
PRESENTS

Fuzzing integration of etcd
In collaboration with the etcd project maintainers and The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 11th March, 2022

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

1

mailto:adam@adalogics.com
mailto:david@adalogics.com

Executive summary 3

Engagement process and methodology 4

Overview of fuzzers 5
Rundown of fuzzers 6

Findings 9
Issue 1 10
Issue 2 12
Issue 3 14
Issue 4 17
Issue 5 18
Issue 6 20
Issue 7 21
Issue 8 23

Advice following engagement 25
Short-term advice 25
Long-term advice 25

Conclusions and future work 25

2

Executive summary
This report details the engagement whereby Ada Logics integrated continuous fuzzing into
the etcd project. At the beginning of this engagement, etcd was not being fuzzed
continuously, but had previously had limited fuzzing done as part of a security audit. The
focus of the engagement with Ada Logics was solely on building a solid fuzzing infrastructure
that would hit critical parts of the code and run continuously.

Etcd is a core component of Kubernetes, and the benefits of etcd having fuzzers running
continuously benefits all Kubernetes users. Maintaining security and stability in the etcd
project is a critical task which fuzzing can help with.

Results summarised
18 fuzzers were developed.

OSS-Fuzz integration for continuous fuzzing set up.

8 bugs were found.
● 2 nil-dereferences
● 2 slice/index out of range
● 2 panics from invalid utf-8
● 2 invalid type assertions

All bugs were fixed during the engagement.

All fuzzers are merged into the CNCF-fuzzing repository.

3

https://www.cncf.io/blog/2020/08/05/etcd-security-audit/

Engagement process and methodology
All work was done against the latest etcd code from Github and the first step was to create
an extended set of fuzzers. Once the fuzzers had been written, the next step was to set
these up to run continuously by way of OSS-Fuzz. OSS-Fuzz is a free open source service
that manages the execution of fuzzers, triaging of bugs, conveniently alerts when issues are
found and much more, and the service is available to critical open source projects. The
OSS-Fuzz integration is set up such that all fuzzers running continuously will test against the
latest etcd main branch. All fuzzers are implemented by way of the go-fuzz engine which
was the go engine supported by OSS-Fuzz at the time of the engagement.

During the engagement we set up each fuzzer to run continuously as soon as the given
fuzzer was ready, which means the number of fuzzers running on OSS-Fuzz would increase
steadily as the engagement progressed. This allowed us to use the feedback provided by
OSS-Fuzz to help steer the engagement.

The main focus in this engagement was to test for code errors. The types of errors to find
include out of bounds, out of range, nil-pointer dereference, faulty type assertion, out of
memory, off-by-one, infinite loop, timeout and divide by zero.

4

https://github.com/google/oss-fuzz
https://github.com/dvyukov/go-fuzz

Overview of fuzzers
In this section we will briefly iterate through the fuzzers that were developed and set up to
run continuously. All fuzzers are uploaded to the cncf-fuzzing repository. Some of them are
being built by OSS-Fuzz from the go.etcd.io/etcd/tests/v3/fuzzing. This is a directory that is
created by OSS-Fuzz. The OSS-Fuzz build file can be found here:
https://github.com/cncf/cncf-fuzzing/blob/main/projects/etcd/build.sh.

