reedsolomon-go/reedsolomon_test.go

1868 lines
44 KiB
Go

/**
* Unit tests for ReedSolomon
*
* Copyright 2015, Klaus Post
* Copyright 2015, Backblaze, Inc. All rights reserved.
*/
package reedsolomon
import (
"bytes"
"flag"
"fmt"
"math/rand"
"os"
"runtime"
"strconv"
"testing"
)
var noSSE2 = flag.Bool("no-sse2", !defaultOptions.useSSE2, "Disable SSE2")
var noSSSE3 = flag.Bool("no-ssse3", !defaultOptions.useSSSE3, "Disable SSSE3")
var noAVX2 = flag.Bool("no-avx2", !defaultOptions.useAVX2, "Disable AVX2")
var noAVX512 = flag.Bool("no-avx512", !defaultOptions.useAVX512, "Disable AVX512")
func TestMain(m *testing.M) {
flag.Parse()
os.Exit(m.Run())
}
func testOptions(o ...Option) []Option {
o = append(o, WithFastOneParityMatrix())
if *noSSSE3 {
o = append(o, WithSSSE3(false))
}
if *noSSE2 {
o = append(o, WithSSE2(false))
}
if *noAVX2 {
o = append(o, WithAVX2(false))
}
if *noAVX512 {
o = append(o, WithAVX512(false))
}
return o
}
func isIncreasingAndContainsDataRow(indices []int) bool {
cols := len(indices)
for i := 0; i < cols-1; i++ {
if indices[i] >= indices[i+1] {
return false
}
}
// Data rows are in the upper square portion of the matrix.
return indices[0] < cols
}
func incrementIndices(indices []int, indexBound int) (valid bool) {
for i := len(indices) - 1; i >= 0; i-- {
indices[i]++
if indices[i] < indexBound {
break
}
if i == 0 {
return false
}
indices[i] = 0
}
return true
}
func incrementIndicesUntilIncreasingAndContainsDataRow(
indices []int, maxIndex int) bool {
for {
valid := incrementIndices(indices, maxIndex)
if !valid {
return false
}
if isIncreasingAndContainsDataRow(indices) {
return true
}
}
}
func findSingularSubMatrix(m matrix) (matrix, error) {
rows := len(m)
cols := len(m[0])
rowIndices := make([]int, cols)
for incrementIndicesUntilIncreasingAndContainsDataRow(rowIndices, rows) {
subMatrix, _ := newMatrix(cols, cols)
for i, r := range rowIndices {
for c := 0; c < cols; c++ {
subMatrix[i][c] = m[r][c]
}
}
_, err := subMatrix.Invert()
if err == errSingular {
return subMatrix, nil
} else if err != nil {
return nil, err
}
}
return nil, nil
}
func TestBuildMatrixJerasure(t *testing.T) {
totalShards := 12
dataShards := 8
m, err := buildMatrixJerasure(dataShards, totalShards)
if err != nil {
t.Fatal(err)
}
refMatrix := matrix{
{1, 1, 1, 1, 1, 1, 1, 1},
{1, 55, 39, 73, 84, 181, 225, 217},
{1, 39, 217, 161, 92, 60, 172, 90},
{1, 172, 70, 235, 143, 34, 200, 101},
}
for i := 0; i < 8; i++ {
for j := 0; j < 8; j++ {
if i != j && m[i][j] != 0 || i == j && m[i][j] != 1 {
t.Fatal("Top part of the matrix is not identity")
}
}
}
for i := 0; i < 4; i++ {
for j := 0; j < 8; j++ {
if m[8+i][j] != refMatrix[i][j] {
t.Fatal("Coding matrix for EC 8+4 differs from Jerasure")
}
}
}
}
func TestBuildMatrixPAR1Singular(t *testing.T) {
totalShards := 8
dataShards := 4
m, err := buildMatrixPAR1(dataShards, totalShards)
if err != nil {
t.Fatal(err)
}
singularSubMatrix, err := findSingularSubMatrix(m)
if err != nil {
t.Fatal(err)
}
if singularSubMatrix == nil {
t.Fatal("No singular sub-matrix found")
}
t.Logf("matrix %s has singular sub-matrix %s", m, singularSubMatrix)
}
func testOpts() [][]Option {
if testing.Short() {
return [][]Option{
{WithPAR1Matrix()}, {WithCauchyMatrix()},
}
}
opts := [][]Option{
{WithPAR1Matrix()}, {WithCauchyMatrix()},
{WithFastOneParityMatrix()}, {WithPAR1Matrix(), WithFastOneParityMatrix()}, {WithCauchyMatrix(), WithFastOneParityMatrix()},
{WithMaxGoroutines(1), WithMinSplitSize(500), WithSSSE3(false), WithAVX2(false), WithAVX512(false)},
{WithMaxGoroutines(5000), WithMinSplitSize(50), WithSSSE3(false), WithAVX2(false), WithAVX512(false)},
{WithMaxGoroutines(5000), WithMinSplitSize(500000), WithSSSE3(false), WithAVX2(false), WithAVX512(false)},
{WithMaxGoroutines(1), WithMinSplitSize(500000), WithSSSE3(false), WithAVX2(false), WithAVX512(false)},
{WithAutoGoroutines(50000), WithMinSplitSize(500)},
{WithInversionCache(false)},
}
for _, o := range opts[:] {
if defaultOptions.useSSSE3 {
n := make([]Option, len(o), len(o)+1)
copy(n, o)
n = append(n, WithSSSE3(true))
opts = append(opts, n)
}
if defaultOptions.useAVX2 {
n := make([]Option, len(o), len(o)+1)
copy(n, o)
n = append(n, WithAVX2(true))
opts = append(opts, n)
}
if defaultOptions.useAVX512 {
n := make([]Option, len(o), len(o)+1)
copy(n, o)
n = append(n, WithAVX512(true))
opts = append(opts, n)
}
}
return opts
}
func TestEncoding(t *testing.T) {
t.Run("default", func(t *testing.T) {
testEncoding(t, testOptions()...)
