Add Hugo-based (https://gohugo.io) documentation
parent
6b69db73ac
commit
7dba1148e7
@ -0,0 +1,55 @@ |
||||
#!/usr/bin/nodejs
|
||||
|
||||
const fs = require('fs'); |
||||
const yaml = require('yaml'); |
||||
|
||||
const L = { |
||||
en: {}, |
||||
ru: { |
||||
Type: 'Тип', |
||||
Default: 'Значение по умолчанию', |
||||
Minimum: 'Минимальное значение', |
||||
}, |
||||
}; |
||||
const types = { |
||||
en: { |
||||
string: 'string', |
||||
bool: 'boolean', |
||||
int: 'integer', |
||||
sec: 'seconds', |
||||
ms: 'milliseconds', |
||||
us: 'microseconds', |
||||
}, |
||||
ru: { |
||||
string: 'строка', |
||||
bool: 'булево (да/нет)', |
||||
int: 'целое число', |
||||
sec: 'секунды', |
||||
ms: 'миллисекунды', |
||||
us: 'микросекунды', |
||||
}, |
||||
}; |
||||
const params_files = fs.readdirSync(__dirname+'/params') |
||||
.filter(f => f.substr(-4) == '.yml') |
||||
.map(f => f.substr(0, f.length-4)); |
||||
|
||||
for (const file of params_files) |
||||
{ |
||||
const cfg = yaml.parse(fs.readFileSync(__dirname+'/params/'+file+'.yml', { encoding: 'utf-8' })); |
||||
for (const lang in types) |
||||
{ |
||||
let out = '\n\n{{< toc >}}'; |
||||
for (const c of cfg) |
||||
{ |
||||
out += `\n\n## ${c.name}\n\n`; |
||||
out += `- ${L[lang]['Type'] || 'Type'}: ${c["type_"+lang] || types[lang][c.type] || c.type}\n`; |
||||
if (c.default !== undefined) |
||||
out += `- ${L[lang]['Default'] || 'Default'}: ${c.default}\n`; |
||||
if (c.min !== undefined) |
||||
out += `- ${L[lang]['Minimum'] || 'Minimum'}: ${c.min}\n`; |
||||
out += `\n`+(c["info_"+lang] || c["info"]).replace(/\s+$/, ''); |
||||
} |
||||
const head = fs.readFileSync(__dirname+'/params/head/'+file+'.'+lang+'.md', { encoding: 'utf-8' }); |
||||
fs.writeFileSync(__dirname+'/hugo/content/config/'+file+'.'+lang+'.md', head.replace(/\s+$/, '')+out+"\n"); |
||||
} |
||||
} |
@ -0,0 +1,6 @@ |
||||
--- |
||||
title: "{{ replace .Name "-" " " | title }}" |
||||
date: {{ .Date }} |
||||
draft: true |
||||
--- |
||||
|
@ -0,0 +1,35 @@ |
||||
baseURL: http://localhost |
||||
title: Vitastor |
||||
theme: hugo-geekdoc |
||||
#languageCode: en-us |
||||
|
||||
pluralizeListTitles: false |
||||
|
||||
# Geekdoc required configuration |
||||
pygmentsUseClasses: true |
||||
pygmentsCodeFences: true |
||||
disablePathToLower: true |
||||
|
||||
# Required if you want to render robots.txt template |
||||
enableRobotsTXT: true |
||||
|
||||
defaultContentLanguage: en |
||||
languages: |
||||
en: |
||||
weight: 1 |
||||
languageName: English |
||||
ru: |
||||
weight: 1 |
||||
languageName: Русский |
||||
|
||||
markup: |
||||
goldmark: |
||||
renderer: |
||||
# Needed for mermaid shortcode |
||||
unsafe: true |
||||
tableOfContents: |
||||
startLevel: 1 |
||||
endLevel: 9 |
||||
|
||||
taxonomies: |
||||
tag: tags |
@ -0,0 +1,6 @@ |
||||
## The Idea |
||||
|
||||
Vitastor is a small, simple and fast clustered block storage (storage for VM drives), |
||||
architecturally similar to Ceph which means strong consistency, primary-replication, |
||||
symmetric clustering and automatic data distribution over any number of drives |
||||
of any size with configurable redundancy (replication or erasure codes/XOR). |
@ -0,0 +1,61 @@ |
||||
--- |
||||
title: Parameter Reference |
||||
weight: 1 |
||||
--- |
||||
|
||||
Vitastor configuration consists of: |
||||
- Configuration parameters (key-value), described here |
||||
- [Pool configuration]({{< ref "config/pool" >}}) |
||||
- OSD placement tree configuration |
||||
- Inode configuration i.e. image metadata like name, size and parent reference |
||||
|
||||
Configuration parameters can be set in 3 places: |
||||
- Configuration file (`/etc/vitastor/vitastor.conf` or other path) |
||||
- etcd key `/vitastor/config/global`. Most variables can be set there, but etcd |
||||
connection parameters should obviously be set in the configuration file. |
||||
- Command line of Vitastor components: OSD, mon, fio and QEMU options, |
||||
OpenStack/Proxmox/etc configuration. The latter doesn't allow to set all |
||||
variables directly, but it allows to override the configuration file and |
||||
set everything you need inside it. |
||||
|
||||
In the future, additional configuration methods may be added: |
||||
- OSD superblock which will, by design, contain parameters related to the disk |
||||
layout and to one specific OSD. |
||||
- OSD-specific keys in etcd like `/vitastor/config/osd/<number>`. |
||||
|
||||
## Common Parameters |
||||
|
||||
These are the most common parameters which apply to all components of Vitastor. |
||||
|
||||
[See the list]({{< ref "common" >}}) |
||||
|
||||
## Cluster-Wide Disk Layout Parameters |
||||
|
||||
These parameters apply to clients and OSDs and can't be changed after OSD |
||||
initialization. |
||||
|
||||
[See the list]({{< ref "layout-cluster" >}}) |
||||
|
||||
## OSD Disk Layout Parameters |
||||
|
||||
These parameters apply to OSDs and can't be changed after OSD initialization. |
||||
|
||||
[See the list]({{< ref "layout-osd" >}}) |
||||
|
||||
## Network Protocol Parameters |
||||
|
||||
These parameters apply to clients and OSDs and can be changed with a restart. |
||||
|
||||
[See the list]({{< ref "network" >}}) |
||||
|
||||
## Runtime OSD Parameters |
||||
|
||||
These parameters apply to OSDs and can be changed with an OSD restart. |
||||
|
||||
[See the list]({{< ref "osd" >}}) |
||||
|
||||
## Monitor Parameters |
||||
|
||||
These parameters only apply to Monitors. |
||||
|
||||
[See the list]({{< ref "monitor" >}}) |
@ -0,0 +1,63 @@ |
||||
--- |
||||
title: Перечень настроек |
||||
weight: 1 |
||||
--- |
||||
|
||||
Конфигурация Vitastor состоит из: |
||||
- Параметров (ключ-значение), описанных на данной странице |
||||
- Настроек пулов |
||||
- Настроек дерева OSD |
||||
- Настроек инодов, т.е. метаданных образов, таких, как имя, размер и ссылки на |
||||
родительский образ |
||||
|
||||
Параметры конфигурации могут задаваться в 3 местах: |
||||
- Файле конфигурации (`/etc/vitastor/vitastor.conf` или по другому пути) |
||||
- Ключе в etcd `/vitastor/config/global`. Большая часть параметров может |
||||
задаваться там, кроме, естественно, самих параметров соединения с etcd, |
||||
которые должны задаваться в файле конфигурации |
||||
- В командной строке компонентов Vitastor: OSD, монитора, опциях fio и QEMU, |
||||
настроек OpenStack, Proxmox и т.п. Последние, как правило, не включают полный |
||||
набор параметров напрямую, но разрешают определить путь к файлу конфигурации |
||||
и задать любые параметры в нём. |
||||
|
||||
В будущем также могут быть добавлены другие способы конфигурации: |
||||
- Суперблок OSD, в котором будут храниться параметры OSD, связанные с дисковым |
||||
форматом и с этим конкретным OSD. |
||||
- OSD-специфичные ключи в etcd типа `/vitastor/config/osd/<номер>`. |
||||
|
||||
## Общие параметры |
||||
|
||||
Это наиболее общие параметры, используемые всеми компонентами Vitastor. |