Fuzzer Name Package Uploaded to

1 FuzzAPIMarshal go.etcd.io/etcd/tests/v3/fuzzing CNCF-fuzzing

2 FuzzWalCreate go.etcd.io/etcd/server/v3/storage/wal CNCF-fuzzing

3 FuzzMinimalEtcdVersion go.etcd.io/etcd/server/v3/storage/wal CNCF-fuzzing

4 FuzzKVProxy go.etcd.io/etcd/tests/v3/fuzzing CNCF-fuzzing

5 FuzzGRPCApis go.etcd.io/etcd/tests/v3/fuzzing CNCF-fuzzing

6 FuzzSnapLoad go.etcd.io/etcd/server/v3/etcdserver/a
pi/snap

CNCF-fuzzing

7 FuzzMvccStorage go.etcd.io/etcd/server/v3/storage/mvcc CNCF-fuzzing

8 FuzzMvccIndex go.etcd.io/etcd/server/v3/storage/mvcc CNCF-fuzzing

9 FuzzProxyServer go.etcd.io/etcd/pkg/v3/proxy CNCF-fuzzing

10 Fuzzapply go.etcd.io/etcd/server/v3/etcdserver CNCF-fuzzing

11 FuzzapplierV3backendApply go.etcd.io/etcd/server/v3/etcdserver CNCF-fuzzing

12 FuzzV3Server go.etcd.io/etcd/server/v3/etcdserver CNCF-fuzzing

13 FuzzAuthStore go.etcd.io/etcd/server/v3/auth CNCF-fuzzing

14 FuzzBackend go.etcd.io/etcd/server/v3/storage/back
end/testing

CNCF-fuzzing

15 FuzzRaftHttpRequests go.etcd.io/etcd/server/v3/etcdserver/a
pi/rafthttp

CNCF-fuzzing

16 FuzzMessageEncodeDecode go.etcd.io/etcd/server/v3/etcdserver/a
pi/rafthttp

CNCF-fuzzing

17 FuzzStep go.etcd.io/etcd/raft/v3 CNCF-fuzzing

18 FuzzPurgeFile go.etcd.io/etcd/client/pkg/v3/fileutil CNCF-fuzzing

5

https://github.com/cncf/cncf-fuzzing
https://github.com/cncf/cncf-fuzzing/blob/main/projects/etcd/build.sh

Rundown of fuzzers
FuzzAPIMarshal
Tests all the protobuf marshalling routines. It autogenerates a harness for each protobuf and
creates a fuzzer that calls into the harnesses. An example of a harness is:

func FuzzetcdserverpbDeleteRangeResponse(data []byte) error {

f := fuzz.NewConsumer(data)

s := &etcdserverpb.DeleteRangeResponse{}

err := f.GenerateStruct(s)

if err != nil {

return err

}

b, err := s.Marshal()

if err != nil {

return err

}

s2 := &etcdserverpb.DeleteRangeResponse{}

err = s2.Unmarshal(b)

if err != nil {

return err

}

newBytes, err := f.GetBytes()

if err != nil {

return err

}

s3 := &etcdserverpb.DeleteRangeResponse{}

err = s3.Unmarshal(newBytes)

return err

}

The code of the fuzzer is auto generated at build time because the resulting fuzzer is
enormous and contains a lot of repetitive code.

FuzzWalCreate
Creates a wal and saves it. The wal is then loaded and the metadata is compared between
the created and loaded wal to ensure they are equal.

FuzzMinimalEtcdVersion
Creates a slice of go.etcd.io/etcd/raft/v3/raftpb.Entry and passes it to
go.etcd.io/etcd/server/v3/storage/wal.MinimalEtcdVersion().

FuzzKVProxy
Sets up a KVProxyServer and makes pseudo-random requests against it.

FuzzGRPCApis

6

Sets up a GrpcAPI and makes pseudo-random requests against it.

FuzzSnapLoad
Creates a snapshotter from a directory containing pseudo-random files. The fuzzer then
loads the snapshotter.

FuzzMvccStorage
Creates an MVCC storage and calls Put(), Range(), DeleteRange() with pseudo-random
data against it.

FuzzMvccIndex
Creates a treeindex and calls Put(), Get(), Range(), Equal() with pseudo-random data against
it.

FuzzProxyServer
Sets up a proxy server and sends pseudo-random data to it.

Fuzzapply
Sets up an EtcdServer and calls apply against it with a slice of pseudo-random
go.etcd.io/etcd/raft/v3/raftpb.raftpb.Entry.

FuzzapplierV3backendApply
Sets up an applierV3backend and makes pseudo-random requests to it.

FuzzV3Server
Sets up an EtcdServer and makes pseudo-random requests to it to test the APIs in
https://github.com/etcd-io/etcd/blob/main/server/etcdserver/v3_server.go

FuzzAuthStore
Sets up an authStore and makes pseudo-random requests to it.