})
t.Run("default-dx", func(t *testing.T) {
testEncodingIdx(t, testOptions()...)
})
for i, o := range testOpts() {
t.Run(fmt.Sprintf("opt-%d", i), func(t *testing.T) {
testEncoding(t, o...)
})
if !testing.Short() {
t.Run(fmt.Sprintf("idx-opt-%d", i), func(t *testing.T) {
testEncodingIdx(t, o...)
})
}
}
}
// matrix sizes to test.
// note that par1 matric will fail on some combinations.
var testSizes = [][2]int{
{1, 0}, {3, 0}, {5, 0}, {8, 0}, {10, 0}, {12, 0}, {14, 0}, {41, 0}, {49, 0},
{1, 1}, {1, 2}, {3, 3}, {3, 1}, {5, 3}, {8, 4}, {10, 30}, {12, 10}, {14, 7}, {41, 17}, {49, 1}, {5, 20},
{256, 20}, {500, 300}, {2945, 129},
}
var testDataSizes = []int{10, 100, 1000, 10001, 100003, 1000055}
var testDataSizesShort = []int{10, 10001, 100003}
func testEncoding(t *testing.T, o ...Option) {
for _, size := range testSizes {
data, parity := size[0], size[1]
rng := rand.New(rand.NewSource(0xabadc0cac01a))
t.Run(fmt.Sprintf("%dx%d", data, parity), func(t *testing.T) {
sz := testDataSizes
if testing.Short() || data+parity > 256 {
sz = testDataSizesShort
}
for _, perShard := range sz {
if data+parity > 256 {
if perShard > 1000 {
t.Skip("long tests not needed. Not length sensitive")
}
// Round up to 64 bytes.
perShard = (perShard + 63) &^ 63
}
t.Run(fmt.Sprint(perShard), func(t *testing.T) {
r, err := New(data, parity, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, data+parity)
for s := range shards {
shards[s] = make([]byte, perShard)
}
for s := 0; s < len(shards); s++ {
rng.Read(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
if parity == 0 {
// Check that Reconstruct and ReconstructData do nothing
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Skip integrity checks
return
}
// Delete one in data
idx := rng.Intn(data)
want := shards[idx]
shards[idx] = nil
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(shards[idx], want) {
t.Fatal("did not ReconstructData correctly")
}
// Delete one randomly
idx = rng.Intn(data + parity)
want = shards[idx]
shards[idx] = nil
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(shards[idx], want) {
t.Fatal("did not Reconstruct correctly")
}
err = r.Encode(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
// Make one too short.
shards[idx] = shards[idx][:perShard-1]
err = r.Encode(shards)
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrShardSize, err)
}
})
}
})
}
}
func testEncodingIdx(t *testing.T, o ...Option) {
for _, size := range testSizes {
data, parity := size[0], size[1]
rng := rand.New(rand.NewSource(0xabadc0cac01a))
t.Run(fmt.Sprintf("%dx%d", data, parity), func(t *testing.T) {
if data+parity > 256 {
t.Skip("EncodingIdx not supported for total shards > 256")
}
sz := testDataSizes
if testing.Short() {
sz = testDataSizesShort
}
for _, perShard := range sz {
t.Run(fmt.Sprint(perShard), func(t *testing.T) {
r, err := New(data, parity, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, data+parity)
for s := range shards {
shards[s] = make([]byte, perShard)
}
shuffle := make([]int, data)
for i := range shuffle {
shuffle[i] = i
}
rng.Shuffle(len(shuffle), func(i, j int) { shuffle[i], shuffle[j] = shuffle[j], shuffle[i] })
// Send shards in random order.
for s := 0; s < data; s++ {
s := shuffle[s]
rng.Read(shards[s])
err = r.EncodeIdx(shards[s], s, shards[data:])
if err != nil {
t.Fatal(err)
}
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
if parity == 0 {
// Check that Reconstruct and ReconstructData do nothing
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Skip integrity checks
return
}
// Delete one in data
idx := rng.Intn(data)
want := shards[idx]
shards[idx] = nil
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(shards[idx], want) {
t.Fatal("did not ReconstructData correctly")
}
// Delete one randomly
idx = rng.Intn(data + parity)
want = shards[idx]
shards[idx] = nil
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(shards[idx], want) {
t.Fatal("did not Reconstruct correctly")
}
err = r.Encode(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
// Make one too short.
shards[idx] = shards[idx][:perShard-1]
err = r.Encode(shards)
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrShardSize, err)
}
})
}
})
}
}
func TestUpdate(t *testing.T) {
for i, o := range testOpts() {
t.Run(fmt.Sprintf("options %d", i), func(t *testing.T) {
testUpdate(t, o...)