||||
|
||||
[Посмотреть список]({{< ref "common" >}}) |
||||
|
||||
## Дисковые параметры уровня кластера |
||||
|
||||
Эти параметры используются клиентами и OSD и не могут быть изменены после |
||||
инициализации OSD. |
||||
|
||||
[Посмотреть список]({{< ref "layout-cluster" >}}) |
||||
|
||||
## Дисковые параметры OSD |
||||
|
||||
Эти параметры используются OSD и не могут быть изменены после инициализации OSD. |
||||
|
||||
[Посмотреть список]({{< ref "layout-osd" >}}) |
||||
|
||||
## Параметры сетевого протокола |
||||
|
||||
Эти параметры используются клиентами и OSD и могут быть изменены с перезапуском. |
||||
|
||||
[Посмотреть список]({{< ref "network" >}}) |
||||
|
||||
## Изменяемые параметры OSD |
||||
|
||||
Эти параметры используются OSD и могут быть изменены с перезапуском. |
||||
|
||||
[Посмотреть список]({{< ref "osd" >}}) |
||||
|
||||
## Параметры мониторов |
||||
|
||||
Данные параметры используются только мониторами Vitastor. |
||||
|
||||
[Посмотреть список]({{< ref "monitor" >}}) |
@ -0,0 +1,178 @@ |
||||
--- |
||||
title: Pool configuration |
||||
weight: 100 |
||||
--- |
||||
|
||||
Pool configuration is set in etcd key `/vitastor/config/pools` in the following |
||||
JSON format: |
||||
|
||||
``` |
||||
{ |
||||
"<Numeric ID>": { |
||||
"name": "<name>", |
||||
...other parameters... |
||||
} |
||||
} |
||||
``` |
||||
|
||||
{{< toc >}} |
||||
|
||||
# Parameters |
||||
|
||||
## name |
||||
|
||||
- Type: string |
||||
- Required |
||||
|
||||
Pool name. |
||||
|
||||
## scheme |
||||
|
||||
- Type: string |
||||
- Required |
||||
- One of: "replicated", "xor" or "jerasure" |
||||
|
||||
Redundancy scheme used for data in this pool. |
||||
|
||||
## pg_size |
||||
|
||||
- Type: integer |
||||
- Required |
||||
|
||||
Total number of disks for PGs of this pool - i.e., number of replicas for |
||||
replicated pools and number of data plus parity disks for EC/XOR pools. |
||||
|
||||
## parity_chunks |
||||
|
||||
- Type: integer |
||||
|
||||
Number of parity chunks for EC/XOR pools. For such pools, data will be lost |
||||
if you lose more than parity_chunks disks at once, so this parameter can be |
||||
equally described as FTT (number of failures to tolerate). |
||||
|
||||
Required for EC/XOR pools, ignored for replicated pools. |
||||
|
||||
## pg_minsize |
||||
|
||||
- Type: integer |
||||
- Required |
||||
|
||||
Number of available live disks for PGs of this pool to remain active. |
||||
That is, if it becomes impossible to place PG data on at least (pg_minsize) |
||||
OSDs, PG is deactivated for both read and write. So you know that a fresh |
||||
write always goes to at least (pg_minsize) OSDs (disks). |
||||
|
||||
FIXME: pg_minsize behaviour may be changed in the future to only make PGs |
||||
read-only instead of deactivating them. |
||||
|
||||
## pg_count |
||||
|
||||
- Type: integer |
||||
- Required |
||||
|
||||
Number of PGs for this pool. The value should be big enough for the monitor / |
||||
LP solver to be able to optimize data placement. |
||||
|
||||
"Enough" is usually around 64-128 PGs per OSD, i.e. you set pg_count for pool |
||||
to (total OSD count * 100 / pg_size). You can round it to the closest power of 2, |
||||
because it makes it easier to reduce or increase PG count later by dividing or |
||||
multiplying it by 2. |
||||
|
||||
In Vitastor, PGs are ephemeral, so you can change pool PG count anytime just |
||||
by overwriting pool configuration in etcd. Amount of the data affected by |
||||
rebalance will be smaller if the new PG count is a multiple of the old PG count |
||||
or vice versa. |
||||
|
||||
## failure_domain |
||||
|
||||
- Type: string |
||||
- Default: host |
||||
|
||||
Failure domain specification. Must be "host" or "osd" or refer to one of the |
||||
placement tree levels, defined in [placement_levels]({{< ref "config/monitor#placement_levels" >}}). |
||||
|
||||
Two replicas, or two parts in case of EC/XOR, of the same block of data are |
||||
never put on OSDs in the same failure domain (for example, on the same host). |
||||
So failure domain specifies the unit which failure you are protecting yourself |
||||
from. |
||||
|
||||
## max_osd_combinations |
||||
|
||||
- Type: integer |
||||
- Default: 10000 |
||||
|
||||
Vitastor data placement algorithm is based on the LP solver and OSD combinations |
||||
which are fed to it are generated ramdonly. This parameter specifies the maximum |
||||
number of combinations to generate when optimising PG placement. |
||||
|
||||
This parameter usually doesn't require to be changed. |
||||
|
||||
## pg_stripe_size |
||||
|
||||
- Type: integer |
||||
- Default: 0 |
||||
|
||||
Specifies the stripe size for this pool according to which images are split into |
||||
different PGs. Stripe size can't be smaller than [block_size]({{< ref "config/layout-cluster#block_size" >}}) |
||||
multiplied by (pg_size - parity_chunks) for EC/XOR pools, or 1 for replicated pools, |
||||
and the same value is used by default. |
||||
|
||||
This means first `pg_stripe_size = (block_size * (pg_size-parity_chunks))` bytes |
||||
of an image go to one PG, next `pg_stripe_size` bytes go to another PG and so on. |
||||
|
||||
Usually doesn't require to be changed separately from the block size. |
||||
|
||||
## root_node |
||||
|
||||
- Type: string |
||||
|
||||
Specifies the root node of the OSD tree to restrict this pool OSDs to. |
||||
Referenced root node must exist in /vitastor/config/node_placement. |
||||
|
||||
## osd_tags |
||||
|
||||
- Type: string or array of strings |
||||
|
||||
Specifies OSD tags to restrict this pool to. If multiple tags are specified, |
||||
only OSDs having all of these tags will be used for this pool. |
||||
|
||||
## primary_affinity_tags |
||||
|
||||
- Type: string or array of strings |
||||
|
||||
Specifies OSD tags to prefer putting primary OSDs in this pool to. |
||||
Note that for EC/XOR pools Vitastor always prefers to put primary OSD on one |
||||
of the OSDs containing a data chunk for a PG. |
||||
|
||||
# Examples |
||||
|
||||
## Replicated pool |
||||
|
||||
``` |
||||
{ |
||||
"1": { |
||||
"name":"testpool", |
||||
"scheme":"replicated", |
||||
"pg_size":2, |
||||
"pg_minsize":1, |
||||
"pg_count":256, |
||||
"failure_domain":"host" |
||||
} |
||||
} |
||||
``` |
||||
|
||||
## Erasure-coded pool |
||||
|
||||
``` |
||||
{ |
||||
"2": { |
||||
"name":"ecpool", |
||||
"scheme":"jerasure", |
||||
"pg_size":3, |
||||
"parity_chunks":1, |
||||
"pg_minsize":2, |
||||
"pg_count":256, |
||||
"failure_domain":"host" |
||||
} |
||||
} |
||||
``` |
@ -0,0 +1,41 @@ |
||||
--- |
||||
title: Packages |
||||
weight: 2 |
||||
--- |
||||
|
||||
## Debian |
||||
|
||||
- Trust Vitastor package signing key: |
||||
`wget -q -O - https://vitastor.io/debian/pubkey | sudo apt-key add -` |
||||
- Add Vitastor package repository to your /etc/apt/sources.list: |
||||