FuzzBackend
Sets up a storage Backend and makes pseudo-random UnsafePut and UnsafeRange requests
to it.

FuzzRaftHttpRequests
Sets up a pipelineHandler and makes pseudo-random requests to it.

FuzzMessageEncodeDecode
Encodes and subsequently decodes a go.etcd.io/etcd/raft/v3/raftpb.Message.

FuzzStep
Sets up a raft and calls its Step() method with a pseudo-random
go.etcd.io/etcd/raft/v3/raftpb.Message.

FuzzPurgeFile

7

https://github.com/etcd-io/etcd/blob/main/server/etcdserver/v3_server.go

Tests go.etcd.io/etcd/client/pkg/v3/fileutil.purgeFile with a directory containing
pseudo-random files.

8

Findings
In this section we iterate through the bugs found and present root-cause analysis.

Type ID Fixed

1 Nil-dereference ADA-etcd-22-01 Yes

2 Slice bounds out of range ADA-etcd-22-02 Yes

3 Panic from invalid utf-8 ADA-etcd-22-03 Yes

4 Index out of range ADA-etcd-22-04 Yes

5 Invalid type assertion ADA-etcd-22-05 Yes

6 Invalid type assertion ADA-etcd-22-06 Yes

7 Nil-dereference ADA-etcd-22-07 Yes

8 Panic from invalid utf-8 ADA-etcd-22-08 Yes

9

Issue 1

Type Nil-dereference

Source go.etcd.io/etcd/server/v3/etcdserver.(a *applierV3backend) Range()

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=41579

Fix https://github.com/etcd-io/etcd/pull/13555

ID ADA-etcd-22-01

Etcd uses sort.Sort() in the (*applierV3backend).Range() API. If the parameter to
sort.Sort() is nil, a nil-dereference would be triggered.

if sortOrder != pb.RangeRequest_NONE {

var sorter sort.Interface

switch {

case r.SortTarget == pb.RangeRequest_KEY:

sorter = &kvSortByKey{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_VERSION:

sorter = &kvSortByVersion{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_CREATE:

sorter = &kvSortByCreate{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_MOD:

sorter = &kvSortByMod{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_VALUE:

sorter = &kvSortByValue{&kvSort{rr.KVs}}

}

switch {

case sortOrder == pb.RangeRequest_ASCEND:

sort.Sort(sorter)

case sortOrder == pb.RangeRequest_DESCEND:

sort.Sort(sort.Reverse(sorter))

}

}

The crash was fixed by defaulting to logging at panic-level in case sorter is invalid:

if sortOrder != pb.RangeRequest_NONE {

var sorter sort.Interface

switch {

case r.SortTarget == pb.RangeRequest_KEY:

10

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=41579
https://github.com/etcd-io/etcd/pull/13555

sorter = &kvSortByKey{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_VERSION:

sorter = &kvSortByVersion{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_CREATE:

sorter = &kvSortByCreate{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_MOD:

sorter = &kvSortByMod{&kvSort{rr.KVs}}

case r.SortTarget == pb.RangeRequest_VALUE:

sorter = &kvSortByValue{&kvSort{rr.KVs}}

default:

lg.Panic("unexpected sort target", zap.Int32("sort-target",

int32(r.SortTarget)))

}

switch {

case sortOrder == pb.RangeRequest_ASCEND:

sort.Sort(sorter)

case sortOrder == pb.RangeRequest_DESCEND:

sort.Sort(sort.Reverse(sorter))

}

}

11

Issue 2
Type Slice bounds out of range

Source go.etcd.io/etcd/raft/v3.(*raftLog).maybeAppend()

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=42570

Fix https://github.com/etcd-io/etcd/pull/13603

ID ADA-etcd-22-02

An out of range panic was found in maybeAppend():

func (l *raftLog) maybeAppend(index, logTerm, committed uint64, ents

...pb.Entry) (lastnewi uint64, ok bool) {

if l.matchTerm(index, logTerm) {

lastnewi = index + uint64(len(ents))

ci := l.findConflict(ents)

switch {

case ci == 0:

case ci <= l.committed:

l.logger.Panicf("entry %d conflict with committed

entry [committed(%d)]", ci, l.committed)

default:

offset := index + 1

l.append(ents[ci-offset:]...)