})
}
}
func testUpdate(t *testing.T, o ...Option) {
rand.Seed(0)
for _, size := range [][2]int{{10, 3}, {17, 2}} {
data, parity := size[0], size[1]
t.Run(fmt.Sprintf("%dx%d", data, parity), func(t *testing.T) {
sz := testDataSizesShort
if testing.Short() {
sz = []int{50000}
}
for _, perShard := range sz {
t.Run(fmt.Sprint(perShard), func(t *testing.T) {
r, err := New(data, parity, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, data+parity)
for s := range shards {
shards[s] = make([]byte, perShard)
}
for s := range shards {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
newdatashards := make([][]byte, data)
for s := range newdatashards {
newdatashards[s] = make([]byte, perShard)
fillRandom(newdatashards[s])
err = r.Update(shards, newdatashards)
if err != nil {
t.Fatal(err)
}
shards[s] = newdatashards[s]
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
newdatashards[s] = nil
}
for s := 0; s < len(newdatashards)-1; s++ {
newdatashards[s] = make([]byte, perShard)
newdatashards[s+1] = make([]byte, perShard)
fillRandom(newdatashards[s])
fillRandom(newdatashards[s+1])
err = r.Update(shards, newdatashards)
if err != nil {
t.Fatal(err)
}
shards[s] = newdatashards[s]
shards[s+1] = newdatashards[s+1]
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
newdatashards[s] = nil
newdatashards[s+1] = nil
}
for newNum := 1; newNum <= data; newNum++ {
for s := 0; s <= data-newNum; s++ {
for i := 0; i < newNum; i++ {
newdatashards[s+i] = make([]byte, perShard)
fillRandom(newdatashards[s+i])
}
err = r.Update(shards, newdatashards)
if err != nil {
t.Fatal(err)
}
for i := 0; i < newNum; i++ {
shards[s+i] = newdatashards[s+i]
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
for i := 0; i < newNum; i++ {
newdatashards[s+i] = nil
}
}
}
})
}
})
}
}
func TestReconstruct(t *testing.T) {
testReconstruct(t)
for i, o := range testOpts() {
t.Run(fmt.Sprintf("options %d", i), func(t *testing.T) {
testReconstruct(t, o...)
})
}
}
func testReconstruct(t *testing.T, o ...Option) {
perShard := 50000
r, err := New(10, 3, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 13)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 13; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with all shards present
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with 10 shards present. Use pre-allocated memory for one of them.
shards[0] = nil
shards[7] = nil
shard11 := shards[11]
shards[11] = shard11[:0]
fillRandom(shard11)
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
if &shard11[0] != &shards[11][0] {
t.Errorf("Shard was not reconstructed into pre-allocated memory")
}
// Reconstruct with 9 shards present (should fail)
shards[0] = nil
shards[4] = nil
shards[7] = nil
shards[11] = nil
err = r.Reconstruct(shards)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(make([][]byte, 13))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestReconstructCustom(t *testing.T) {
perShard := 50000
r, err := New(4, 3, WithCustomMatrix([][]byte{
{1, 1, 0, 0},
{0, 0, 1, 1},
{1, 2, 3, 4},
}))
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 7)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < len(shards); s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with 1 shard absent.
shards1 := make([][]byte, len(shards))
copy(shards1, shards)
shards1[0] = nil
err = r.Reconstruct(shards1)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
// Reconstruct with 3 shards absent.
copy(shards1, shards)
shards1[0] = nil
shards1[1] = nil
shards1[2] = nil
err = r.Reconstruct(shards1)
if err != nil {
t.Fatal(err)
}
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
}
func TestReconstructData(t *testing.T) {
testReconstructData(t)
for i, o := range testOpts() {
t.Run(fmt.Sprintf("options %d", i), func(t *testing.T) {
testReconstructData(t, o...)
})
}
}
func testReconstructData(t *testing.T, o ...Option) {
perShard := 100000
r, err := New(8, 5, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 13)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 13; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with all shards present
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct 3 shards with 3 data and 5 parity shards
shardsCopy := make([][]byte, 13)
copy(shardsCopy, shards)
shardsCopy[2] = nil
shardsCopy[3] = nil
shardsCopy[4] = nil
shardsCopy[5] = nil
shardsCopy[6] = nil
shardsRequired := make([]bool, 8)
shardsRequired[3] = true
shardsRequired[4] = true
err = r.ReconstructSome(shardsCopy, shardsRequired)
if err != nil {
t.Fatal(err)
}
if 0 != bytes.Compare(shardsCopy[3], shards[3]) ||
0 != bytes.Compare(shardsCopy[4], shards[4]) {
t.Fatal("ReconstructSome did not reconstruct required shards correctly")
}
if shardsCopy[2] != nil || shardsCopy[5] != nil || shardsCopy[6] != nil {
t.Fatal("ReconstructSome reconstructed extra shards")
}
// Reconstruct with 10 shards present. Use pre-allocated memory for one of them.