- Debian 11 (Bullseye/Sid): `deb https://vitastor.io/debian bullseye main` |
||||
- Debian 10 (Buster): `deb https://vitastor.io/debian buster main` |
||||
- For Debian 10 (Buster) also enable backports repository: |
||||
`deb http://deb.debian.org/debian buster-backports main` |
||||
- Install packages: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu` |
||||
|
||||
## CentOS |
||||
|
||||
- Add Vitastor package repository: |
||||
- CentOS 7: `yum install https://vitastor.io/rpms/centos/7/vitastor-release-1.0-1.el7.noarch.rpm` |
||||
- CentOS 8: `dnf install https://vitastor.io/rpms/centos/8/vitastor-release-1.0-1.el8.noarch.rpm` |
||||
- Enable EPEL: `yum/dnf install epel-release` |
||||
- Enable additional CentOS repositories: |
||||
- CentOS 7: `yum install centos-release-scl` |
||||
- CentOS 8: `dnf install centos-release-advanced-virtualization` |
||||
- Enable elrepo-kernel: |
||||
- CentOS 7: `yum install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm` |
||||
- CentOS 8: `dnf install https://www.elrepo.org/elrepo-release-8.el8.elrepo.noarch.rpm` |
||||
- Install packages: `yum/dnf install vitastor lpsolve etcd kernel-ml qemu-kvm` |
||||
|
||||
## Installation requirements |
||||
|
||||
- Linux kernel 5.4 or newer, for io_uring support. 5.8 or later is highly |
||||
recommended because io_uring is a relatively new technology and there is |
||||
at least one bug which reproduces with io_uring and HP SmartArray |
||||
controllers in 5.4 |
||||
- liburing 0.4 or newer |
||||
- lp_solve |
||||
- etcd 3.4.15 or newer. Earlier versions won't work because of various bugs, |
||||
for example [#12402](https://github.com/etcd-io/etcd/pull/12402). |
||||
- node.js 10 or newer |
@ -0,0 +1,72 @@ |
||||
--- |
||||
title: Quick Start |
||||
weight: 1 |
||||
--- |
||||
|
||||
Prepare: |
||||
|
||||
- Get some SATA or NVMe SSDs with capacitors (server-grade drives). You can use desktop SSDs |
||||
with lazy fsync, but prepare for inferior single-thread latency. Read more about capacitors |
||||
[here]({{< ref "config/layout-cluster#immediate_commit" >}}). |
||||
- Get a fast network (at least 10 Gbit/s). Something like Mellanox ConnectX-4 with RoCEv2 is ideal. |
||||
- Disable CPU powersaving: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`. |
||||
- [Install Vitastor packages]({{< ref "installation/packages" >}}). |
||||
|
||||
## Configure monitors |
||||
|
||||
On the monitor hosts: |
||||
- Edit variables at the top of `/usr/lib/vitastor/mon/make-units.sh` to desired values. |
||||
- Create systemd units for the monitor and etcd: `/usr/lib/vitastor/mon/make-units.sh` |
||||
- Start etcd and monitors: `systemctl start etcd vitastor-mon` |
||||
|
||||
## Configure OSDs |
||||
|
||||
- Put etcd_address and osd_network into `/etc/vitastor/vitastor.conf`. Example: |
||||
``` |
||||
{ |
||||
"etcd_address": ["10.200.1.10:2379","10.200.1.11:2379","10.200.1.12:2379"], |
||||
"osd_network": "10.200.1.0/24" |
||||
} |
||||
``` |
||||
- Initialize OSDs: |
||||
- Simplest, SSD-only: `/usr/lib/vitastor/mon/make-osd.sh /dev/disk/by-partuuid/XXX [/dev/disk/by-partuuid/YYY ...]` |
||||
- Hybrid, HDD+SSD: `/usr/lib/vitastor/mon/make-osd-hybrid.js /dev/sda /dev/sdb ...` — pass all your |
||||
devices (HDD and SSD) to this script — it will partition disks and initialize journals on its own. |
||||
This script skips HDDs which are already partitioned so if you want to use non-empty disks for |
||||
Vitastor you should first wipe them with `wipefs -a`. SSDs with GPT partition table are not skipped, |
||||
but some free unpartitioned space must be available because the script creates new partitions for journals. |
||||
- You can change OSD configuration in units or in `vitastor.conf`. |
||||
Check [Configuration Reference]({{< ref "config" >}}) for parameter descriptions. |
||||
- `systemctl start vitastor.target` everywhere. |
||||
- If all your drives have capacitors, create global configuration in etcd: \ |
||||
`etcdctl --endpoints=... put /vitastor/config/global '{"immediate_commit":"all"}'` |
||||
|
||||
## Create a pool |
||||
|
||||
Create pool configuration in etcd: |
||||
|
||||
``` |
||||
etcdctl --endpoints=... put /vitastor/config/pools '{"1":{"name":"testpool", |
||||
"scheme":"replicated","pg_size":2,"pg_minsize":1,"pg_count":256,"failure_domain":"host"}}' |
||||
``` |
||||
|
||||
For jerasure pools the configuration should look like the following: |
||||
|
||||
``` |
||||
etcdctl --endpoints=... put /vitastor/config/pools '{"2":{"name":"ecpool", |
||||
"scheme":"jerasure","pg_size":4,"parity_chunks":2,"pg_minsize":2,"pg_count":256,"failure_domain":"host"}` |
||||
``` |
||||
|
||||
After you do this, one of the monitors will configure PGs and OSDs will start them. |
||||
|
||||
You can check PG states with `etcdctl --endpoints=... get --prefix /vitastor/pg/state`. All PGs should become 'active'. |
||||
|
||||
## Create an image |
||||
|
||||
Use vitastor-cli ([read CLI documentation here]({{< ref "usage/cli" >}})): |
||||
|
||||
``` |
||||
vitastor-cli create -s 10G testimg |
||||
``` |
||||
|
||||
After that, you can run benchmarks or start QEMU manually with this image. |
@ -0,0 +1,54 @@ |
||||
--- |
||||
title: Building from Source |
||||
weight: 3 |
||||
--- |
||||
|
||||
## Requirements |
||||
|
||||
- gcc and g++ 8 or newer, clang 10 or newer, or other compiler with C++11 plus |
||||
designated initializers support from C++20 |
||||
- CMake |
||||
- liburing, jerasure headers |
||||
|
||||
## Basic instructions |
||||
|
||||
Download source, for example using git: `git clone --recurse-submodules https://yourcmc.ru/git/vitalif/vitastor/` |
||||
|
||||
Get `fio` source and symlink it into `<vitastor>/fio`. If you don't want to build fio engine, |
||||
you can disable it by passing `-DWITH_FIO=no` to cmake. |
||||
|
||||
Build and install Vitastor: |
||||
|
||||
``` |
||||
cd vitastor |
||||
mkdir build |
||||
cd build |
||||
cmake .. && make -j8 install |
||||
``` |
||||
|
||||
## QEMU Driver |
||||
|
||||
It's recommended to build the QEMU driver (qemu_driver.c) in-tree, as a part of |
||||
QEMU build process. To do that: |
||||
- Install vitastor client library headers (from source or from vitastor-client-dev package) |
||||
- Take a corresponding patch from `patches/qemu-*-vitastor.patch` and apply it to QEMU source |
||||
- Copy `src/qemu_driver.c` to QEMU source directory as `block/block-vitastor.c` |
||||
- Build QEMU as usual |
||||
|
||||
But it is also possible to build it out-of-tree. To do that: |
||||
- Get QEMU source, begin to build it, stop the build and copy headers: |
||||
- `<qemu>/include` → `<vitastor>/qemu/include` |
||||
- Debian: |
||||
* Use qemu packages from the main repository |
||||
* `<qemu>/b/qemu/config-host.h` → `<vitastor>/qemu/b/qemu/config-host.h` |
||||
* `<qemu>/b/qemu/qapi` → `<vitastor>/qemu/b/qemu/qapi` |
||||
- CentOS 8: |
||||
* Use qemu packages from the Advanced-Virtualization repository. To enable it, run |
