|
- /* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
- * Copyright (C) 2013 Mark Adler
- * Version 1.1 1 Aug 2013 Mark Adler
- */
-
- /*
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the author be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- Mark Adler
- madler@alumni.caltech.edu
- */
-
- /* Use hardware CRC instruction on Intel SSE 4.2 processors. This computes a
- CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc. A software
- version is provided as a fall-back, as well as for speed comparisons. */
-
- /* Version history:
- 1.0 10 Feb 2013 First version
- 1.1 1 Aug 2013 Correct comments on why three crc instructions in parallel
- */
-
- #include <stdio.h>
- #include <stdlib.h>
- #include <stdint.h>
- #include <unistd.h>
- #include "crc32c.h"
-
- /* CRC-32C (iSCSI) polynomial in reversed bit order. */
- #define POLY 0x82f63b78
-
- /* Table for a quadword-at-a-time software crc. */
- static __thread int crc32_sw_init = 0;
- static uint32_t crc32c_table[8][256];
-
- /* Construct table for software CRC-32C calculation. */
- static void crc32c_init_sw(void)
- {
- uint32_t n, crc, k;
- crc32_sw_init = 1;
- for (n = 0; n < 256; n++)
- {
- crc = n;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc32c_table[0][n] = crc;
- }
- for (n = 0; n < 256; n++)
- {
- crc = crc32c_table[0][n];
- for (k = 1; k < 8; k++)
- {
- crc = crc32c_table[0][crc & 0xff] ^ (crc >> 8);
- crc32c_table[k][n] = crc;
- }
- }
- }
-
- /* Table-driven software version as a fall-back. This is about 15 times slower
- than using the hardware instructions. This assumes little-endian integers,
- as is the case on Intel processors that the assembler code here is for. */
- static uint32_t crc32c_sw(uint32_t crci, const void *buf, size_t len)
- {
- const unsigned char *next = (const unsigned char*)buf;
- uint64_t crc;
-
- if (!crc32_sw_init)
- crc32c_init_sw();
- crc = crci ^ 0xffffffff;
- while (len && ((uintptr_t)next & 7) != 0)
- {
- crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
- len--;
- }
- while (len >= 8)
- {
- crc ^= *(uint64_t *)next;
- crc = crc32c_table[7][crc & 0xff] ^
- crc32c_table[6][(crc >> 8) & 0xff] ^
- crc32c_table[5][(crc >> 16) & 0xff] ^
- crc32c_table[4][(crc >> 24) & 0xff] ^
- crc32c_table[3][(crc >> 32) & 0xff] ^
- crc32c_table[2][(crc >> 40) & 0xff] ^
- crc32c_table[1][(crc >> 48) & 0xff] ^
- crc32c_table[0][crc >> 56];
- next += 8;
- len -= 8;
- }
- while (len)
- {
- crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
- len--;
- }
- return (uint32_t)crc ^ 0xffffffff;
- }
-
- /* Multiply a matrix times a vector over the Galois field of two elements,
- GF(2). Each element is a bit in an unsigned integer. mat must have at
- least as many entries as the power of two for most significant one bit in
- vec. */
- static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec)
- {
- uint32_t sum;
-
- sum = 0;
- while (vec)
- {
- if (vec & 1)
- sum ^= *mat;
- vec >>= 1;
- mat++;
- }
- return sum;
- }
-
- /* Multiply a matrix by itself over GF(2). Both mat and square must have 32
- rows. */
- static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat)
- {
- int n;
-
- for (n = 0; n < 32; n++)
- square[n] = gf2_matrix_times(mat, mat[n]);
- }
-
- /* Construct an operator to apply len zeros to a crc. len must be a power of
- two. If len is not a power of two, then the result is the same as for the
- largest power of two less than len. The result for len == 0 is the same as
- for len == 1. A version of this routine could be easily written for any
- len, but that is not needed for this application. */
- static void crc32c_zeros_op(uint32_t *even, size_t len)
- {
- int n;
- uint32_t row;
- uint32_t odd[32]; /* odd-power-of-two zeros operator */
-
- /* put operator for one zero bit in odd */
- odd[0] = POLY; /* CRC-32C polynomial */
- row = 1;
- for (n = 1; n < 32; n++)
- {
- odd[n] = row;
- row <<= 1;
- }
-
- /* put operator for two zero bits in even */
- gf2_matrix_square(even, odd);
-
- /* put operator for four zero bits in odd */
- gf2_matrix_square(odd, even);
-
- /* first square will put the operator for one zero byte (eight zero bits),
- in even -- next square puts operator for two zero bytes in odd, and so
- on, until len has been rotated down to zero */
- do
- {
- gf2_matrix_square(even, odd);
- len >>= 1;
- if (len == 0)
- return;
- gf2_matrix_square(odd, even);
- len >>= 1;
- } while (len);
-
- /* answer ended up in odd -- copy to even */
- for (n = 0; n < 32; n++)
- even[n] = odd[n];
- }
-
- /* Take a length and build four lookup tables for applying the zeros operator
- for that length, byte-by-byte on the operand. */
- static void crc32c_zeros(uint32_t zeros[][256], size_t len)
- {
- uint32_t n;