shards[0] = nil
shards[2] = nil
shard4 := shards[4]
shards[4] = shard4[:0]
fillRandom(shard4)
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
// Since all parity shards are available, verification will succeed
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
if &shard4[0] != &shards[4][0] {
t.Errorf("Shard was not reconstructed into pre-allocated memory")
}
// Reconstruct with 6 data and 4 parity shards
shards[0] = nil
shards[2] = nil
shards[12] = nil
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
// Verification will fail now due to absence of a parity block
_, err = r.Verify(shards)
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
// Reconstruct with 7 data and 1 parity shards
shards[0] = nil
shards[9] = nil
shards[10] = nil
shards[11] = nil
shards[12] = nil
err = r.ReconstructData(shards)
if err != nil {
t.Fatal(err)
}
_, err = r.Verify(shards)
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
// Reconstruct with 6 data and 1 parity shards (should fail)
shards[0] = nil
shards[1] = nil
shards[9] = nil
shards[10] = nil
shards[11] = nil
shards[12] = nil
err = r.ReconstructData(shards)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.ReconstructData(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.ReconstructData(make([][]byte, 13))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestReconstructPAR1Singular(t *testing.T) {
perShard := 50
r, err := New(4, 4, testOptions(WithPAR1Matrix())...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 8)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 8; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with only the last data shard present, and the
// first, second, and fourth parity shard present (based on
// the result of TestBuildMatrixPAR1Singular). This should
// fail.
shards[0] = nil
shards[1] = nil
shards[2] = nil
shards[6] = nil
err = r.Reconstruct(shards)
if err != errSingular {
t.Fatal(err)
t.Errorf("expected %v, got %v", errSingular, err)
}
}
func TestVerify(t *testing.T) {
testVerify(t)
for i, o := range testOpts() {
t.Run(fmt.Sprintf("options %d", i), func(t *testing.T) {
testVerify(t, o...)
})
}
}
func testVerify(t *testing.T, o ...Option) {
perShard := 33333
r, err := New(10, 4, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 14)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 10; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Error("Verification failed")
return
}
// Put in random data. Verification should fail
fillRandom(shards[10])
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
// Re-encode
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Fill a data segment with random data
fillRandom(shards[0])
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
_, err = r.Verify(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
_, err = r.Verify(make([][]byte, 14))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestOneEncode(t *testing.T) {
codec, err := New(5, 5, testOptions()...)
if err != nil {
t.Fatal(err)
}
shards := [][]byte{
{0, 1},
{4, 5},
{2, 3},
{6, 7},
{8, 9},
{0, 0},
{0, 0},
{0, 0},
{0, 0},
{0, 0},
}
codec.Encode(shards)
if shards[5][0] != 12 || shards[5][1] != 13 {
t.Fatal("shard 5 mismatch")
}
if shards[6][0] != 10 || shards[6][1] != 11 {
t.Fatal("shard 6 mismatch")
}
if shards[7][0] != 14 || shards[7][1] != 15 {
t.Fatal("shard 7 mismatch")
}
if shards[8][0] != 90 || shards[8][1] != 91 {
t.Fatal("shard 8 mismatch")
}
if shards[9][0] != 94 || shards[9][1] != 95 {
t.Fatal("shard 9 mismatch")
}
ok, err := codec.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("did not verify")
}
shards[8][0]++
ok, err = codec.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("verify did not fail as expected")
}
}
func fillRandom(p []byte) {
for i := 0; i < len(p); i += 7 {
val := rand.Int63()
for j := 0; i+j < len(p) && j < 7; j++ {
p[i+j] = byte(val)
val >>= 8
}
}
}
func benchmarkEncode(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards, testOptions(WithAutoGoroutines(shardSize))...)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, dataShards+parityShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
b.SetBytes(int64(shardSize * (dataShards + parityShards)))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
}
}
func BenchmarkEncode2x1x1M(b *testing.B) {
benchmarkEncode(b, 2, 1, 1024*1024)
}
// Benchmark 800 data slices with 200 parity slices
func BenchmarkEncode800x200(b *testing.B) {
for size := 64; size <= 1<<20; size *= 4 {
b.Run(fmt.Sprintf("%v", size), func(b *testing.B) {
benchmarkEncode(b, 800, 200, size)
})
}
}
func BenchmarkEncodeLeopard(b *testing.B) {
size := (64 << 20) / 800 / 64 * 64
b.Run(strconv.Itoa(size), func(b *testing.B) {
benchmarkEncode(b, 800, 200, size)
})
}
func BenchmarkEncode10x2x10000(b *testing.B) {
benchmarkEncode(b, 10, 2, 10000)
}
func BenchmarkEncode100x20x10000(b *testing.B) {
benchmarkEncode(b, 100, 20, 10000)
}
func BenchmarkEncode17x3x1M(b *testing.B) {
benchmarkEncode(b, 17, 3, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 16MB each.
func BenchmarkEncode10x4x16M(b *testing.B) {
benchmarkEncode(b, 10, 4, 16*1024*1024)
}
// Benchmark 5 data shards and 2 parity shards with 1MB each.