||||
`yum install centos-release-advanced-virtualization.noarch` and then `yum install qemu` |
||||
* `<qemu>/config-host.h` → `<vitastor>/qemu/b/qemu/config-host.h` |
||||
* For QEMU 3.0+: `<qemu>/qapi` → `<vitastor>/qemu/b/qemu/qapi` |
||||
* For QEMU 2.0+: `<qemu>/qapi-types.h` → `<vitastor>/qemu/b/qemu/qapi-types.h` |
||||
- `config-host.h` and `qapi` are required because they contain generated headers |
||||
- Configure Vitastor with `WITH_QEMU=yes` and, if you're on RHEL, also with `QEMU_PLUGINDIR=qemu-kvm`: |
||||
`cmake .. -DWITH_QEMU=yes`. |
||||
- After that, Vitastor will build `block-vitastor.so` during its build process. |
@ -0,0 +1,4 @@ |
||||
--- |
||||
title: Introduction |
||||
weight: -1 |
||||
--- |
@ -0,0 +1,73 @@ |
||||
--- |
||||
title: Architecture |
||||
weight: 3 |
||||
--- |
||||
|
||||
For people familiar with Ceph, Vitastor is quite similar: |
||||
|
||||
- Vitastor also has Pools, PGs, OSDs, Monitors, Failure Domains, Placement Tree: |
||||
- OSD (Object Storage Daemon) is a process that stores data and serves read/write requests. |
||||
- PG (Placement Group) is a container for data that (normally) shares the same replicas. |
||||
- Pool is a container for data that has the same redundancy scheme and placement rules. |
||||
- Monitor is a separate daemon that watches cluster state and controls data distribution. |
||||
- Failure Domain is a group of OSDs that you allow to fail. It's "host" by default. |
||||
- Placement Tree groups OSDs in a hierarchy to later split them into Failure Domains. |
||||
- Vitastor also distributes every image data across the whole cluster. |
||||
- Vitastor is also transactional (every write to the cluster is atomic). |
||||
- OSDs also have journal and metadata and they can also be put on separate drives. |
||||
- Just like in Ceph, client library attempts to recover from any cluster failure so |
||||
you can basically reboot the whole cluster and only pause, but not crash, your clients |
||||
(please report a bug if the client crashes in that case). |
||||
|
||||
However, there are also differences: |
||||
|
||||
- Vitastor's main focus is on SSDs. Hybrid SSD+HDD setups are also possible. |
||||
- Vitastor OSD is (and will always be) single-threaded. If you want to dedicate more than 1 core |
||||
per drive you should run multiple OSDs each on a different partition of the drive. |
||||
Vitastor isn't CPU-hungry though (as opposed to Ceph), so 1 core is sufficient in a lot of cases. |
||||
- Metadata and journal are always kept in memory. Metadata size depends linearly on drive capacity |
||||
and data store block size which is 128 KB by default. With 128 KB blocks metadata should occupy |
||||
around 512 MB per 1 TB (which is still less than Ceph wants). Journal doesn't have to be big, |
||||
the example test below was conducted with only 16 MB journal. A big journal is probably even |
||||
harmful as dirty write metadata also take some memory. |
||||
- Vitastor storage layer doesn't have internal copy-on-write or redirect-write. I know that maybe |
||||
it's possible to create a good copy-on-write storage, but it's much harder and makes performance |
||||
less deterministic, so CoW isn't used in Vitastor. |
||||
- The basic layer of Vitastor is block storage with fixed-size blocks, not object storage with |
||||
rich semantics like in Ceph (RADOS). |
||||
- There's a "lazy fsync" mode which allows to batch writes before flushing them to the disk. |
||||
This allows to use Vitastor with desktop SSDs, but still lowers performance due to additional |
||||
network roundtrips, so use server SSDs with capacitor-based power loss protection |
||||
("Advanced Power Loss Protection") for best performance. |
||||
- PGs are ephemeral. This means that they aren't stored on data disks and only exist in memory |
||||
while OSDs are running. |
||||
- Recovery process is per-object (per-block), not per-PG. Also there are no PGLOGs. |
||||
- Monitors don't store data. Cluster configuration and state is stored in etcd in simple human-readable |
||||
JSON structures. Monitors only watch cluster state and handle data movement. |
||||
Thus Vitastor's Monitor isn't a critical component of the system and is more similar to Ceph's Manager. |
||||
Vitastor's Monitor is implemented in node.js. |
||||
- PG distribution isn't based on consistent hashes. All PG mappings are stored in etcd. |
||||
Rebalancing PGs between OSDs is done by mathematical optimization - data distribution problem |
||||
is reduced to a linear programming problem and solved by lp_solve. This allows for almost |
||||
perfect (96-99% uniformity compared to Ceph's 80-90%) data distribution in most cases, ability |
||||
to map PGs by hand without breaking rebalancing logic, reduced OSD peer-to-peer communication |
||||
(on average, OSDs have fewer peers) and less data movement. It also probably has a drawback - |
||||
this method may fail in very large clusters, but up to several hundreds of OSDs it's perfectly fine. |
||||
It's also easy to add consistent hashes in the future if something proves their necessity. |
||||
- There's no separate CRUSH layer. You select pool redundancy scheme, placement root, failure domain |
||||
and so on directly in pool configuration. |
||||
- Images are global i.e. you can't create multiple images with the same name in different pools. |
||||
|
||||
## Implementation Principles |
||||
|
||||
- I like architecturally simple solutions. Vitastor is and will always be designed |
||||
exactly like that. |
||||
- I also like reinventing the wheel to some extent, like writing my own HTTP client |
||||
for etcd interaction instead of using prebuilt libraries, because in this case |
||||
I'm confident about what my code does and what it doesn't do. |
||||
- I don't care about C++ "best practices" like RAII or proper inheritance or usage of |
||||
smart pointers or whatever and I don't intend to change my mind, so if you're here |
||||
looking for ideal reference C++ code, this probably isn't the right place. |
||||
- I like node.js better than any other dynamically-typed language interpreter |
||||
because it's faster than any other interpreter in the world, has neutral C-like |
||||
syntax and built-in event loop. That's why Monitor is implemented in node.js. |
@ -0,0 +1,34 @@ |
||||
--- |
||||
title: Author and License |
||||
weight: 3 |
||||
--- |
||||
|
||||
Copyright (c) Vitaliy Filippov (vitalif [at] yourcmc.ru), 2019+ |
||||
|
||||
Join Vitastor Telegram Chat: https://t.me/vitastor |
||||
|
||||
All server-side code (OSD, Monitor and so on) is licensed under the terms of |
||||
Vitastor Network Public License 1.1 (VNPL 1.1), a copyleft license based on |
||||
GNU GPLv3.0 with the additional "Network Interaction" clause which requires |
||||
opensourcing all programs directly or indirectly interacting with Vitastor |
||||
through a computer network and expressly designed to be used in conjunction |