}

l.commitTo(min(committed, lastnewi))

return lastnewi, true

}

return 0, false

}

The issue was resolved by logging at panic-level, if ci-offset is out of bounds:

func (l *raftLog) maybeAppend(index, logTerm, committed uint64, ents

...pb.Entry) (lastnewi uint64, ok bool) {

if l.matchTerm(index, logTerm) {

lastnewi = index + uint64(len(ents))

ci := l.findConflict(ents)

switch {

case ci == 0:

case ci <= l.committed:

l.logger.Panicf("entry %d conflict with committed

entry [committed(%d)]", ci, l.committed)

12

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=42570
https://github.com/etcd-io/etcd/pull/13603

default:

offset := index + 1

if ci-offset > uint64(len(ents)) {

l.logger.Panicf("index, %d, is out of range

[%d]", ci-offset, len(ents))

}

l.append(ents[ci-offset:]...)

}

l.commitTo(min(committed, lastnewi))

return lastnewi, true

}

return 0, false

}

13

Issue 3

Type Panic from invalid utf-8

Source go.etcd.io/etcd/server/v3/etcdserver.(*EtcdServer).applyV2Request

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=42947

Fix https://github.com/etcd-io/etcd/pull/13560

ID ADA-etcd-22-03

A client-api-version containing invalid utf-8 could be passed to etcdserver which would cause
a panic from the github.com/prometheus/client_golang dependency.

The issue happens in
go.etcd.io/etcd/server/v3/etcdserver/api/v3rpc.newUnaryInterceptor(*etcdserver.Etc

dServer) in the invocation on the marked line:

func newUnaryInterceptor(s *etcdserver.EtcdServer)

grpc.UnaryServerInterceptor {

return func(ctx context.Context, req interface{}, info

*grpc.UnaryServerInfo, handler grpc.UnaryHandler) (interface{}, error) {

if !api.IsCapabilityEnabled(api.V3rpcCapability) {

return nil, rpctypes.ErrGRPCNotCapable

}

if s.IsMemberExist(s.ID()) && s.IsLearner() &&

!isRPCSupportedForLearner(req) {

return nil, rpctypes.ErrGPRCNotSupportedForLearner

}

md, ok := metadata.FromIncomingContext(ctx)

if ok {

ver, vs := "unknown",

md.Get(rpctypes.MetadataClientAPIVersionKey)

if len(vs) > 0 {

ver = vs[0]

}

clientRequests.WithLabelValues("unary", ver).Inc()

if ks := md[rpctypes.MetadataRequireLeaderKey];

len(ks) > 0 && ks[0] == rpctypes.MetadataHasLeader {

if s.Leader() == types.ID(raft.None) {

return nil, rpctypes.ErrGRPCNoLeader

14

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=42947
https://github.com/etcd-io/etcd/pull/13560

}

}

}

return handler(ctx, req)

}

}

clientRequests is a github.com/prometheus/client_golang/prometheus.CounterVec that is
initialized in https://github.com/etcd-io/etcd/blob/main/server/etcdserver/api/v3rpc/metrics.go,
and its method WithLabelValues will throw a panic will throw a panic in case of an invalid
utf-8 string:

func (v *CounterVec) WithLabelValues(lvs ...string) Counter {

c, err := v.GetMetricWithLabelValues(lvs...)

if err != nil {

panic(err)

}

return c

}

The issue was fixed by checking the the string for invalid utf-8 before passing it onto the 3rd
party dependency:

func newUnaryInterceptor(s *etcdserver.EtcdServer)

grpc.UnaryServerInterceptor {

return func(ctx context.Context, req interface{}, info

*grpc.UnaryServerInfo, handler grpc.UnaryHandler) (interface{}, error) {

if !api.IsCapabilityEnabled(api.V3rpcCapability) {

return nil, rpctypes.ErrGRPCNotCapable

}

if s.IsMemberExist(s.ID()) && s.IsLearner() &&

!isRPCSupportedForLearner(req) {

return nil, rpctypes.ErrGPRCNotSupportedForLearner

}

md, ok := metadata.FromIncomingContext(ctx)

if ok {

ver, vs := "unknown",

md.Get(rpctypes.MetadataClientAPIVersionKey)

if len(vs) > 0 {

ver = vs[0]