- uint32_t op[32];
-
- crc32c_zeros_op(op, len);
- for (n = 0; n < 256; n++)
- {
- zeros[0][n] = gf2_matrix_times(op, n);
- zeros[1][n] = gf2_matrix_times(op, n << 8);
- zeros[2][n] = gf2_matrix_times(op, n << 16);
- zeros[3][n] = gf2_matrix_times(op, n << 24);
- }
- }
-
- /* Apply the zeros operator table to crc. */
- static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc)
- {
- return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
- zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
- }
-
- /* Block sizes for three-way parallel crc computation. LONG and SHORT must
- both be powers of two. The associated string constants must be set
- accordingly, for use in constructing the assembler instructions. */
- #define LONG 8192
- #define LONGx1 "8192"
- #define LONGx2 "16384"
- #define SHORT 256
- #define SHORTx1 "256"
- #define SHORTx2 "512"
-
- /* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
- static __thread int crc32c_hw_init = 0;
- static uint32_t crc32c_long[4][256];
- static uint32_t crc32c_short[4][256];
-
- /* Initialize tables for shifting crcs. */
- static void crc32c_init_hw(void)
- {
- crc32c_hw_init = 1;
- crc32c_zeros(crc32c_long, LONG);
- crc32c_zeros(crc32c_short, SHORT);
- }
-
- /* Compute CRC-32C using the Intel hardware instruction. */
- static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
- {
- #ifndef __x86_64__
- return 0;
- #else
- const unsigned char *next = (const unsigned char*)buf;
- const unsigned char *end;
- uint64_t crc0, crc1, crc2; /* need to be 64 bits for crc32q */
-
- /* populate shift tables the first time through */
- if (!crc32c_hw_init)
- crc32c_init_hw();
-
- /* pre-process the crc */
- crc0 = crc ^ 0xffffffff;
-
- /* compute the crc for up to seven leading bytes to bring the data pointer
- to an eight-byte boundary */
- while (len && ((uintptr_t)next & 7) != 0)
- {
- __asm__(
- "crc32b\t" "(%1), %0"
- : "=r"(crc0)
- : "r"(next), "0"(crc0)
- );
- next++;
- len--;
- }
-
- /* compute the crc on sets of LONG*3 bytes, executing three independent crc
- instructions, each on LONG bytes -- this is optimized for the Nehalem,
- Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
- throughput of one crc per cycle, but a latency of three cycles */
- while (len >= LONG*3)
- {
- crc1 = 0;
- crc2 = 0;
- end = next + LONG;
- do
- {
- __asm__(
- "crc32q\t" "(%3), %0\n\t"
- "crc32q\t" LONGx1 "(%3), %1\n\t"
- "crc32q\t" LONGx2 "(%3), %2"
- : "=r"(crc0), "=r"(crc1), "=r"(crc2)
- : "r"(next), "0"(crc0), "1"(crc1), "2"(crc2)
- );
- next += 8;
- } while (next < end);
- crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
- crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
- next += LONG*2;
- len -= LONG*3;
- }
-
- /* do the same thing, but now on SHORT*3 blocks for the remaining data less
- than a LONG*3 block */
- while (len >= SHORT*3)
- {
- crc1 = 0;
- crc2 = 0;
- end = next + SHORT;
- do
- {
- __asm__(
- "crc32q\t" "(%3), %0\n\t"
- "crc32q\t" SHORTx1 "(%3), %1\n\t"
- "crc32q\t" SHORTx2 "(%3), %2"
- : "=r"(crc0), "=r"(crc1), "=r"(crc2)
- : "r"(next), "0"(crc0), "1"(crc1), "2"(crc2)
- );
- next += 8;
- } while (next < end);
- crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
- crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
- next += SHORT*2;
- len -= SHORT*3;
- }
-
- /* compute the crc on the remaining eight-byte units less than a SHORT*3
- block */
- end = next + (len - (len & 7));
- while (next < end)
- {
- __asm__(
- "crc32q\t" "(%1), %0"
- : "=r"(crc0)
- : "r"(next), "0"(crc0)
- );
- next += 8;
- }
- len &= 7;
-
- /* compute the crc for up to seven trailing bytes */
- while (len)
- {
- __asm__(
- "crc32b\t" "(%1), %0"
- : "=r"(crc0)
- : "r"(next), "0"(crc0)
- );
- next++;
- len--;
- }
-
- /* return a post-processed crc */
- return (uint32_t)crc0 ^ 0xffffffff;
- #endif
- }
-
- /* Check for SSE 4.2. SSE 4.2 was first supported in Nehalem processors
- introduced in November, 2008. This does not check for the existence of the
- cpuid instruction itself, which was introduced on the 486SL in 1992, so this
- will fail on earlier x86 processors. cpuid works on all Pentium and later
- processors. */
- #define SSE42(have) \
- do { \
- uint32_t eax, ecx; \
- eax = 1; \
- __asm__("cpuid" \
- : "=c"(ecx) \
- : "a"(eax) \
- : "%ebx", "%edx"); \
- (have) = (ecx >> 20) & 1; \
- } while (0)
-
- /* Compute a CRC-32C. If the crc32 instruction is available, use the hardware
- version. Otherwise, use the software version. */
- uint32_t crc32c(uint32_t crc, const void *buf, size_t len)
- {
- #ifndef __x86_64__
- return crc32c_sw(crc, buf, len);
- #else
- int sse42;
- SSE42(sse42);
- return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
- #endif
- }
|