||||
with it ("Proxy Programs"). Proxy Programs may be made public not only under |
||||
the terms of the same license, but also under the terms of any GPL-Compatible |
||||
Free Software License, as listed by the Free Software Foundation. |
||||
This is a stricter copyleft license than the Affero GPL. |
||||
|
||||
Please note that VNPL doesn't require you to open the code of proprietary |
||||
software running inside a VM if it's not specially designed to be used with |
||||
Vitastor. |
||||
|
||||
Basically, you can't use the software in a proprietary environment to provide |
||||
its functionality to users without opensourcing all intermediary components |
||||
standing between the user and Vitastor or purchasing a commercial license |
||||
from the author 😀. |
||||
|
||||
Client libraries (cluster_client and so on) are dual-licensed under the same |
||||
VNPL 1.1 and also GNU GPL 2.0 or later to allow for compatibility with GPLed |
||||
software like QEMU and fio. |
||||
|
||||
You can find the full text of VNPL-1.1 in the file [VNPL-1.1.txt](VNPL-1.1.txt). |
||||
GPL 2.0 is also included in this repository as [GPL-2.0.txt](GPL-2.0.txt). |
@ -0,0 +1,60 @@ |
||||
--- |
||||
title: Features |
||||
weight: 1 |
||||
--- |
||||
|
||||
Vitastor is currently a pre-release and it still misses some important features. |
||||
However, the following is implemented: |
||||
|
||||
- Basic part: highly-available block storage with symmetric clustering and no SPOF |
||||
- Performance ;-D |
||||
- Multiple redundancy schemes: Replication, XOR n+1, Reed-Solomon erasure codes |
||||
based on jerasure library with any number of data and parity drives in a group |
||||
- Configuration via simple JSON data structures in etcd (parameters, pools and images) |
||||
- Automatic data distribution over OSDs, with support for: |
||||
- Mathematical optimization for better uniformity and less data movement |
||||
- Multiple pools |
||||
- Placement tree, OSD selection by tags (device classes) and placement root |
||||
- Configurable failure domains |
||||
- Recovery of degraded blocks |
||||
- Rebalancing (data movement between OSDs) |
||||
- Lazy fsync support |
||||
- Per-OSD and per-image I/O and space usage statistics in etcd |
||||
- Snapshots and copy-on-write image clones |
||||
- Write throttling to smooth random write workloads in SSD+HDD configurations |
||||
- RDMA/RoCEv2 support via libibverbs |
||||
|
||||
CLI (vitastor-cli): |
||||
- Pool listing and space stats (df) |
||||
- Image listing, space and I/O stats (ls) |
||||
- Image and snapshot creation (create, modify) |
||||
- Image removal and snapshot merge (rm, flatten, merge, rm-data) |
||||
|
||||
Plugins and packaging: |
||||
- Debian and CentOS packages |
||||
- Generic user-space client library |
||||
- Native QEMU driver |
||||
- Loadable fio engine for benchmarks |
||||
- NBD proxy for kernel mounts |
||||
- CSI plugin for Kubernetes |
||||
- OpenStack support: Cinder driver, Nova and libvirt patches |
||||
- Proxmox storage plugin and packages |
||||
|
||||
## Roadmap |
||||
|
||||
The following features are planned for the future: |
||||
|
||||
- Better OSD creation and auto-start tools |
||||
- Other administrative tools |
||||
- Web GUI |
||||
- OpenNebula plugin |
||||
- iSCSI proxy |
||||
- Simplified NFS proxy |
||||
- Multi-threaded client |
||||
- Faster failover |
||||
- Scrubbing without checksums (verification of replicas) |
||||
- Checksums |
||||
- Tiered storage (SSD caching) |
||||
- NVDIMM support |
||||
- Compression (possibly) |
||||
- Read caching using system page cache (possibly) |
@ -0,0 +1,93 @@ |
||||
--- |
||||
title: Example Comparison with Ceph |
||||
weight: 4 |
||||
--- |
||||
|
||||
Hardware configuration: 4 nodes, each with: |
||||
- 6x SATA SSD Intel D3-S4510 3.84 TB |
||||
- 2x Xeon Gold 6242 (16 cores @ 2.8 GHz) |
||||
- 384 GB RAM |
||||
- 1x 25 GbE network interface (Mellanox ConnectX-4 LX), connected to a Juniper QFX5200 switch |
||||
|
||||
CPU powersaving was disabled. Both Vitastor and Ceph were configured with 2 OSDs per 1 SSD. |
||||
|
||||
All of the results below apply to 4 KB blocks and random access (unless indicated otherwise). |
||||
|
||||
T8Q64 tests were conducted over 8 400GB RBD images from all hosts (every host was running 2 instances of fio). |
||||
This is because Ceph has performance penalties related to running multiple clients over a single RBD image. |
||||
|
||||
cephx_sign_messages was set to false during tests, RocksDB and Bluestore settings were left at defaults. |
||||
|
||||
T8Q64 read test was conducted over 1 larger inode (3.2T) from all hosts (every host was running 2 instances of fio). |
||||
Vitastor has no performance penalties related to running multiple clients over a single inode. |
||||
If conducted from one node with all primary OSDs moved to other nodes the result was slightly lower (689000 iops), |
||||
this is because all operations resulted in network roundtrips between the client and the primary OSD. |
||||
When fio was colocated with OSDs (like in Ceph benchmarks above), 1/4 of the read workload actually |
||||
used the loopback network. |
||||
|
||||
Vitastor was configured with: `--disable_data_fsync true --immediate_commit all --flusher_count 8 |
||||
--disk_alignment 4096 --journal_block_size 4096 --meta_block_size 4096 |
||||
--journal_no_same_sector_overwrites true --journal_sector_buffer_count 1024 |
||||
--journal_size 16777216`. |
||||
|
||||
## Raw drive performance |
||||
|
||||
- T1Q1 write ~27000 iops (~0.037ms latency) |
||||
- T1Q1 read ~9800 iops (~0.101ms latency) |
||||
- T1Q32 write ~60000 iops |
||||
- T1Q32 read ~81700 iops |
||||
|
||||
## 2 replicas |
||||
|
||||
### Ceph 15.2.4 (Bluestore) |
||||
|
||||
- T1Q1 write ~1000 iops (~1ms latency) |
||||
- T1Q1 read ~1750 iops (~0.57ms latency) |
||||
- T8Q64 write ~100000 iops, total CPU usage by OSDs about 40 virtual cores on each node |
||||
- T8Q64 read ~480000 iops, total CPU usage by OSDs about 40 virtual cores on each node |
||||
|
||||
In fact, not that bad for Ceph. These servers are an example of well-balanced Ceph nodes. |
||||
However, CPU usage and I/O latency were through the roof, as usual. |
||||
|
||||
### Vitastor 0.4.0 (native) |
||||
|
||||
- T1Q1 write: 7087 iops (0.14ms latency) |
||||
- T1Q1 read: 6838 iops (0.145ms latency) |
||||
- T2Q64 write: 162000 iops, total CPU usage by OSDs about 3 virtual cores on each node |
||||
- T8Q64 read: 895000 iops, total CPU usage by OSDs about 4 virtual cores on each node |
||||
- Linear write (4M T1Q32): 2800 MB/s |
||||
- Linear read (4M T1Q32): 1500 MB/s |
||||
|
||||
### Vitastor 0.4.0 (NBD) |
||||
|
||||
NBD is currently required to mount Vitastor via kernel, but it imposes additional overhead |
||||
due to additional copying between the kernel and userspace. This mostly hurts linear |
||||
bandwidth, not iops. |
||||
|
||||