15

https://github.com/etcd-io/etcd/blob/main/server/etcdserver/api/v3rpc/metrics.go

}

if !utf8.ValidString(ver) {

return nil,

rpctypes.ErrGRPCInvalidClientAPIVersion

}

clientRequests.WithLabelValues("unary", ver).Inc()

if ks := md[rpctypes.MetadataRequireLeaderKey];

len(ks) > 0 && ks[0] == rpctypes.MetadataHasLeader {

if s.Leader() == types.ID(raft.None) {

return nil, rpctypes.ErrGRPCNoLeader

}

}

}

return handler(ctx, req)

}

}

16

Issue 4

Type Index out of range

Source google.golang.org/protobuf/internal/filedesc.(*EnumValues).Get()

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=44433

Fix https://github.com/etcd-io/etcd/pull/13689

ID ADA-etcd-22-04

Etcd was using
google.golang.org/protobuf/internal/filedesc.(*EnumValues).Get() without
checking whether the passed parameter was in range. Since
google.golang.org/protobuf/internal/filedesc.(*EnumValues).Get() does not do
that check either, an out of range was triggered:

func visitEnumNumber(enum protoreflect.EnumDescriptor, number

protoreflect.EnumNumber, visitor Visitor) error {

err := visitDescriptor(enum, visitor)

if err != nil {

return err

}

return visitEnumValue(fields.Get(intNumber), visitor)

}

The issue is fixed by checking if number is out of range and if number is negative:

func visitEnumNumber(enum protoreflect.EnumDescriptor, number

protoreflect.EnumNumber, visitor Visitor) error {

err := visitDescriptor(enum, visitor)

if err != nil {

return err

}

intNumber := int(number)

fields := enum.Values()

if intNumber >= fields.Len() || intNumber < 0 {

return fmt.Errorf("could not visit EnumNumber [%d]",

intNumber)

}

return visitEnumValue(fields.Get(intNumber), visitor)

}

17

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=44433
https://github.com/etcd-io/etcd/pull/13689

Issue 5
Type Invalid type assertion

Source go.etcd.io/etcd/server/v3/storage/mvcc.(*treeIndex).Equal()

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=44449

Fix https://github.com/etcd-io/etcd/pull/13681

ID ADA-etcd-22-05

A panic from an invalid type assertion was found in
go.etcd.io/etcd/server/v3/storage/mvcc.(*treeIndex).Equal(). In this case,
b.tree.Get(item) would be nil which caused the panic:

func (ti *treeIndex) Equal(bi index) bool {

b := bi.(*treeIndex)

if ti.tree.Len() != b.tree.Len() {

return false

}

equal := true

ti.tree.Ascend(func(item btree.Item) bool {

aki := item.(*keyIndex)

bki := b.tree.Get(item).(*keyIndex)

if !aki.equal(bki) {

equal = false

return false

}

return true

})

return equal

}

The fix is to check the type assertion of bki, and the same is done for aki as a preventative
measure:

func (ti *treeIndex) Equal(bi index) bool {

b := bi.(*treeIndex)

18

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=44449&q=etcd&can=1
https://github.com/etcd-io/etcd/pull/13681

if ti.tree.Len() != b.tree.Len() {

return false

}

equal := true

ti.tree.Ascend(func(item btree.Item) bool {

var aki, bki *keyIndex

var ok bool

if aki, ok = item.(*keyIndex); !ok {

return false

}

if bki, ok = b.tree.Get(item).(*keyIndex); !ok {

return false

}

if !aki.equal(bki) {

equal = false

return false

}

return true

})

return equal

}

19

Issue 6
Type Invalid type assertion

Source go.etcd.io/etcd/server/v3/auth.(*tokenSimple).assign()

