Simplified distributed block storage with strong consistency, like in Ceph
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

603 lines
21 KiB

#include "osd.h"
#include "osd_rmw.h"
#define SUBMIT_READ 0
#define SUBMIT_RMW_READ 1
#define SUBMIT_WRITE 2
// read: read directly or read paired stripe(s), reconstruct, return
// write: read paired stripe(s), modify, write
//
// nuance: take care to read the same version from paired stripes!
// to do so, we remember "last readable" version until a write request completes
// and we postpone other write requests to the same stripe until completion of previous ones
//
// sync: sync peers, get unstable versions from somewhere, stabilize them
struct unstable_osd_num_t
{
osd_num_t osd_num;
int start, len;
};
struct osd_primary_op_data_t
{
int st = 0;
pg_num_t pg_num;
object_id oid;
uint64_t target_ver;
uint64_t fact_ver = 0;
int n_subops = 0, done = 0, errors = 0;
int degraded = 0, pg_size, pg_minsize;
osd_rmw_stripe_t *stripes;
osd_op_t *subops = NULL;
// for sync. oops, requires freeing
std::vector<unstable_osd_num_t> *unstable_write_osds = NULL;
obj_ver_id *unstable_writes = NULL;
};
void osd_t::finish_primary_op(osd_op_t *cur_op, int retval)
{
// FIXME add separate magic number
auto cl_it = clients.find(cur_op->peer_fd);
if (cl_it != clients.end())
{
cur_op->reply.hdr.magic = SECONDARY_OSD_REPLY_MAGIC;
cur_op->reply.hdr.id = cur_op->req.hdr.id;
cur_op->reply.hdr.opcode = cur_op->req.hdr.opcode;
cur_op->reply.hdr.retval = retval;
outbox_push(cl_it->second, cur_op);
}
else
{
delete cur_op;
}
}
bool osd_t::prepare_primary_rw(osd_op_t *cur_op)
{
// PG number is calculated from the offset
// Our EC scheme stores data in fixed chunks equal to (K*block size)
// But we must not use K in the process of calculating the PG number
// So we calculate the PG number using a separate setting which should be per-inode (FIXME)
// FIXME Real pg_num should equal the below expression + 1
pg_num_t pg_num = (cur_op->req.rw.inode + cur_op->req.rw.offset / parity_block_size) % pg_count;
// FIXME: Postpone operations in inactive PGs
if (pg_num > pgs.size() || !(pgs[pg_num].state & PG_ACTIVE))
{
finish_primary_op(cur_op, -EINVAL);
return false;
}
uint64_t pg_parity_size = bs_block_size * pgs[pg_num].pg_minsize;
object_id oid = {
.inode = cur_op->req.rw.inode,
// oid.stripe = starting offset of the parity stripe, so it can be mapped back to the PG
.stripe = (cur_op->req.rw.offset / parity_block_size) * parity_block_size +
((cur_op->req.rw.offset % parity_block_size) / pg_parity_size) * pg_parity_size
};
if ((cur_op->req.rw.offset + cur_op->req.rw.len) > (oid.stripe + pg_parity_size) ||
(cur_op->req.rw.offset % bs_disk_alignment) != 0 ||
(cur_op->req.rw.len % bs_disk_alignment) != 0)
{
finish_primary_op(cur_op, -EINVAL);
return false;
}
osd_primary_op_data_t *op_data = (osd_primary_op_data_t*)calloc(
sizeof(osd_primary_op_data_t) + sizeof(osd_rmw_stripe_t) * pgs[pg_num].pg_size, 1
);
op_data->pg_num = pg_num;
op_data->oid = oid;
op_data->stripes = ((osd_rmw_stripe_t*)(op_data+1));
cur_op->op_data = op_data;
split_stripes(pgs[pg_num].pg_minsize, bs_block_size, (uint32_t)(cur_op->req.rw.offset - oid.stripe), cur_op->req.rw.len, op_data->stripes);
return true;
}
void osd_t::continue_primary_read(osd_op_t *cur_op)
{
if (!cur_op->op_data && !prepare_primary_rw(cur_op))
{
return;
}
osd_primary_op_data_t *op_data = cur_op->op_data;
if (op_data->st == 1) goto resume_1;