func BenchmarkEncode5x2x1M(b *testing.B) {
benchmarkEncode(b, 5, 2, 1024*1024)
}
// Benchmark 1 data shards and 2 parity shards with 1MB each.
func BenchmarkEncode10x2x1M(b *testing.B) {
benchmarkEncode(b, 10, 2, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 1MB each.
func BenchmarkEncode10x4x1M(b *testing.B) {
benchmarkEncode(b, 10, 4, 1024*1024)
}
// Benchmark 50 data shards and 20 parity shards with 1M each.
func BenchmarkEncode50x20x1M(b *testing.B) {
benchmarkEncode(b, 50, 20, 1024*1024)
}
// Benchmark 17 data shards and 3 parity shards with 16MB each.
func BenchmarkEncode17x3x16M(b *testing.B) {
benchmarkEncode(b, 17, 3, 16*1024*1024)
}
func BenchmarkEncode_8x4x8M(b *testing.B) { benchmarkEncode(b, 8, 4, 8*1024*1024) }
func BenchmarkEncode_12x4x12M(b *testing.B) { benchmarkEncode(b, 12, 4, 12*1024*1024) }
func BenchmarkEncode_16x4x16M(b *testing.B) { benchmarkEncode(b, 16, 4, 16*1024*1024) }
func BenchmarkEncode_16x4x32M(b *testing.B) { benchmarkEncode(b, 16, 4, 32*1024*1024) }
func BenchmarkEncode_16x4x64M(b *testing.B) { benchmarkEncode(b, 16, 4, 64*1024*1024) }
func BenchmarkEncode_8x5x8M(b *testing.B) { benchmarkEncode(b, 8, 5, 8*1024*1024) }
func BenchmarkEncode_8x6x8M(b *testing.B) { benchmarkEncode(b, 8, 6, 8*1024*1024) }
func BenchmarkEncode_8x7x8M(b *testing.B) { benchmarkEncode(b, 8, 7, 8*1024*1024) }
func BenchmarkEncode_8x9x8M(b *testing.B) { benchmarkEncode(b, 8, 9, 8*1024*1024) }
func BenchmarkEncode_8x10x8M(b *testing.B) { benchmarkEncode(b, 8, 10, 8*1024*1024) }
func BenchmarkEncode_8x11x8M(b *testing.B) { benchmarkEncode(b, 8, 11, 8*1024*1024) }
func BenchmarkEncode_8x8x05M(b *testing.B) { benchmarkEncode(b, 8, 8, 1*1024*1024/2) }
func BenchmarkEncode_8x8x1M(b *testing.B) { benchmarkEncode(b, 8, 8, 1*1024*1024) }
func BenchmarkEncode_8x8x8M(b *testing.B) { benchmarkEncode(b, 8, 8, 8*1024*1024) }
func BenchmarkEncode_8x8x32M(b *testing.B) { benchmarkEncode(b, 8, 8, 32*1024*1024) }
func BenchmarkEncode_24x8x24M(b *testing.B) { benchmarkEncode(b, 24, 8, 24*1024*1024) }
func BenchmarkEncode_24x8x48M(b *testing.B) { benchmarkEncode(b, 24, 8, 48*1024*1024) }
func benchmarkVerify(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards, testOptions(WithAutoGoroutines(shardSize))...)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * (dataShards + parityShards)))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_, err = r.Verify(shards)
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark 800 data slices with 200 parity slices
func BenchmarkVerify800x200(b *testing.B) {
for size := 64; size <= 1<<20; size *= 4 {
b.Run(fmt.Sprintf("%v", size), func(b *testing.B) {
benchmarkVerify(b, 800, 200, size)
})
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkVerify10x2x10000(b *testing.B) {
benchmarkVerify(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkVerify50x5x100000(b *testing.B) {
benchmarkVerify(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify10x2x1M(b *testing.B) {
benchmarkVerify(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify5x2x1M(b *testing.B) {
benchmarkVerify(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkVerify10x4x1M(b *testing.B) {
benchmarkVerify(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify50x20x1M(b *testing.B) {
benchmarkVerify(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkVerify10x4x16M(b *testing.B) {
benchmarkVerify(b, 10, 4, 16*1024*1024)
}
func corruptRandom(shards [][]byte, dataShards, parityShards int) {
shardsToCorrupt := rand.Intn(parityShards) + 1
for i := 0; i < shardsToCorrupt; i++ {
n := rand.Intn(dataShards + parityShards)
shards[n] = shards[n][:0]
}
}
func benchmarkReconstruct(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards, testOptions(WithAutoGoroutines(shardSize))...)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * (dataShards + parityShards)))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
corruptRandom(shards, dataShards, parityShards)
err = r.Reconstruct(shards)
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstruct10x2x10000(b *testing.B) {
benchmarkReconstruct(b, 10, 2, 10000)
}
// Benchmark 800 data slices with 200 parity slices
func BenchmarkReconstruct800x200(b *testing.B) {
for size := 64; size <= 1<<20; size *= 4 {
b.Run(fmt.Sprintf("%v", size), func(b *testing.B) {
benchmarkReconstruct(b, 800, 200, size)
})
}
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkReconstruct50x5x50000(b *testing.B) {
benchmarkReconstruct(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct10x2x1M(b *testing.B) {
benchmarkReconstruct(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct5x2x1M(b *testing.B) {
benchmarkReconstruct(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkReconstruct10x4x1M(b *testing.B) {
benchmarkReconstruct(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct50x20x1M(b *testing.B) {
benchmarkReconstruct(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkReconstruct10x4x16M(b *testing.B) {