Vitastor with single-threaded NBD on the same hardware: |
||||
- T1Q1 write: 6000 iops (0.166ms latency) |
||||
- T1Q1 read: 5518 iops (0.18ms latency) |
||||
- T1Q128 write: 94400 iops |
||||
- T1Q128 read: 103000 iops |
||||
- Linear write (4M T1Q128): 1266 MB/s (compared to 2800 MB/s via fio) |
||||
- Linear read (4M T1Q128): 975 MB/s (compared to 1500 MB/s via fio) |
||||
|
||||
## EC/XOR 2+1 |
||||
|
||||
### Ceph 15.2.4 |
||||
|
||||
- T1Q1 write: 730 iops (~1.37ms latency) |
||||
- T1Q1 read: 1500 iops with cold cache (~0.66ms latency), 2300 iops after 2 minute metadata cache warmup (~0.435ms latency) |
||||
- T4Q128 write (4 RBD images): 45300 iops, total CPU usage by OSDs about 30 virtual cores on each node |
||||
- T8Q64 read (4 RBD images): 278600 iops, total CPU usage by OSDs about 40 virtual cores on each node |
||||
- Linear write (4M T1Q32): 1950 MB/s before preallocation, 2500 MB/s after preallocation |
||||
- Linear read (4M T1Q32): 2400 MB/s |
||||
|
||||
### Vitastor 0.4.0 |
||||
|
||||
- T1Q1 write: 2808 iops (~0.355ms latency) |
||||
- T1Q1 read: 6190 iops (~0.16ms latency) |
||||
- T2Q64 write: 85500 iops, total CPU usage by OSDs about 3.4 virtual cores on each node |
||||
- T8Q64 read: 812000 iops, total CPU usage by OSDs about 4.7 virtual cores on each node |
||||
- Linear write (4M T1Q32): 3200 MB/s |
||||
- Linear read (4M T1Q32): 1800 MB/s |
@ -0,0 +1,46 @@ |
||||
--- |
||||
title: Vitastor's Theoretical Maximum Performance |
||||
weight: 3 |
||||
--- |
||||
|
||||
Replicated setups: |
||||
- Single-threaded (T1Q1) read latency: 1 network roundtrip + 1 disk read. |
||||
- Single-threaded write+fsync latency: |
||||
- With immediate commit: 2 network roundtrips + 1 disk write. |
||||
- With lazy commit: 4 network roundtrips + 1 disk write + 1 disk flush. |
||||
- Saturated parallel read iops: min(network bandwidth, sum(disk read iops)). |
||||
- Saturated parallel write iops: min(network bandwidth, sum(disk write iops / number of replicas / write amplification)). |
||||
|
||||
EC/XOR setups: |
||||
- Single-threaded (T1Q1) read latency: 1.5 network roundtrips + 1 disk read. |
||||
- Single-threaded write+fsync latency: |
||||
- With immediate commit: 3.5 network roundtrips + 1 disk read + 2 disk writes. |
||||
- With lazy commit: 5.5 network roundtrips + 1 disk read + 2 disk writes + 2 disk fsyncs. |
||||
- 0.5 in actually (k-1)/k which means that an additional roundtrip doesn't happen when |
||||
the read sub-operation can be served locally. |
||||
- Saturated parallel read iops: min(network bandwidth, sum(disk read iops)). |
||||
- Saturated parallel write iops: min(network bandwidth, sum(disk write iops * number of data drives / (number of data + parity drives) / write amplification)). |
||||
In fact, you should put disk write iops under the condition of ~10% reads / ~90% writes in this formula. |
||||
|
||||
Write amplification for 4 KB blocks is usually 3-5 in Vitastor: |
||||
1. Journal block write |
||||
2. Journal data write |
||||
3. Metadata block write |
||||
4. Another journal block write for EC/XOR setups |
||||
5. Data block write |
||||
|
||||
If you manage to get an SSD which handles 512 byte blocks well (Optane?) you may |
||||
lower 1, 3 and 4 to 512 bytes (1/8 of data size) and get WA as low as 2.375. |
||||
|
||||
Lazy fsync also reduces WA for parallel workloads because journal blocks are only |
||||
written when they fill up or fsync is requested. |
||||
|
||||
## In Practice |
||||
|
||||
In practice, using tests from [Understanding Performance]({{< ref "performance/understanding" >}}) |
||||
and good server-grade SSD/NVMe drives, you should head for: |
||||
- At least 5000 T1Q1 replicated read and write iops (maximum 0.2ms latency) |
||||
- At least ~80k parallel read iops or ~30k write iops per 1 core (1 OSD) |
||||
- Disk-speed or wire-speed linear reads and writes, whichever is the bottleneck in your case |
||||
|
||||
If your results are lower, that may mean you have bad drives, bad network or some kind of misconfiguration. |
@ -0,0 +1,6 @@ |
||||
--- |
||||
title: Tuning |
||||
weight: 2 |
||||
--- |
||||
|
||||
- Disable CPU powersaving |
@ -0,0 +1,52 @@ |
||||
--- |
||||
title: Understanding Storage Performance |
||||
weight: 1 |
||||
--- |
||||
|
||||
The most important thing for fast storage is latency, not parallel iops. |
||||
|
||||
The best possible latency is achieved with one thread and queue depth of 1 which basically means |
||||
"client load as low as possible". In this case IOPS = 1/latency, and this number doesn't |
||||
scale with number of servers, drives, server processes or threads and so on. |
||||
Single-threaded IOPS and latency numbers only depend on *how fast a single daemon is*. |
||||
|
||||
Why is it important? It's important because some of the applications *can't* use |
||||
queue depth greater than 1 because their task isn't parallelizable. A notable example |
||||
is any ACID DBMS because all of them write their WALs sequentially with fsync()s. |
||||
|
||||
fsync, by the way, is another important thing often missing in benchmarks. The point is |
||||
that drives have cache buffers and don't guarantee that your data is actually persisted |
||||
until you call fsync() which is translated to a FLUSH CACHE command by the OS. |
||||
|
||||
Desktop SSDs are very fast without fsync - NVMes, for example, can process ~80000 write |
||||
operations per second with queue depth of 1 without fsync - but they're really slow with |
||||
fsync because they have to actually write data to flash chips when you call fsync. Typical |
||||
number is around 1000-2000 iops with fsync. |
||||
|
||||
Server SSDs often have supercapacitors that act as a built-in UPS and allow the drive |
||||
to flush its DRAM cache to the persistent flash storage when a power loss occurs. |
||||
This makes them perform equally well with and without fsync. This feature is called |
||||
"Advanced Power Loss Protection" by Intel; other vendors either call it similarly |
||||
or directly as "Full Capacitor-Based Power Loss Protection". |
||||
|
||||
All software-defined storages that I currently know are slow in terms of latency. |
||||
Notable examples are Ceph and internal SDSes used by cloud providers like Amazon, Google, |
||||
Yandex and so on. They're all slow and can only reach ~0.3ms read and ~0.6ms 4 KB write latency |
||||
with best-in-slot hardware. |
||||
|
||||
And that's in the SSD era when you can buy an SSD that has ~0.04ms latency for 100 $. |
||||
|
||||
I use the following 6 commands with small variations to benchmark any storage: |
||||
|
||||
- Linear write: |
||||
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4M -iodepth=32 -rw=write -runtime=60 -filename=/dev/sdX` |
||||
- Linear read: |
||||
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4M -iodepth=32 -rw=read -runtime=60 -filename=/dev/sdX` |
||||
- Random write latency (T1Q1, this hurts storages the most): |