else if (op_data->st == 2) goto resume_2;
{
auto & pg = pgs[op_data->pg_num];
for (int role = 0; role < pg.pg_minsize; role++)
{
op_data->stripes[role].read_start = op_data->stripes[role].req_start;
op_data->stripes[role].read_end = op_data->stripes[role].req_end;
}
// Determine version
auto vo_it = pg.ver_override.find(op_data->oid);
op_data->target_ver = vo_it != pg.ver_override.end() ? vo_it->second : UINT64_MAX;
if (pg.state == PG_ACTIVE)
{
// Fast happy-path
cur_op->buf = alloc_read_buffer(op_data->stripes, pg.pg_minsize, 0);
submit_primary_subops(SUBMIT_READ, pg.pg_minsize, pg.cur_set.data(), cur_op);
cur_op->send_list.push_back(cur_op->buf, cur_op->req.rw.len);
op_data->st = 1;
}
else
{
// PG may be degraded or have misplaced objects
auto st_it = pg.obj_states.find(op_data->oid);
uint64_t* cur_set = (st_it != pg.obj_states.end()
? st_it->second->read_target.data()
: pg.cur_set.data());
if (extend_missing_stripes(op_data->stripes, cur_set, pg.pg_minsize, pg.pg_size) < 0)
{
free(op_data);
finish_primary_op(cur_op, -EIO);
return;
}
// Submit reads
op_data->pg_minsize = pg.pg_minsize;
op_data->pg_size = pg.pg_size;
op_data->degraded = 1;
cur_op->buf = alloc_read_buffer(op_data->stripes, pg.pg_size, 0);
submit_primary_subops(SUBMIT_READ, pg.pg_size, cur_set, cur_op);
op_data->st = 1;
}
}
resume_1:
return;
resume_2:
if (op_data->errors > 0)
{
free(op_data);
cur_op->op_data = NULL;
finish_primary_op(cur_op, -EIO);
return;
}
if (op_data->degraded)
{
// Reconstruct missing stripes
// FIXME: Always EC(k+1) by now. Add different coding schemes
osd_rmw_stripe_t *stripes = op_data->stripes;
for (int role = 0; role < op_data->pg_minsize; role++)
{
if (stripes[role].read_end != 0 && stripes[role].missing)
{
reconstruct_stripe(stripes, op_data->pg_size, role);
}
if (stripes[role].req_end != 0)
{
// Send buffer in parts to avoid copying
cur_op->send_list.push_back(
stripes[role].read_buf + (stripes[role].req_start - stripes[role].read_start),
stripes[role].req_end - stripes[role].req_start
);
}
}
}
free(op_data);
cur_op->op_data = NULL;
finish_primary_op(cur_op, cur_op->req.rw.len);
}
void osd_t::submit_primary_subops(int submit_type, int pg_size, const uint64_t* osd_set, osd_op_t *cur_op)
{
bool w = submit_type == SUBMIT_WRITE;
osd_primary_op_data_t *op_data = cur_op->op_data;
osd_rmw_stripe_t *stripes = op_data->stripes;
// Allocate subops
int n_subops = 0, zero_read = -1;
for (int role = 0; role < pg_size; role++)
{
if (osd_set[role] == this->osd_num || osd_set[role] != 0 && zero_read == -1)
{
zero_read = role;
}
if (osd_set[role] != 0 && (w || stripes[role].read_end != 0))
{
n_subops++;
}
}
if (!n_subops && submit_type == SUBMIT_RMW_READ)
{
n_subops = 1;
}
else
{
zero_read = -1;
}
osd_op_t *subops = new osd_op_t[n_subops];
op_data->done = op_data->errors = 0;
op_data->n_subops = n_subops;
op_data->subops = subops;
int subop = 0;
for (int role = 0; role < pg_size; role++)
{
// We always submit zero-length writes to all replicas, even if the stripe is not modified
if (!(w || stripes[role].read_end != 0 || zero_read == role))
{
continue;
}
osd_num_t role_osd_num = osd_set[role];
if (role_osd_num != 0)
{
if (role_osd_num == this->osd_num)
{
subops[subop].bs_op = new blockstore_op_t({
.opcode = (uint64_t)(w ? BS_OP_WRITE : BS_OP_READ),
.callback = [cur_op, this](blockstore_op_t *subop)
{
handle_primary_subop(cur_op, subop->retval == subop->len, subop->version);
},
