gf-complete/gf_time.c

214 lines
6.1 KiB
C

/*
* GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
* James S. Plank, Ethan L. Miller, Kevin M. Greenan,
* Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
*
* gf_time.c
*
* Performs timing for gf arithmetic
*/
#include <stdio.h>
#include <getopt.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include "gf_complete.h"
#include "gf_method.h"
#include "gf_rand.h"
#include "gf_general.h"
void
timer_start (double *t)
{
struct timeval tv;
gettimeofday (&tv, NULL);
*t = (double)tv.tv_sec + (double)tv.tv_usec * 1e-6;
}
double
timer_split (const double *t)
{
struct timeval tv;
double cur_t;
gettimeofday (&tv, NULL);
cur_t = (double)tv.tv_sec + (double)tv.tv_usec * 1e-6;
return (cur_t - *t);
}
void problem(char *s)
{
fprintf(stderr, "Timing test failed.\n");
fprintf(stderr, "%s\n", s);
exit(1);
}
char *BM = "Bad Method: ";
void usage(char *s)
{
fprintf(stderr, "usage: gf_time w tests seed size(bytes) iterations [method [params]] - does timing\n");
fprintf(stderr, "\n");
fprintf(stderr, "does unit testing in GF(2^w)\n");
fprintf(stderr, "\n");
fprintf(stderr, "Legal w are: 1 - 32, 64 and 128\n");
fprintf(stderr, "\n");
fprintf(stderr, "Tests may be any combination of:\n");
fprintf(stderr, " A: All\n");
fprintf(stderr, " S: All Single Operations\n");
fprintf(stderr, " R: All Region Operations\n");
fprintf(stderr, " M: Single: Multiplications\n");
fprintf(stderr, " D: Single: Divisions\n");
fprintf(stderr, " I: Single: Inverses\n");
fprintf(stderr, " G: Region: Buffer-Constant Multiplication\n");
fprintf(stderr, " 0: Region: Doing nothing, and bzero()\n");
fprintf(stderr, " 1: Region: Memcpy() and XOR\n");
fprintf(stderr, " 2: Region: Multiplying by two\n");
fprintf(stderr, "\n");
fprintf(stderr, "Use -1 for time(0) as a seed.\n");
fprintf(stderr, "\n");
if (s == BM) {
fprintf(stderr, "%s", BM);
gf_error();
} else if (s != NULL) {
fprintf(stderr, "%s\n", s);
}
exit(1);
}
int main(int argc, char **argv)
{
int w, it, i, size, iterations, xor;
char tests[100];
char test;
char *single_tests = "MDI";
char *region_tests = "G012";
char *tstrings[256];
void *tmethods[256];
gf_t gf;
double timer, elapsed, ds, di, dnum;
int num;
time_t t0;
uint8_t *ra, *rb;
gf_general_t a;
if (argc < 6) usage(NULL);
if (sscanf(argv[1], "%d", &w) == 0){
usage("Bad w[-pp]\n");
}
if (sscanf(argv[3], "%ld", &t0) == 0) usage("Bad seed\n");
if (sscanf(argv[4], "%d", &size) == 0) usage("Bad size\n");
if (sscanf(argv[5], "%d", &iterations) == 0) usage("Bad iterations\n");
if (t0 == -1) t0 = time(0);
MOA_Seed(t0);
ds = size;
di = iterations;
if ((w > 32 && w != 64 && w != 128) || w < 0) usage("Bad w");
if ((size * 8) % w != 0) usage ("Bad size -- must be a multiple of w*8\n");
if (!create_gf_from_argv(&gf, w, argc, argv, 6)) usage(BM);
strcpy(tests, "");
for (i = 0; i < argv[2][i] != '\0'; i++) {
switch(argv[2][i]) {
case 'A': strcat(tests, single_tests);
strcat(tests, region_tests);
break;
case 'S': strcat(tests, single_tests); break;
case 'R': strcat(tests, region_tests); break;
case 'G': strcat(tests, "G"); break;
case '0': strcat(tests, "0"); break;
case '1': strcat(tests, "1"); break;
case '2': strcat(tests, "2"); break;
case 'M': strcat(tests, "M"); break;
case 'D': strcat(tests, "D"); break;
case 'I': strcat(tests, "I"); break;
default: usage("Bad tests");
}
}
tstrings['M'] = "Multiply";
tstrings['D'] = "Divide";
tstrings['I'] = "Inverse";
tstrings['G'] = "Region-Random";
tstrings['0'] = "Region-By-Zero";
tstrings['1'] = "Region-By-One";
tstrings['2'] = "Region-By-Two";
tmethods['M'] = (void *) gf.multiply.w32;
tmethods['D'] = (void *) gf.divide.w32;
tmethods['I'] = (void *) gf.inverse.w32;
tmethods['G'] = (void *) gf.multiply_region.w32;
tmethods['0'] = (void *) gf.multiply_region.w32;
tmethods['1'] = (void *) gf.multiply_region.w32;
tmethods['2'] = (void *) gf.multiply_region.w32;
printf("Seed: %ld\n", t0);
ra = (uint8_t *) malloc(size);
rb = (uint8_t *) malloc(size);
if (ra == NULL || rb == NULL) { perror("malloc"); exit(1); }
for (i = 0; i < 3; i++) {
test = single_tests[i];
if (strchr(tests, test) != NULL) {
if (tmethods[test] == NULL) {
printf("No %s method.\n", tstrings[test]);
} else {
elapsed = 0;
dnum = 0;
for (it = 0; it < iterations; it++) {
gf_general_set_up_single_timing_test(w, ra, rb, size);
timer_start(&timer);
num = gf_general_do_single_timing_test(&gf, ra, rb, size, test);
dnum += num;
elapsed += timer_split(&timer);
}
printf("%14s: %10.6lf s Mops: %10.3lf %10.3lf Mega-ops/s\n",
tstrings[test], elapsed,
dnum/1024.0/1024.0, dnum/1024.0/1024.0/elapsed);
}
}
}
for (i = 0; i < 4; i++) {
test = region_tests[i];
if (strchr(tests, test) != NULL) {
if (tmethods[test] == NULL) {
printf("No %s method.\n", tstrings[test]);
} else {
elapsed = 0;
if (test == '0') gf_general_set_zero(&a, w);
if (test == '1') gf_general_set_one(&a, w);
if (test == '2') gf_general_set_two(&a, w);
for (xor = 0; xor < 2; xor++) {
elapsed = 0;
for (it = 0; it < iterations; it++) {
if (test == 'G') gf_general_set_random(&a, w, 1);
gf_general_set_up_single_timing_test(8, ra, rb, size);
timer_start(&timer);
gf_general_do_region_multiply(&gf, &a, ra, rb, size, xor);
elapsed += timer_split(&timer);
}
printf("%14s: XOR: %d %10.6lf s MB: %10.3lf %10.3lf MB/s\n",
tstrings[test], xor, elapsed,
ds*di/1024.0/1024.0, ds*di/1024.0/1024.0/elapsed);
}
}
}
}
}