Simplified distributed block storage with strong consistency, like in Ceph
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

312 lines
9.8 KiB

// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.0 or GNU GPL-2.0+ (see README.md for details)
#include "messenger.h"
void osd_messenger_t::read_requests()
{
for (int i = 0; i < read_ready_clients.size(); i++)
{
int peer_fd = read_ready_clients[i];
osd_client_t *cl = clients[peer_fd];
if (cl->read_remaining < receive_buffer_size)
{
cl->read_iov.iov_base = cl->in_buf;
cl->read_iov.iov_len = receive_buffer_size;
cl->read_msg.msg_iov = &cl->read_iov;
cl->read_msg.msg_iovlen = 1;
}
else
{
cl->read_iov.iov_base = 0;
cl->read_iov.iov_len = cl->read_remaining;
cl->read_msg.msg_iov = cl->recv_list.get_iovec();
cl->read_msg.msg_iovlen = cl->recv_list.get_size();
}
cl->refs++;
if (ringloop && !use_sync_send_recv)
{
io_uring_sqe* sqe = ringloop->get_sqe();
if (!sqe)
{
read_ready_clients.erase(read_ready_clients.begin(), read_ready_clients.begin() + i);
return;
}
ring_data_t* data = ((ring_data_t*)sqe->user_data);
data->callback = [this, cl](ring_data_t *data) { handle_read(data->res, cl); };
my_uring_prep_recvmsg(sqe, peer_fd, &cl->read_msg, 0);
}
else
{
int result = recvmsg(peer_fd, &cl->read_msg, 0);
if (result < 0)
{
result = -errno;
}
handle_read(result, cl);
}
}
read_ready_clients.clear();
}
bool osd_messenger_t::handle_read(int result, osd_client_t *cl)
{
bool ret = false;
cl->refs--;
if (cl->peer_state == PEER_STOPPED)
{
if (cl->refs <= 0)
{
delete cl;
}
return false;
}
if (result <= 0 && result != -EAGAIN)
{
// this is a client socket, so don't panic on error. just disconnect it
if (result != 0)
{
printf("Client %d socket read error: %d (%s). Disconnecting client\n", cl->peer_fd, -result, strerror(-result));
}
stop_client(cl->peer_fd);
return false;
}
if (result == -EAGAIN || result < cl->read_iov.iov_len)
{
cl->read_ready--;
if (cl->read_ready > 0)
read_ready_clients.push_back(cl->peer_fd);
}
else
{
read_ready_clients.push_back(cl->peer_fd);
}
if (result > 0)
{
if (cl->read_iov.iov_base == cl->in_buf)
{
// Compose operation(s) from the buffer
int remain = result;
void *curbuf = cl->in_buf;
while (remain > 0)
{
if (!cl->read_op)
{
cl->read_op = new osd_op_t;
cl->read_op->peer_fd = cl->peer_fd;
cl->read_op->op_type = OSD_OP_IN;
cl->recv_list.push_back(cl->read_op->req.buf, OSD_PACKET_SIZE);
cl->read_remaining = OSD_PACKET_SIZE;
cl->read_state = CL_READ_HDR;
}
while (cl->recv_list.done < cl->recv_list.count && remain > 0)
{
iovec* cur = cl->recv_list.get_iovec();
if (cur->iov_len > remain)
{
memcpy(cur->iov_base, curbuf, remain);
cl->read_remaining -= remain;
cur->iov_len -= remain;
cur->iov_base += remain;
remain = 0;
}
else
{
memcpy(cur->iov_base, curbuf, cur->iov_len);
curbuf += cur->iov_len;
cl->read_remaining -= cur->iov_len;
remain -= cur->iov_len;
cur->iov_len = 0;
cl->recv_list.done++;
}
}
if (cl->recv_list.done >= cl->recv_list.count)
{
if (!handle_finished_read(cl))
{
goto fin;
}
}
}
}
else
{
// Long data
cl->read_remaining -= result;
cl->recv_list.eat(result);
if (cl->recv_list.done >= cl->recv_list.count)
{
handle_finished_read(cl);
}
}
if (result >= cl->read_iov.iov_len)
{
ret = true;
}
}
fin:
for (auto cb: set_immediate)
{
cb();
}
set_immediate.clear();
return ret;
}
bool osd_messenger_t::handle_finished_read(osd_client_t *cl)
{
cl->recv_list.reset();
if (cl->read_state == CL_READ_HDR)
{
if (cl->read_op->req.hdr.magic == SECONDARY_OSD_REPLY_MAGIC)
return handle_reply_hdr(cl);
else
handle_op_hdr(cl);
}
else if (cl->read_state == CL_READ_DATA)
{
// Operation is ready
cl->received_ops.push_back(cl->read_op);
set_immediate.push_back([this, op = cl->read_op]() { exec_op(op); });
cl->read_op = NULL;
cl->read_state = 0;
}
else if (cl->read_state == CL_READ_REPLY_DATA)
{
// Reply is ready