benchmarkReconstruct(b, 10, 4, 16*1024*1024)
}
func corruptRandomData(shards [][]byte, dataShards, parityShards int) {
shardsToCorrupt := rand.Intn(parityShards) + 1
for i := 1; i <= shardsToCorrupt; i++ {
n := rand.Intn(dataShards)
shards[n] = shards[n][:0]
}
}
func benchmarkReconstructData(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards, testOptions(WithAutoGoroutines(shardSize))...)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * (dataShards + parityShards)))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
corruptRandomData(shards, dataShards, parityShards)
err = r.ReconstructData(shards)
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstructData10x2x10000(b *testing.B) {
benchmarkReconstructData(b, 10, 2, 10000)
}
// Benchmark 800 data slices with 200 parity slices
func BenchmarkReconstructData800x200(b *testing.B) {
for size := 64; size <= 1<<20; size *= 4 {
b.Run(fmt.Sprintf("%v", size), func(b *testing.B) {
benchmarkReconstructData(b, 800, 200, size)
})
}
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkReconstructData50x5x50000(b *testing.B) {
benchmarkReconstructData(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructData10x2x1M(b *testing.B) {
benchmarkReconstructData(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructData5x2x1M(b *testing.B) {
benchmarkReconstructData(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkReconstructData10x4x1M(b *testing.B) {
benchmarkReconstructData(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructData50x20x1M(b *testing.B) {
benchmarkReconstructData(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkReconstructData10x4x16M(b *testing.B) {
benchmarkReconstructData(b, 10, 4, 16*1024*1024)
}
func benchmarkReconstructP(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards, testOptions(WithMaxGoroutines(1))...)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * (dataShards + parityShards)))
b.ResetTimer()
b.ReportAllocs()
b.RunParallel(func(pb *testing.PB) {
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for pb.Next() {
corruptRandom(shards, dataShards, parityShards)
err = r.Reconstruct(shards)
if err != nil {
b.Fatal(err)
}
}
})
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstructP10x2x10000(b *testing.B) {
benchmarkReconstructP(b, 10, 2, 10000)
}
// Benchmark 10 data slices with 5 parity slices holding 20000 bytes each
func BenchmarkReconstructP10x5x20000(b *testing.B) {
benchmarkReconstructP(b, 10, 5, 20000)
}
func TestEncoderReconstruct(t *testing.T) {
testEncoderReconstruct(t)
for _, o := range testOpts() {
testEncoderReconstruct(t, o...)
}
}
func testEncoderReconstruct(t *testing.T, o ...Option) {
// Create some sample data
var data = make([]byte, 250000)
fillRandom(data)
// Create 5 data slices of 50000 elements each
enc, err := New(5, 3, testOptions(o...)...)
if err != nil {
t.Fatal(err)
}
shards, err := enc.Split(data)
if err != nil {
t.Fatal(err)
}
err = enc.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err := enc.Verify(shards)
if !ok || err != nil {
t.Fatal("not ok:", ok, "err:", err)
}
// Delete a shard
shards[0] = nil
// Should reconstruct
err = enc.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err = enc.Verify(shards)
if !ok || err != nil {
t.Fatal("not ok:", ok, "err:", err)
}
// Recover original bytes
buf := new(bytes.Buffer)
err = enc.Join(buf, shards, len(data))
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf.Bytes(), data) {
t.Fatal("recovered bytes do not match")
}
// Corrupt a shard
shards[0] = nil
shards[1][0], shards[1][500] = 75, 75
// Should reconstruct (but with corrupted data)
err = enc.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err = enc.Verify(shards)
if ok || err != nil {
t.Fatal("error or ok:", ok, "err:", err)
}
// Recovered data should not match original
buf.Reset()
err = enc.Join(buf, shards, len(data))
if err != nil {
t.Fatal(err)
}
if bytes.Equal(buf.Bytes(), data) {
t.Fatal("corrupted data matches original")
}
}
func TestSplitJoin(t *testing.T) {
var data = make([]byte, 250000)
rand.Seed(0)
fillRandom(data)
enc, _ := New(5, 3, testOptions()...)
shards, err := enc.Split(data)
if err != nil {
t.Fatal(err)
}
_, err = enc.Split([]byte{})
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
buf := new(bytes.Buffer)
err = enc.Join(buf, shards, 50)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf.Bytes(), data[:50]) {
t.Fatal("recovered data does match original")
}
err = enc.Join(buf, [][]byte{}, 0)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = enc.Join(buf, shards, len(data)+1)
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
shards[0] = nil
err = enc.Join(buf, shards, len(data))
if err != ErrReconstructRequired {
t.Errorf("expected %v, got %v", ErrReconstructRequired, err)
}
}
func TestCodeSomeShards(t *testing.T) {
var data = make([]byte, 250000)
fillRandom(data)
enc, _ := New(5, 3, testOptions()...)
