#include "blockstore.h" // Stabilize small write: // 1) Copy data from the journal to the data device // Sync it before writing metadata if we want to keep metadata consistent // Overall it's optional because it can be replayed from the journal until // it's cleared, and reads are also fulfilled from the journal // 2) Increase version on the metadata device and sync it // 3) Advance clean_db entry's version, clear previous journal entries // // This makes 1 4K small write+sync look like: // 512b+4K (journal) + sync + 512b (journal) + sync + 4K (data) [+ sync?] + 512b (metadata) + sync. // WA = 2.375. It's not the best, SSD FTL-like redirect-write with defragmentation // could probably be lower even with defragmentation. But it's fixed and it's still // better than in Ceph. :) // Stabilize big write: // 1) Copy metadata from the journal to the metadata device // 2) Move dirty_db entry to clean_db and clear previous journal entries // // This makes 1 128K big write+sync look like: // 128K (data) + sync + 512b (journal) + sync + 512b (journal) + sync + 512b (metadata) + sync. // WA = 1.012. Very good :) // AND We must do it in batches, for the sake of reduced fsync call count int blockstore::dequeue_stable(blockstore_operation *op) { auto dirty_it = dirty_db.find((obj_ver_id){ .oid = op->oid, .version = op->version, }); if (dirty_it == dirty_db.end()) { auto clean_it = clean_db.find(op->oid); if (clean_it == clean_db.end() || clean_it->second.version < op->version) { // No such object version op->retval = EINVAL; } else { // Already stable op->retval = 0; } op->callback(op); return 1; } else if (IS_UNSYNCED(dirty_it->second.state)) { // Object not synced yet. Caller must sync it first op->retval = EAGAIN; op->callback(op); return 1; } else if (IS_STABLE(dirty_it->second.state)) { // Already stable op->retval = 0; op->callback(op); return 1; } // Check journal space blockstore_journal_check_t space_check(this); if (!space_check.check_available(op, 1, sizeof(journal_entry_stable), 0)) { return 0; } // There is sufficient space. Get SQE BS_SUBMIT_GET_SQE(sqe, data); // Got SQE. Prepare journal sector write journal_entry_stable *je = (journal_entry_stable*)prefill_single_journal_entry(journal, JE_STABLE, sizeof(struct journal_entry_stable)); je->oid = op->oid; je->version = op->version; je->crc32 = je_crc32((journal_entry*)je); journal.crc32_last = je->crc32; data->iov = (struct iovec){ journal.sector_buf + 512*journal.cur_sector, 512 }; data->op = op; io_uring_prep_writev( sqe, journal.fd, &data->iov, 1, journal.offset + journal.sector_info[journal.cur_sector].offset ); journal.sector_info[journal.cur_sector].usage_count++; op->pending_ops = 1; op->min_used_journal_sector = op->max_used_journal_sector = 1 + journal.cur_sector; return 1; } int blockstore::continue_stable(blockstore_operation *op) { return 0; } void blockstore::handle_stable_event(ring_data_t *data, blockstore_operation *op) { if (data->res < 0) { // sync error // FIXME: our state becomes corrupted after a write error. maybe do something better than just die throw new std::runtime_error("write operation failed. in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"); } op->pending_ops--; if (op->pending_ops == 0) { // Mark all dirty_db entries up to op->version as stable auto dirty_it = dirty_db.find((obj_ver_id){ .oid = op->oid, .version = op->version, }); if (dirty_it->second.state == ST_J_SYNCED) { dirty_it->second.state = ST_J_STABLE; // Acknowledge op op->retval = 0; op->callback(op); } else if (dirty_it->second.state == ST_D_META_SYNCED) { dirty_it->second.state = ST_D_STABLE; // Acknowledge op op->retval = 0; op->callback(op); } else if (dirty_it->second.state == ST_J_STABLE) { } else if (dirty_it->second.state == ST_D_STABLE) { } } }