.oid = {
.inode = op_data->oid.inode,
.stripe = op_data->oid.stripe | role,
},
.version = w ? 0 : (submit_type == SUBMIT_RMW_READ ? UINT64_MAX : op_data->target_ver),
.offset = w ? stripes[role].write_start : stripes[role].read_start,
.len = w ? stripes[role].write_end - stripes[role].write_start : stripes[role].read_end - stripes[role].read_start,
.buf = w ? stripes[role].write_buf : stripes[role].read_buf,
});
bs->enqueue_op(subops[subop].bs_op);
}
else
{
subops[subop].op_type = OSD_OP_OUT;
subops[subop].send_list.push_back(subops[subop].req.buf, OSD_PACKET_SIZE);
subops[subop].peer_fd = this->osd_peer_fds.at(role_osd_num);
subops[subop].req.sec_rw = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = (uint64_t)(w ? OSD_OP_SECONDARY_WRITE : OSD_OP_SECONDARY_READ),
},
.oid = {
.inode = op_data->oid.inode,
.stripe = op_data->oid.stripe | role,
},
.version = w ? 0 : (submit_type == SUBMIT_RMW_READ ? UINT64_MAX : op_data->target_ver),
.offset = w ? stripes[role].write_start : stripes[role].read_start,
.len = w ? stripes[role].write_end - stripes[role].write_start : stripes[role].read_end - stripes[role].read_start,
};
subops[subop].buf = w ? stripes[role].write_buf : stripes[role].read_buf;
if (w && stripes[role].write_end > 0)
{
subops[subop].send_list.push_back(stripes[role].write_buf, stripes[role].write_end - stripes[role].write_start);
}
subops[subop].callback = [cur_op, this](osd_op_t *subop)
{
// so it doesn't get freed
subop->buf = NULL;
handle_primary_subop(cur_op, subop->reply.hdr.retval == subop->req.sec_rw.len, subop->reply.sec_rw.version);
};
outbox_push(clients[subops[subop].peer_fd], &subops[subop]);
}
subop++;
}
}
}
void osd_t::handle_primary_subop(osd_op_t *cur_op, int ok, uint64_t version)
{
osd_primary_op_data_t *op_data = cur_op->op_data;
op_data->fact_ver = version;
if (!ok)
{
// FIXME: Handle errors
op_data->errors++;
}
else
{
op_data->done++;
}
if ((op_data->errors + op_data->done) >= op_data->n_subops)
{
delete[] op_data->subops;
op_data->subops = NULL;
op_data->st++;
if (cur_op->req.hdr.opcode == OSD_OP_READ)
{
continue_primary_read(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_WRITE)
{
continue_primary_write(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_SYNC)
{
continue_primary_sync(cur_op);
}
else
{
throw std::runtime_error("BUG: unknown opcode");
}
}
}
void osd_t::continue_primary_write(osd_op_t *cur_op)
{
if (!cur_op->op_data && !prepare_primary_rw(cur_op))
{
return;
}
osd_primary_op_data_t *op_data = cur_op->op_data;
// FIXME: Handle operation cancel
auto & pg = pgs[op_data->pg_num];
if (op_data->st == 1) goto resume_1;
else if (op_data->st == 2) goto resume_2;
else if (op_data->st == 3) goto resume_3;
else if (op_data->st == 4) goto resume_4;
else if (op_data->st == 5) goto resume_5;
assert(op_data->st == 0);
// Check if actions are pending for this object
{
auto act_it = pg.obj_stab_actions.lower_bound((obj_piece_id_t){
.oid = op_data->oid,
.osd_num = 0,
});
if (act_it != pg.obj_stab_actions.end() &&
act_it->first.oid.inode == op_data->oid.inode &&
(act_it->first.oid.stripe & ~STRIPE_MASK) == op_data->oid.stripe)
{
// FIXME postpone the request until actions are done
free(op_data);
finish_primary_op(cur_op, -EIO);
return;
}
}
// Check if there are other write requests to the same object
{
auto vo_it = pg.write_queue.find(op_data->oid);
if (vo_it != pg.write_queue.end())
{
op_data->st = 1;
pg.write_queue.emplace(op_data->oid, cur_op);