r := enc.(*reedSolomon) // need to access private methods
shards, _ := enc.Split(data)
old := runtime.GOMAXPROCS(1)
r.codeSomeShards(r.parity, shards[:r.DataShards], shards[r.DataShards:r.DataShards+r.ParityShards], len(shards[0]))
// hopefully more than 1 CPU
runtime.GOMAXPROCS(runtime.NumCPU())
r.codeSomeShards(r.parity, shards[:r.DataShards], shards[r.DataShards:r.DataShards+r.ParityShards], len(shards[0]))
// reset MAXPROCS, otherwise testing complains
runtime.GOMAXPROCS(old)
}
func TestStandardMatrices(t *testing.T) {
if testing.Short() || runtime.GOMAXPROCS(0) < 4 {
// Runtime ~15s.
t.Skip("Skipping slow matrix check")
}
for i := 1; i < 256; i++ {
i := i
t.Run(fmt.Sprintf("x%d", i), func(t *testing.T) {
t.Parallel()
// i == n.o. datashards
var shards = make([][]byte, 255)
for p := range shards {
v := byte(i)
shards[p] = []byte{v}
}
rng := rand.New(rand.NewSource(0))
for j := 1; j < 256; j++ {
// j == n.o. parity shards
if i+j > 255 {
continue
}
sh := shards[:i+j]
r, err := New(i, j, testOptions(WithFastOneParityMatrix())...)
if err != nil {
// We are not supposed to write to t from goroutines.
t.Fatal("creating matrix size", i, j, ":", err)
}
err = r.Encode(sh)
if err != nil {
t.Fatal("encoding", i, j, ":", err)
}
for k := 0; k < j; k++ {
// Remove random shard.
r := int(rng.Int63n(int64(i + j)))
sh[r] = sh[r][:0]
}
err = r.Reconstruct(sh)
if err != nil {
t.Fatal("reconstructing", i, j, ":", err)
}
ok, err := r.Verify(sh)
if err != nil {
t.Fatal("verifying", i, j, ":", err)
}
if !ok {
t.Fatal(i, j, ok)
}
for k := range sh {
if k == i {
// Only check data shards
break
}
if sh[k][0] != byte(i) {
t.Fatal("does not match", i, j, k, sh[0], sh[k])
}
}
}
})
}
}
func TestCauchyMatrices(t *testing.T) {
if testing.Short() || runtime.GOMAXPROCS(0) < 4 {
// Runtime ~15s.
t.Skip("Skipping slow matrix check")
}
for i := 1; i < 256; i++ {
i := i
t.Run(fmt.Sprintf("x%d", i), func(t *testing.T) {
t.Parallel()
var shards = make([][]byte, 255)
for p := range shards {
v := byte(i)
shards[p] = []byte{v}
}
rng := rand.New(rand.NewSource(0))
for j := 1; j < 256; j++ {
// j == n.o. parity shards
if i+j > 255 {
continue
}
sh := shards[:i+j]
r, err := New(i, j, testOptions(WithCauchyMatrix(), WithFastOneParityMatrix())...)
if err != nil {
// We are not supposed to write to t from goroutines.
t.Fatal("creating matrix size", i, j, ":", err)
}
err = r.Encode(sh)
if err != nil {
t.Fatal("encoding", i, j, ":", err)
}
for k := 0; k < j; k++ {
// Remove random shard.
r := int(rng.Int63n(int64(i + j)))
sh[r] = sh[r][:0]
}
err = r.Reconstruct(sh)
if err != nil {
t.Fatal("reconstructing", i, j, ":", err)
}
ok, err := r.Verify(sh)
if err != nil {
t.Fatal("verifying", i, j, ":", err)
}
if !ok {
t.Fatal(i, j, ok)
}
for k := range sh {
if k == i {
// Only check data shards
break
}
if sh[k][0] != byte(i) {
t.Fatal("does not match", i, j, k, sh[0], sh[k])
}
}
}
})
}
}
func TestPar1Matrices(t *testing.T) {
if testing.Short() || runtime.GOMAXPROCS(0) < 4 {
// Runtime ~15s.
t.Skip("Skipping slow matrix check")
}
for i := 1; i < 256; i++ {
i := i
t.Run(fmt.Sprintf("x%d", i), func(t *testing.T) {
t.Parallel()
var shards = make([][]byte, 255)
for p := range shards {
v := byte(i)
shards[p] = []byte{v}
}
rng := rand.New(rand.NewSource(0))
for j := 1; j < 256; j++ {
// j == n.o. parity shards
if i+j > 255 {
continue
}
sh := shards[:i+j]
r, err := New(i, j, testOptions(WithPAR1Matrix())...)
if err != nil {
// We are not supposed to write to t from goroutines.
t.Fatal("creating matrix size", i, j, ":", err)
}
err = r.Encode(sh)
if err != nil {
t.Fatal("encoding", i, j, ":", err)
}
for k := 0; k < j; k++ {
// Remove random shard.