handle_reply_ready(cl->read_op);
cl->read_op = NULL;
cl->read_state = 0;
}
else
{
assert(0);
}
return true;
}
void osd_messenger_t::handle_op_hdr(osd_client_t *cl)
{
osd_op_t *cur_op = cl->read_op;
if (cur_op->req.hdr.opcode == OSD_OP_SEC_READ)
{
if (cur_op->req.sec_rw.len > 0)
cur_op->buf = memalign_or_die(MEM_ALIGNMENT, cur_op->req.sec_rw.len);
cl->read_remaining = 0;
}
else if (cur_op->req.hdr.opcode == OSD_OP_SEC_WRITE ||
cur_op->req.hdr.opcode == OSD_OP_SEC_WRITE_STABLE)
{
if (cur_op->req.sec_rw.len > 0)
cur_op->buf = memalign_or_die(MEM_ALIGNMENT, cur_op->req.sec_rw.len);
cl->read_remaining = cur_op->req.sec_rw.len;
}
else if (cur_op->req.hdr.opcode == OSD_OP_SEC_STABILIZE ||
cur_op->req.hdr.opcode == OSD_OP_SEC_ROLLBACK)
{
if (cur_op->req.sec_stab.len > 0)
cur_op->buf = memalign_or_die(MEM_ALIGNMENT, cur_op->req.sec_stab.len);
cl->read_remaining = cur_op->req.sec_stab.len;
}
else if (cur_op->req.hdr.opcode == OSD_OP_READ)
{
cl->read_remaining = 0;
}
else if (cur_op->req.hdr.opcode == OSD_OP_WRITE)
{
if (cur_op->req.rw.len > 0)
cur_op->buf = memalign_or_die(MEM_ALIGNMENT, cur_op->req.rw.len);
cl->read_remaining = cur_op->req.rw.len;
}
if (cl->read_remaining > 0)
{
// Read data
cl->recv_list.push_back(cur_op->buf, cl->read_remaining);
cl->read_state = CL_READ_DATA;
}
else
{
// Operation is ready
cl->received_ops.push_back(cur_op);
set_immediate.push_back([this, cur_op]() { exec_op(cur_op); });
cl->read_op = NULL;
cl->read_state = 0;
}
}
bool osd_messenger_t::handle_reply_hdr(osd_client_t *cl)
{
auto req_it = cl->sent_ops.find(cl->read_op->req.hdr.id);
if (req_it == cl->sent_ops.end())
{
// Command out of sync. Drop connection
printf("Client %d command out of sync: id %lu\n", cl->peer_fd, cl->read_op->req.hdr.id);
stop_client(cl->peer_fd);
return false;
}
osd_op_t *op = req_it->second;
memcpy(op->reply.buf, cl->read_op->req.buf, OSD_PACKET_SIZE);
cl->sent_ops.erase(req_it);
if ((op->reply.hdr.opcode == OSD_OP_SEC_READ || op->reply.hdr.opcode == OSD_OP_READ) &&
op->reply.hdr.retval > 0)
{
// Read data. In this case we assume that the buffer is preallocated by the caller (!)
assert(op->iov.count > 0);
cl->recv_list.append(op->iov);
delete cl->read_op;
cl->read_op = op;
cl->read_state = CL_READ_REPLY_DATA;
cl->read_remaining = op->reply.hdr.retval;
}
else if (op->reply.hdr.opcode == OSD_OP_SEC_LIST && op->reply.hdr.retval > 0)
{
assert(!op->iov.count);
delete cl->read_op;
cl->read_op = op;
cl->read_state = CL_READ_REPLY_DATA;
cl->read_remaining = sizeof(obj_ver_id) * op->reply.hdr.retval;
op->buf = memalign_or_die(MEM_ALIGNMENT, cl->read_remaining);
cl->recv_list.push_back(op->buf, cl->read_remaining);
}
else if (op->reply.hdr.opcode == OSD_OP_SHOW_CONFIG && op->reply.hdr.retval > 0)
{
assert(!op->iov.count);
delete cl->read_op;
cl->read_op = op;
cl->read_state = CL_READ_REPLY_DATA;
cl->read_remaining = op->reply.hdr.retval;
op->buf = malloc_or_die(op->reply.hdr.retval);
cl->recv_list.push_back(op->buf, op->reply.hdr.retval);
}
else
{
// It's fine to reuse cl->read_op for the next reply
handle_reply_ready(op);
cl->recv_list.push_back(cl->read_op->req.buf, OSD_PACKET_SIZE);
cl->read_remaining = OSD_PACKET_SIZE;
cl->read_state = CL_READ_HDR;
}
return true;
}
void osd_messenger_t::handle_reply_ready(osd_op_t *op)
{
// Measure subop latency
timespec tv_end;
clock_gettime(CLOCK_REALTIME, &tv_end);
stats.subop_stat_count[op->req.hdr.opcode]++;
if (!stats.subop_stat_count[op->req.hdr.opcode])
{
stats.subop_stat_count[op->req.hdr.opcode]++;
stats.subop_stat_sum[op->req.hdr.opcode] = 0;
}
stats.subop_stat_sum[op->req.hdr.opcode] += (
(tv_end.tv_sec - op->tv_begin.tv_sec)*1000000 +
(tv_end.tv_nsec - op->tv_begin.tv_nsec)/1000
);
set_immediate.push_back([this, op]()
{
// Copy lambda to be unaffected by `delete op`
std::function<void(osd_op_t*)>(op->callback)(op);
});
}