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=44478

Fix https://github.com/etcd-io/etcd/pull/13682/files

ID ADA-etcd-22-06

An unchecked type assertion would cause a panic in
go.etcd.io/etcd/server/v3/auth.(*tokenSimple).assign() if the variable was nil:

func (t *tokenSimple) assign(ctx context.Context, username string, rev

uint64) (string, error) {

// rev isn't used in simple token, it is only used in JWT

index := ctx.Value(AuthenticateParamIndex{}).(uint64)

simpleTokenPrefix :=

ctx.Value(AuthenticateParamSimpleTokenPrefix{}).(string)

token := fmt.Sprintf("%s.%d", simpleTokenPrefix, index)

t.assignSimpleTokenToUser(username, token)

return token, nil

}

The panic is fixed by checking the type assertion:

func (t *tokenSimple) assign(ctx context.Context, username string, rev

uint64) (string, error) {

// rev isn't used in simple token, it is only used in JWT

var index uint64

var ok bool

if index, ok = ctx.Value(AuthenticateParamIndex{}).(uint64); !ok {

return "", errors.New("failed to assign")

}

simpleTokenPrefix :=

ctx.Value(AuthenticateParamSimpleTokenPrefix{}).(string)

token := fmt.Sprintf("%s.%d", simpleTokenPrefix, index)

t.assignSimpleTokenToUser(username, token)

return token, nil

}

20

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=44478
https://github.com/etcd-io/etcd/pull/13682/files

Issue 7
Type Nil-dereference

Source go.etcd.io/etcd/server/v3/etcdserver.(*EtcdServer).applyEntryNormal()

Issue link https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=42181

Fix https://github.com/etcd-io/etcd/pull/13695

ID ADA-etcd-22-07

If a raft request had its Header field set to nil, applyEntryNormal() would panic with a
nil-dereference:

func (s *EtcdServer) applyEntryNormal(e *raftpb.Entry) {

...

var raftReq pb.InternalRaftRequest

if !pbutil.MaybeUnmarshal(&raftReq, e.Data) { // backward

compatible

var r pb.Request

rp := &r

pbutil.MustUnmarshal(rp, e.Data)

s.lg.Debug("applyEntryNormal", zap.Stringer("V2request",

rp))

s.w.Trigger(r.ID, s.applyV2Request((*RequestV2)(rp),

shouldApplyV3))

return

}

s.lg.Debug("applyEntryNormal", zap.Stringer("raftReq", &raftReq))

if raftReq.V2 != nil {

req := (*RequestV2)(raftReq.V2)

s.w.Trigger(req.ID, s.applyV2Request(req, shouldApplyV3))

return

}

id := raftReq.ID

if id == 0 {

id = raftReq.Header.ID

}

...

21

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=42181
https://github.com/etcd-io/etcd/pull/13695

The issue is resolved by checking if raftReq.Header is nil in which case etcd would log at
panic level:

func (s *EtcdServer) applyEntryNormal(e *raftpb.Entry) {

...

var raftReq pb.InternalRaftRequest

if !pbutil.MaybeUnmarshal(&raftReq, e.Data) { // backward

compatible

var r pb.Request

rp := &r

pbutil.MustUnmarshal(rp, e.Data)

s.lg.Debug("applyEntryNormal", zap.Stringer("V2request",

rp))

s.w.Trigger(r.ID, s.applyV2Request((*RequestV2)(rp),

shouldApplyV3))

return

}

s.lg.Debug("applyEntryNormal", zap.Stringer("raftReq", &raftReq))

if raftReq.V2 != nil {

req := (*RequestV2)(raftReq.V2)

s.w.Trigger(req.ID, s.applyV2Request(req, shouldApplyV3))

return

}

id := raftReq.ID

if id == 0 {

if raftReq.Header == nil {

s.lg.Panic("applyEntryNormal, could not find a

header")

}

id = raftReq.Header.ID

}

...