return;
}
pg.write_queue.emplace(op_data->oid, cur_op);
}
resume_1:
// Determine blocks to read
cur_op->rmw_buf = calc_rmw_reads(cur_op->buf, op_data->stripes, pg.cur_set.data(), pg.pg_size, pg.pg_minsize, pg.pg_cursize);
// Read required blocks
submit_primary_subops(SUBMIT_RMW_READ, pg.pg_size, pg.cur_set.data(), cur_op);
resume_2:
op_data->st = 2;
return;
resume_3:
// Save version override for parallel reads
pg.ver_override[op_data->oid] = op_data->fact_ver;
// Calculate parity
calc_rmw_parity(op_data->stripes, pg.pg_size);
// Send writes
submit_primary_subops(SUBMIT_WRITE, pg.pg_size, pg.cur_set.data(), cur_op);
resume_4:
op_data->st = 4;
return;
resume_5:
// Remember version as unstable
osd_num_t *osd_set = pg.cur_set.data();
for (int role = 0; role < pg.pg_size; role++)
{
if (osd_set[role] != 0)
{
this->unstable_writes[(osd_object_id_t){
.osd_num = osd_set[role],
.oid = {
.inode = op_data->oid.inode,
.stripe = op_data->oid.stripe | role,
},
}] = op_data->fact_ver;
}
}
// Remember PG as dirty to drop the connection when PG goes offline
// (this is required because of the "lazy sync")
this->clients[cur_op->peer_fd].dirty_pgs.insert(op_data->pg_num);
// Remove version override
pg.ver_override.erase(op_data->oid);
finish_primary_op(cur_op, cur_op->req.rw.len);
// Continue other write operations to the same object
{
auto next_it = pg.write_queue.find(op_data->oid);
auto this_it = next_it;
next_it++;
pg.write_queue.erase(this_it);
if (next_it != pg.write_queue.end() &&
next_it->first == op_data->oid)
{
osd_op_t *next_op = next_it->second;
continue_primary_write(next_op);
}
}
}
// Save and clear unstable_writes -> SYNC all -> STABLE all
// FIXME: Run regular automatic syncs based on the number of unstable writes and/or system time
void osd_t::continue_primary_sync(osd_op_t *cur_op)
{
if (!cur_op->op_data)
{
cur_op->op_data = (osd_primary_op_data_t*)calloc(sizeof(osd_primary_op_data_t), 1);
}
if (cur_op->op_data->st == 1) goto resume_1;
else if (cur_op->op_data->st == 2) goto resume_2;
else if (cur_op->op_data->st == 3) goto resume_3;
else if (cur_op->op_data->st == 4) goto resume_4;
else if (cur_op->op_data->st == 5) goto resume_5;
else if (cur_op->op_data->st == 6) goto resume_6;
assert(cur_op->op_data->st == 0);
if (syncs_in_progress.size() > 0)
{
// Wait for previous syncs, if any
// FIXME: We may try to execute the current one in parallel, like in Blockstore, but I'm not sure if it matters at all
syncs_in_progress.push_back(cur_op);
cur_op->op_data->st = 1;
resume_1:
return;
}
else
{
syncs_in_progress.push_back(cur_op);
}
resume_2:
// FIXME: Handle operation cancel
if (unstable_writes.size() == 0)
{
// Nothing to sync
goto finish;
}
// Save and clear unstable_writes
// FIXME: This is possible to do it on a per-client basis
// It would be cool not to copy them here at all, but someone has to deduplicate them by object IDs anyway
cur_op->op_data->unstable_write_osds = new std::vector<unstable_osd_num_t>();
cur_op->op_data->unstable_writes = new obj_ver_id[unstable_writes.size()];
{
osd_num_t last_osd = 0;
int last_start = 0, last_end = 0;
for (auto it = unstable_writes.begin(); it != unstable_writes.end(); it++)
{
if (last_osd != it->first.osd_num)
{
if (last_osd != 0)
{
cur_op->op_data->unstable_write_osds->push_back((unstable_osd_num_t){
.osd_num = last_osd,
.start = last_start,
.len = last_end - last_start,
});
}
last_osd = it->first.osd_num;