||||
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=1 -fsync=1 -rw=randwrite -runtime=60 -filename=/dev/sdX` |
||||
- Random read latency (T1Q1): |
||||
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=1 -rw=randread -runtime=60 -filename=/dev/sdX` |
||||
- Parallel write iops (use numjobs if a single CPU core is insufficient to saturate the load): |
||||
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=128 [-numjobs=4 -group_reporting] -rw=randwrite -runtime=60 -filename=/dev/sdX` |
||||
- Parallel read iops (use numjobs if a single CPU core is insufficient to saturate the load): |
||||
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=128 [-numjobs=4 -group_reporting] -rw=randread -runtime=60 -filename=/dev/sdX` |
@ -0,0 +1,183 @@ |
||||
--- |
||||
title: Vitastor CLI |
||||
weight: 1 |
||||
--- |
||||
|
||||
vitastor-cli is a command-line tool for administrative tasks like image management. |
||||
|
||||
It supports the following commands: |
||||
|
||||
{{< toc >}} |
||||
|
||||
Global options: |
||||
|
||||
``` |
||||
--etcd_address ADDR Etcd connection address |
||||
--iodepth N Send N operations in parallel to each OSD when possible (default 32) |
||||
--parallel_osds M Work with M osds in parallel when possible (default 4) |
||||
--progress 1|0 Report progress (default 1) |
||||
--cas 1|0 Use online CAS writes when possible (default auto) |
||||
--no-color Disable colored output |
||||
--json JSON output |
||||
``` |
||||
|
||||
## status |
||||
|
||||
`vitastor-cli status` |
||||
|
||||
Show cluster status. |
||||
|
||||
Example output: |
||||
|
||||
``` |
||||
cluster: |
||||
etcd: 1 / 1 up, 1.8 M database size |
||||
mon: 1 up, master stump |
||||
osd: 8 / 12 up |
||||
|
||||
data: |
||||
raw: 498.5 G used, 301.2 G / 799.7 G available, 399.8 G down |
||||
state: 156.6 G clean, 97.6 G misplaced |
||||
pools: 2 / 3 active |
||||
pgs: 30 active |
||||
34 active+has_misplaced |
||||
32 offline |
||||
|
||||
io: |
||||
client: 0 B/s rd, 0 op/s rd, 0 B/s wr, 0 op/s wr |
||||
rebalance: 989.8 M/s, 7.9 K op/s |
||||
``` |
||||
|
||||
## df |
||||
|
||||
`vitastor-cli df` |
||||
|
||||
Show pool space statistics. |
||||
|
||||
Example output: |
||||
|
||||
``` |
||||
NAME SCHEME PGS TOTAL USED AVAILABLE USED% EFFICIENCY |
||||
testpool 2/1 32 100 G 34.2 G 60.7 G 39.23% 100% |
||||
size1 1/1 32 199.9 G 10 G 121.5 G 39.23% 100% |
||||
kaveri 2/1 32 0 B 10 G 0 B 100% 0% |
||||
``` |
||||
|
||||
In the example above, "kaveri" pool has "zero" efficiency because all its OSD are down. |
||||
|
||||
## ls |
||||
|
||||
`vitastor-cli ls [-l] [-p POOL] [--sort FIELD] [-r] [-n N] [<glob> ...]` |
||||
|
||||
List images (only matching `<glob>` pattern(s) if passed). |
||||
|
||||
Options: |
||||
|
||||
``` |
||||
-p|--pool POOL Filter images by pool ID or name |
||||
-l|--long Also report allocated size and I/O statistics |
||||
--del Also include delete operation statistics |
||||
--sort FIELD Sort by specified field (name, size, used_size, <read|write|delete>_<iops|bps|lat|queue>) |
||||
-r|--reverse Sort in descending order |
||||
-n|--count N Only list first N items |
||||
``` |
||||
|
||||
Example output: |
||||
|
||||
``` |
||||
NAME POOL SIZE USED READ IOPS QUEUE LAT WRITE IOPS QUEUE LAT FLAGS PARENT |
||||
debian9 testpool 20 G 12.3 G 0 B/s 0 0 0 us 0 B/s 0 0 0 us RO |
||||
pve/vm-100-disk-0 testpool 20 G 0 B 0 B/s 0 0 0 us 0 B/s 0 0 0 us - debian9 |
||||
pve/base-101-disk-0 testpool 20 G 0 B 0 B/s 0 0 0 us 0 B/s 0 0 0 us RO debian9 |
||||
pve/vm-102-disk-0 testpool 32 G 36.4 M 0 B/s 0 0 0 us 0 B/s 0 0 0 us - pve/base-101-disk-0 |
||||
debian9-test testpool 20 G 36.6 M 0 B/s 0 0 0 us 0 B/s 0 0 0 us - debian9 |
||||
bench testpool 10 G 10 G 0 B/s 0 0 0 us 0 B/s 0 0 0 us - |
||||
bench-kaveri kaveri 10 G 10 G 0 B/s 0 0 0 us 0 B/s 0 0 0 us - |
||||
``` |
||||
|
||||
## create |
||||
|
||||
`vitastor-cli create -s|--size <size> [-p|--pool <id|name>] [--parent <parent_name>[@<snapshot>]] <name>` |
||||
|
||||
Create an image. You may use K/M/G/T suffixes for `<size>`. If `--parent` is specified, |
||||
a copy-on-write image clone is created. Parent must be a snapshot (readonly image). |
||||
Pool must be specified if there is more than one pool. |
||||
|
||||
``` |
||||
vitastor-cli create --snapshot <snapshot> [-p|--pool <id|name>] <image> |
||||
vitastor-cli snap-create [-p|--pool <id|name>] <image>@<snapshot> |
||||
``` |
||||
|
||||
Create a snapshot of image `<name>` (either form can be used). May be used live if only a single writer is active. |
||||
|
||||
## modify |
||||
|
||||
`vitastor-cli modify <name> [--rename <new-name>] [--resize <size>] [--readonly | --readwrite] [-f|--force]` |
||||
|
||||
Rename, resize image or change its readonly status. Images with children can't be made read-write. |
||||
If the new size is smaller than the old size, extra data will be purged. |
||||
You should resize file system in the image, if present, before shrinking it. |
||||
|
||||
``` |
||||
-f|--force Proceed with shrinking or setting readwrite flag even if the image has children. |
||||
``` |
||||
|
||||
## rm |
||||
|
||||
`vitastor-cli rm <from> [<to>] [--writers-stopped]` |
||||
|
||||
Remove `<from>` or all layers between `<from>` and `<to>` (`<to>` must be a child of `<from>`), |
||||
rebasing all their children accordingly. --writers-stopped allows merging to be a bit |
||||
more effective in case of a single 'slim' read-write child and 'fat' removed parent: |
||||
the child is merged into parent and parent is renamed to child in that case. |
||||
In other cases parent layers are always merged into children. |
||||
|
||||
## flatten |
||||
|
||||
`vitastor-cli flatten <layer>` |
||||
|
||||
Flatten a layer, i.e. merge data and detach it from parents. |
||||
|
||||
## rm-data |
||||
|
||||
`vitastor-cli rm-data --pool <pool> --inode <inode> [--wait-list] [--min-offset <offset>]` |
||||
|
||||
Remove inode data without changing metadata. |
||||
|
||||
``` |
||||
--wait-list Retrieve full objects listings before starting to remove objects. |
||||
Requires more memory, but allows to show correct removal progress. |
||||
--min-offset Purge only data starting with specified offset. |
||||
``` |
||||
|
||||
## merge-data |
||||
|
||||
`vitastor-cli merge-data <from> <to> [--target <target>]` |
||||
|
||||
Merge layer data without changing metadata. Merge `<from>`..`<to>` to `<target>`. |
||||
`<to>` must be a child of `<from>` and `<target>` may be one of the layers between |
||||
`<from>` and `<to>`, including `<from>` and `<to>`. |
||||
|
||||
## alloc-osd |
||||
|
||||
`vitastor-cli alloc-osd` |
||||
|
||||
Allocate a new OSD number and reserve it by creating empty `/osd/stats/<n>` key. |
||||
|
||||
## simple-offsets |
||||
|
||||
`vitastor-cli simple-offsets <device>` |
||||
|
||||
Calculate offsets for simple&stupid (no superblock) OSD deployment. |
||||
|
||||
Options: |
||||
|
||||
``` |
||||