r := int(rng.Int63n(int64(i + j)))
sh[r] = sh[r][:0]
}
err = r.Reconstruct(sh)
if err != nil {
if err == errSingular {
t.Logf("Singular: %d (data), %d (parity)", i, j)
for p := range sh {
if len(sh[p]) == 0 {
shards[p] = []byte{byte(i)}
}
}
continue
}
t.Fatal("reconstructing", i, j, ":", err)
}
ok, err := r.Verify(sh)
if err != nil {
t.Fatal("verifying", i, j, ":", err)
}
if !ok {
t.Fatal(i, j, ok)
}
for k := range sh {
if k == i {
// Only check data shards
break
}
if sh[k][0] != byte(i) {
t.Fatal("does not match", i, j, k, sh[0], sh[k])
}
}
}
})
}
}
func TestNew(t *testing.T) {
tests := []struct {
data, parity int
err error
}{
{127, 127, nil},
{128, 128, nil},
{255, 1, nil},
{255, 0, nil},
{1, 0, nil},
{65536, 65536, ErrMaxShardNum},
{0, 1, ErrInvShardNum},
{1, -1, ErrInvShardNum},
{65636, 1, ErrMaxShardNum},
// overflow causes r.Shards to be negative
{256, int(^uint(0) >> 1), errInvalidRowSize},
}
for _, test := range tests {
_, err := New(test.data, test.parity, testOptions()...)
if err != test.err {
t.Errorf("New(%v, %v): expected %v, got %v", test.data, test.parity, test.err, err)
}
}
}
// Benchmark 10 data shards and 4 parity shards and 160MB data.
func BenchmarkSplit10x4x160M(b *testing.B) {
benchmarkSplit(b, 10, 4, 160*1024*1024)
}
// Benchmark 5 data shards and 2 parity shards with 5MB data.
func BenchmarkSplit5x2x5M(b *testing.B) {
benchmarkSplit(b, 5, 2, 5*1024*1024)
}
// Benchmark 1 data shards and 2 parity shards with 1MB data.
func BenchmarkSplit10x2x1M(b *testing.B) {
benchmarkSplit(b, 10, 2, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 10MB data.
func BenchmarkSplit10x4x10M(b *testing.B) {
benchmarkSplit(b, 10, 4, 10*1024*1024)
}
// Benchmark 50 data shards and 20 parity shards with 50MB data.
func BenchmarkSplit50x20x50M(b *testing.B) {
benchmarkSplit(b, 50, 20, 50*1024*1024)
}
// Benchmark 17 data shards and 3 parity shards with 272MB data.
func BenchmarkSplit17x3x272M(b *testing.B) {
benchmarkSplit(b, 17, 3, 272*1024*1024)
}
func benchmarkSplit(b *testing.B, shards, parity, dataSize int) {
r, err := New(shards, parity, testOptions(WithAutoGoroutines(dataSize))...)
if err != nil {
b.Fatal(err)
}
data := make([]byte, dataSize)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err = r.Split(data)
if err != nil {
b.Fatal(err)
}
}
}
func benchmarkParallel(b *testing.B, dataShards, parityShards, shardSize int) {
// Run max 1 goroutine per operation.
r, err := New(dataShards, parityShards, testOptions(WithMaxGoroutines(1))...)
if err != nil {
b.Fatal(err)
}
c := runtime.GOMAXPROCS(0)
// Note that concurrency also affects total data size and will make caches less effective.
if testing.Verbose() {
b.Log("Total data:", (c*dataShards*shardSize)>>20, "MiB", "parity:", (c*parityShards*shardSize)>>20, "MiB")
}
// Create independent shards
shardsCh := make(chan [][]byte, c)
for i := 0; i < c; i++ {
rand.Seed(int64(i))
shards := make([][]byte, dataShards+parityShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
shardsCh <- shards
}
b.SetBytes(int64(shardSize * (dataShards + parityShards)))
b.SetParallelism(c)
b.ReportAllocs()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
shards := <-shardsCh
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
shardsCh <- shards
}
})
}
func BenchmarkParallel_8x8x64K(b *testing.B) { benchmarkParallel(b, 8, 8, 64<<10) }
func BenchmarkParallel_8x8x05M(b *testing.B) { benchmarkParallel(b, 8, 8, 512<<10) }
func BenchmarkParallel_20x10x05M(b *testing.B) { benchmarkParallel(b, 20, 10, 512<<10) }
func BenchmarkParallel_8x8x1M(b *testing.B) { benchmarkParallel(b, 8, 8, 1<<20) }
func BenchmarkParallel_8x8x8M(b *testing.B) { benchmarkParallel(b, 8, 8, 8<<20) }
func BenchmarkParallel_8x8x32M(b *testing.B) { benchmarkParallel(b, 8, 8, 32<<20) }
func BenchmarkParallel_8x3x1M(b *testing.B) { benchmarkParallel(b, 8, 3, 1<<20) }
func BenchmarkParallel_8x4x1M(b *testing.B) { benchmarkParallel(b, 8, 4, 1<<20) }
func BenchmarkParallel_8x5x1M(b *testing.B) { benchmarkParallel(b, 8, 5, 1<<20) }