last_start = last_end;
}
cur_op->op_data->unstable_writes[last_end] = (obj_ver_id){
.oid = it->first.oid,
.version = it->second,
};
last_end++;
}
if (last_osd != 0)
{
cur_op->op_data->unstable_write_osds->push_back((unstable_osd_num_t){
.osd_num = last_osd,
.start = last_start,
.len = last_end - last_start,
});
}
}
unstable_writes.clear();
// SYNC
submit_primary_sync_subops(cur_op);
resume_3:
cur_op->op_data->st = 3;
return;
resume_4:
// Stabilize version sets
submit_primary_stab_subops(cur_op);
resume_5:
cur_op->op_data->st = 5;
return;
resume_6:
// FIXME: Free them correctly (via a destructor or so)
delete cur_op->op_data->unstable_write_osds;
delete[] cur_op->op_data->unstable_writes;
cur_op->op_data->unstable_writes = NULL;
cur_op->op_data->unstable_write_osds = NULL;
finish:
assert(syncs_in_progress.front() == cur_op);
syncs_in_progress.pop_front();
finish_primary_op(cur_op, 0);
if (syncs_in_progress.size() > 0)
{
cur_op = syncs_in_progress.front();
cur_op->op_data->st++;
goto resume_2;
}
}
void osd_t::submit_primary_sync_subops(osd_op_t *cur_op)
{
osd_primary_op_data_t *op_data = cur_op->op_data;
int n_osds = op_data->unstable_write_osds->size();
osd_op_t *subops = new osd_op_t[n_osds];
op_data->done = op_data->errors = 0;
op_data->n_subops = n_osds;
op_data->subops = subops;
for (int i = 0; i < n_osds; i++)
{
osd_num_t sync_osd = (*(op_data->unstable_write_osds))[i].osd_num;
if (sync_osd == this->osd_num)
{
subops[i].bs_op = new blockstore_op_t({
.opcode = BS_OP_SYNC,
.callback = [cur_op, this](blockstore_op_t *subop)
{
handle_primary_subop(cur_op, subop->retval == 0, 0);
},
});
bs->enqueue_op(subops[i].bs_op);
}
else
{
subops[i].op_type = OSD_OP_OUT;
subops[i].send_list.push_back(subops[i].req.buf, OSD_PACKET_SIZE);
subops[i].peer_fd = osd_peer_fds.at(sync_osd);
subops[i].req.sec_sync = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = OSD_OP_SECONDARY_SYNC,
},
};
subops[i].callback = [cur_op, this](osd_op_t *subop)
{
handle_primary_subop(cur_op, subop->reply.hdr.retval == 0, 0);
};
outbox_push(clients[subops[i].peer_fd], &subops[i]);
}
}
}
void osd_t::submit_primary_stab_subops(osd_op_t *cur_op)
{
osd_primary_op_data_t *op_data = cur_op->op_data;
int n_osds = op_data->unstable_write_osds->size();
osd_op_t *subops = new osd_op_t[n_osds];
op_data->done = op_data->errors = 0;
op_data->n_subops = n_osds;
op_data->subops = subops;
for (int i = 0; i < n_osds; i++)
{
auto & stab_osd = (*(op_data->unstable_write_osds))[i];
if (stab_osd.osd_num == this->osd_num)
{
subops[i].bs_op = new blockstore_op_t({
.opcode = BS_OP_STABLE,
.callback = [cur_op, this](blockstore_op_t *subop)
{
handle_primary_subop(cur_op, subop->retval == 0, 0);
},
.len = (uint32_t)stab_osd.len,
.buf = (void*)(op_data->unstable_writes + stab_osd.start),
});
bs->enqueue_op(subops[i].bs_op);
}
else
{
subops[i].op_type = OSD_OP_OUT;
subops[i].send_list.push_back(subops[i].req.buf, OSD_PACKET_SIZE);
subops[i].peer_fd = osd_peer_fds.at(stab_osd.osd_num);
subops[i].req.sec_stab = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = OSD_OP_SECONDARY_STABILIZE,
},
.len = (uint64_t)(stab_osd.len * sizeof(obj_ver_id)),
};
subops[i].send_list.push_back(op_data->unstable_writes + stab_osd.start, stab_osd.len * sizeof(obj_ver_id));
subops[i].callback = [cur_op, this](osd_op_t *subop)
{
handle_primary_subop(cur_op, subop->reply.hdr.retval == 0, 0);
};
outbox_push(clients[subops[i].peer_fd], &subops[i]);
}
}
}