22

Issue 8
Type Panic from invalid utf-8

Source go.etcd.io/etcd/server/v3/etcdserver.(*EtcdServer).applyV2Request()

Issue link https://oss-fuzz.com/testcase-detail/6750173361995776

Fix https://github.com/etcd-io/etcd/pull/13700

ID ADA-etcd-22-08

Similar to issue 3, another usage of WithLabelValues() in the
github.com/prometheus/client_golang could crash etcd with string containing invalid utf8:

func (s *EtcdServer) applyV2Request(r *RequestV2, shouldApplyV3

membership.ShouldApplyV3) (resp Response) {

stringer := panicAlternativeStringer{

stringer: r,

alternative: func() string { return

fmt.Sprintf("id:%d,method:%s,path:%s", r.ID, r.Method, r.Path) },

}

defer func(start time.Time) {

success := resp.Err == nil

applySec.WithLabelValues(v2Version, r.Method,

strconv.FormatBool(success)).Observe(time.Since(start).Seconds())

warnOfExpensiveRequest(s.Logger(),

s.Cfg.WarningApplyDuration, start, stringer, nil, nil)

}(time.Now())

The panic is fixed by checking the string for invalid utf8:

func (s *EtcdServer) applyV2Request(r *RequestV2, shouldApplyV3

membership.ShouldApplyV3) (resp Response) {

stringer := panicAlternativeStringer{

stringer: r,

alternative: func() string { return

fmt.Sprintf("id:%d,method:%s,path:%s", r.ID, r.Method, r.Path) },

}

defer func(start time.Time) {

if !utf8.ValidString(r.Method) {

s.lg.Info("method is not valid utf-8")

return

}

success := resp.Err == nil

applySec.WithLabelValues(v2Version, r.Method,

23

https://oss-fuzz.com/testcase-detail/6750173361995776
https://github.com/etcd-io/etcd/pull/13700

strconv.FormatBool(success)).Observe(time.Since(start).Seconds())

warnOfExpensiveRequest(s.Logger(),

s.Cfg.WarningApplyDuration, start, stringer, nil, nil)

}(time.Now())

24

Advice following engagement
Short-term advice

1. Create a strategy for where the fuzzers should be maintained. They are now hosted
at the cncf-fuzzing repository, however it is recommended for the etcd maintainers to
move the fuzzers upstream.

2. Fuzzing will be natively supported in Go 1.18 and it may be worthwhile to rewrite the
fuzzers to native Go fuzzers and place them in their respective directories similar to
how unit tests are managed. OSS-Fuzz is able to handle native Go fuzzers as of a
recent PR, so continuous fuzzing will remain supported.

3. Run the fuzzers in the CI with either CIFuzz or as native Go fuzzers when Go 1.18 is
released.

4. Improve the procedures and expectations among the maintainers to respond to
reports by OSS-Fuzz. During the engagement, Ada Logics experienced an
impressive response to PRs made by Ada Logics team members to fix the found
bugs. PRs were reviewed and subsequently merged in a quick manner, however
looking forward, the etcd maintainers should integrate a response procedure.

Long-term advice
1. Assess which parts of the etcd ecosystem are missing coverage and write fuzzers to

cover the missing parts. These fuzzers should run continuously on OSS-Fuzz, and if
any bugs are found, they should be fixed in line with how the bugs in this
engagement were fixed.

2. When new code is submitted to etcd that will not be covered by existing fuzzers,
make it a routine to include fuzzers that cover this code.

Conclusions and future work
In this engagement we, Ada Logics, developed an extensive fuzzing suite for the etcd
project. We integrated the fuzzing suite into the OSS-Fuzz fuzzing service such that all
fuzzers are now running continuously by OSS-Fuzz indefinitely. A total of 18 fuzzers were
developed and a total of 8 bugs were found. All of these bugs are now fixed.

We would like to acknowledge the etcd maintainers and reviewers, specially to Sahdev Zala
(IBM), Marek Siarkowicz (Google), Piotr Tabor (Google) and Benjamin Wang (VMware) who
all supported our work during the engagement.

This work was commissioned by the Cloud Native Computing Foundation (CNCF).

25

https://github.com/cncf/cncf-fuzzing
https://github.com/google/oss-fuzz/pull/7055
https://google.github.io/oss-fuzz/getting-started/continuous-integration/

