можно поменять базовый размер уровня RocksDB (max_bytes_for_level_base). multiplier менять не будем, оставим по умолчанию 10 — его значение влияет на итоговое количество уровней RocksDB, а это уже более тонкая материя. Теоретически, меньшее число уровней снижает read и space amplification, но замедляет compaction и из-за этого может сильно повысить итоговый write amplification. Также есть тема с уменьшением размера отдельных memtable и кратным увеличением общего их числа, то есть, например, установки 32*32 МБ вместо дефолтных 4*256 МБ и min_write_buffer_to_merge=8, но эффект от этого тоже не совсем понятен (возможно, немного экономится CPU при compaction-е), так что это тоже пока лучше не трогать.
Так как каждый уровень отличается от предыдущего в 10 раз, общий размер раздела БД должен быть равен k*X, где k — коэффициенты из ряда: 1, 11, 111, 1111 и т. п. (по числу уровней RocksDB). Значит, мы можем взять размер нашего block.db, вычесть из него 1 ГБ WAL (лучше даже вычесть с запасом 2 ГБ) и делить его последовательно на каждую из цифр до тех пор, пока не получим значение, близкое к 256 МБ … 1 ГБ. Это значение округлить вниз, принять за базовый размер уровня RocksDB и прописать в конфиг как max_bytes_for_level_base. База компактится по 256 МБ за раз, так что меньше 256 МБ размер первого уровня ставить точно смысла нет. Например, для 80 ГБ раздела это будет 719 МБ, только не забываем считать всё в двоичных мегабайтах — MiB. Остаётся прописать это значение в конфигурацию (bluestore_rocksdb_options = …,max_bytes_for_level_base=719MB), перезапустить OSD и сделать ручной compaction (можно дважды).
'''Нюанс № 2№ 2:''' При ручном compaction-е RocksDB переписывает уровни целиком. Если при этом на SSD нет запаса места в размере этого уровня, то уровень, опять-таки, утечёт на HDD и так там и останется, ибо перемещать после compaction-а его обратно она не умеет. Теоретически, если после этого сделать compaction ещё раз, то уровень должен вернуться на SSD (поэтому выше дана рекомендация делать ручной compaction дважды). Однако по сведениям из чата якобы бывает так, что один-два файла *.sst на SSD не возвращается. Чтобы это побороть на 100 100 %, можно предусмотреть на SSD-разделе ещё и запас в размере первого + последнего уровня БД. В этом случае коэффициенты вместо 1-11-111-1111 превращаются в 2-22-212-2112 и т. п.
== RGW vs Minio ==
* Отключить оффлоады: ethtool -K enp3s0f0 gro off gso off tso off lro off sg off
* Отключить объединение прерываний: ethtool -C enp3s0f0 rx-usecs 0
* Самый дешёвый 10G свитч с Ebay: Quanta LB6M / Brocade TurboIron 24X24X — но говно старое унылое и жрёт под 200 ватт, и греется и жужжит соответственно* UPD Самый дешёвый свитч с Aliexpress: [https://aliexpress.ru/item/1005004429524441.html TP-LINK TL-ST5008F]. На чипе [https://www.realtek.com/en/products/communications-network-ics/item/rtl9303-cg Realtek RTL9303-CG]
Если совсем задолбала латенси, как отключить ВСЕ оффлоады?

Навигация