--object_size 128k Set blockstore block size |
||||
--bitmap_granularity 4k Set bitmap granularity |
||||
--journal_size 16M Set journal size |
||||
--device_block_size 4k Set device block size |
||||
--journal_offset 0 Set journal offset |
||||
--device_size 0 Set device size |
||||
--format text Result format: json, options, env, or text |
||||
``` |
@ -0,0 +1,20 @@ |
||||
--- |
||||
title: NBD |
||||
weight: 6 |
||||
--- |
||||
|
||||
To create a local block device for a Vitastor image, use NBD. For example: |
||||
|
||||
``` |
||||
vitastor-nbd map --etcd_address 10.115.0.10:2379/v3 --image testimg |
||||
``` |
||||
|
||||
It will output the device name, like /dev/nbd0 which you can then format and mount as a normal block device. |
||||
|
||||
You can also use `--pool <POOL> --inode <INODE> --size <SIZE>` instead of `--image <IMAGE>` if you want. |
||||
|
||||
To unmap the device run: |
||||
|
||||
``` |
||||
vitastor-nbd unmap /dev/nbd0 |
||||
``` |
@ -0,0 +1,39 @@ |
||||
--- |
||||
title: QEMU and qemu-img |
||||
weight: 2 |
||||
--- |
||||
|
||||
You need patched QEMU version to use Vitastor driver. |
||||
|
||||
To start a VM using plain QEMU command-line with Vitastor disk, use the following commands: |
||||
|
||||
Old syntax (-drive): |
||||
|
||||
``` |
||||
qemu-system-x86_64 -enable-kvm -m 1024 \ |
||||
-drive 'file=vitastor:etcd_host=192.168.7.2\:2379/v3:image=debian9', |
||||
format=raw,if=none,id=drive-virtio-disk0,cache=none \ |
||||
-device 'virtio-blk-pci,scsi=off,bus=pci.0,addr=0x5,drive=drive-virtio-disk0, |
||||
id=virtio-disk0,bootindex=1,write-cache=off' \ |
||||
-vnc 0.0.0.0:0 |
||||
``` |
||||
|
||||
New syntax (-blockdev): |
||||
|
||||
``` |
||||
qemu-system-x86_64 -enable-kvm -m 1024 \ |
||||
-blockdev '{"node-name":"drive-virtio-disk0","driver":"vitastor","image":"debian9", |
||||
"cache":{"direct":true,"no-flush":false},"auto-read-only":true,"discard":"unmap"}' \ |
||||
-device 'virtio-blk-pci,scsi=off,bus=pci.0,addr=0x5,drive=drive-virtio-disk0, |
||||
id=virtio-disk0,bootindex=1,write-cache=off' \ |
||||
-vnc 0.0.0.0:0 |
||||
``` |
||||
|
||||
For qemu-img, you should use `vitastor:etcd_host=<HOST>:image=<IMAGE>` as filename. For example: |
||||
|
||||
``` |
||||
qemu-img convert -f qcow2 debian10.qcow2 -p -O raw 'vitastor:etcd_host=192.168.7.2\:2379/v3:image=debian10' |
||||
``` |
||||
|
||||
You can also specify `:pool=<POOL>:inode=<INODE>:size=<SIZE>` instead of `:image=<IMAGE>` |
||||
if you don't want to use inode metadata. |
@ -0,0 +1,37 @@ |
||||
--- |
||||
nav_navigation: Навигация |
||||
nav_tags: Теги |
||||
nav_more: Подробнее |
||||
nav_top: К началу |
||||
|
||||
form_placeholder_search: Поиск |
||||
|
||||
error_page_title: Открыта несуществующая страница |
||||
error_message_title: Потерялись? |
||||
error_message_code: Ошибка 404 |
||||
error_message_text: > |
||||
Похоже, страница, которую вы открыли, не существует. Попробуйте найти |
||||
нужную информацию с <a class="gdoc-error__link" href="{{ . }}">главной страницы</a>. |
||||
|
||||
button_toggle_dark: Переключить тёмный/светлый/авто режим |
||||
button_nav_open: Показать навигацию |
||||
button_nav_close: Скрыть навигацию |
||||
button_menu_open: Открыть меню |
||||
button_menu_close: Закрыть меню |
||||
button_homepage: На главную |
||||
|
||||
title_anchor_prefix: "Ссылка на:" |
||||
|
||||
posts_read_more: Читать подробнее |
||||
posts_read_time: |
||||
one: "Одна минута на чтение" |
||||
other: "{{ . }} минут(ы) на чтение" |
||||
posts_update_prefix: Обновлено |
||||
|
||||
footer_build_with: > |
||||
Сделано на <a href="https://gohugo.io/" class="gdoc-footer__link">Hugo</a> с |
||||
<svg class="icon gdoc_heart"><use xlink:href="#gdoc_heart"></use></svg> |
||||
footer_legal_notice: Правовая информация |
||||
footer_privacy_policy: Приватность |
||||
|
||||
language_switch_no_tranlation_prefix: "Страница не переведена:" |
@ -0,0 +1,34 @@ |
||||
<footer class="gdoc-footer"> |
||||
<div class="container flex"> |
||||
<div class="flex flex-wrap" style="flex: 1"> |
||||
<span class="gdoc-footer__item gdoc-footer__item--row"> |
||||
© Vitaliy Filippov, 2021+ |
||||
</span> |
||||
</div> |
||||
<div class="flex flex-wrap"> |
||||
{{ with .Site.Params.GeekdocLegalNotice }} |
||||
<span class="gdoc-footer__item gdoc-footer__item--row"> |
||||
<a href="{{ . | relURL }}" class="gdoc-footer__link">{{ i18n "footer_legal_notice" }}</a> |
||||
</span> |
||||
{{ end }} |
||||
{{ with .Site.Params.GeekdocPrivacyPolicy }} |
||||
<span class="gdoc-footer__item gdoc-footer__item--row"> |
||||
<a href="{{ . | relURL }}" class="gdoc-footer__link">{{ i18n "footer_privacy_policy" }}</a> |
||||
</span> |
||||
{{ end }} |
||||
</div> |
||||
{{ if (default true .Site.Params.GeekdocBackToTop) }} |
||||
<div class="flex flex-25 justify-end"> |
||||
<span class="gdoc-footer__item gdoc-footer__item--row" style="margin-right: 50px"> |
||||
{{ i18n "footer_build_with" | safeHTML }} |
||||
</span> |
||||
<span class="gdoc-footer__item"> |
||||
<a class="gdoc-footer__link fake-link" href="#" aria-label="{{ i18n "nav_top" }}"> |
||||
<svg class="icon gdoc_keyboard_arrow_up"><use xlink:href="#gdoc_keyboard_arrow_up"></use></svg> |
||||
<span class="hidden-mobile">{{ i18n "nav_top" }}</span> |
||||
</a> |
||||
</span> |
||||
</div> |
||||
{{ end }} |
||||
</div> |
||||
</footer> |
After Width: | Height: | Size: 7.4 KiB |
@ -0,0 +1,138 @@ |
||||
/* Global customization */ |
||||
|
||||
:root { |
||||
--code-max-height: 60rem; |
||||
} |
||||
|
||||
/* Light mode theming */ |
||||
:root, |
||||
:root[color-mode="light"] { |
||||
--header-background: #404050; |
||||
--header-font-color: #ffffff; |
||||
|
||||
--body-background: #ffffff; |
||||
--body-font-color: #343a40; |
||||
|
||||
--button-background: #62cb97; |
||||
--button-border-color: #4ec58a; |
||||
|
||||
--link-color: #c54e8a; |
||||
--link-color-visited: #c54e8a; |
||||
|
||||
--code-background: #f5f6f8; |
||||
--code-accent-color: #e3e7eb; |
||||
--code-accent-color-lite: #eff1f3; |
||||
|
||||
--accent-color: #e9ecef; |
||||
--accent-color-lite: #f8f9fa; |
||||
|
||||
--control-icons: #b2bac1; |
||||
|
||||
--footer-background: #606070; |
||||
--footer-font-color: #ffffff; |
||||
--footer-link-color: #ffcc5c; |
||||
--footer-link-color-visited: #ffcc5c; |
||||
} |
||||
@media (prefers-color-scheme: light) { |
||||
:root { |
||||
--header-background: #404050; |
||||
--header-font-color: #ffffff; |
||||
|
||||
--body-background: #ffffff; |
||||
--body-font-color: #343a40; |
||||
|
||||
--button-background: #62cb97; |
||||
--button-border-color: #4ec58a; |
||||
|
||||
--link-color: #c54e8a; |
||||
--link-color-visited: #c54e8a; |
||||
|
||||
--code-background: #f5f6f8; |
||||
--code-accent-color: #e3e7eb; |
||||
--code-accent-color-lite: #eff1f3; |
||||
|
||||
--accent-color: #e9ecef; |
||||
--accent-color-lite: #f8f9fa; |
||||
|
||||
--control-icons: #b2bac1; |
||||
|
||||
--footer-background: #606070; |
||||