vitastor/src/msgr_rdma.cpp

740 lines
24 KiB
C++

// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
#include <stdio.h>
#include <stdlib.h>
#include "msgr_rdma.h"
#include "messenger.h"
std::string msgr_rdma_address_t::to_string()
{
char msg[sizeof "0000:00000000:00000000:00000000000000000000000000000000"];
sprintf(
msg, "%04x:%06x:%06x:%016lx%016lx", lid, qpn, psn,
htobe64(((uint64_t*)&gid)[0]), htobe64(((uint64_t*)&gid)[1])
);
return std::string(msg);
}
bool msgr_rdma_address_t::from_string(const char *str, msgr_rdma_address_t *dest)
{
uint64_t* gid = (uint64_t*)&dest->gid;
int n = sscanf(
str, "%hx:%x:%x:%16lx%16lx", &dest->lid, &dest->qpn, &dest->psn, gid, gid+1
);
gid[0] = be64toh(gid[0]);
gid[1] = be64toh(gid[1]);
return n == 5;
}
msgr_rdma_context_t::~msgr_rdma_context_t()
{
if (cq)
ibv_destroy_cq(cq);
if (channel)
ibv_destroy_comp_channel(channel);
if (mr)
ibv_dereg_mr(mr);
if (pd)
ibv_dealloc_pd(pd);
if (context)
ibv_close_device(context);
}
msgr_rdma_connection_t::~msgr_rdma_connection_t()
{
ctx->used_max_cqe -= max_send+max_recv;
if (qp)
ibv_destroy_qp(qp);
if (in_data_mr)
ibv_dereg_mr(in_data_mr);
if (in_op_mr)
ibv_dereg_mr(in_op_mr);
if (in_data_buf)
free(in_data_buf);
if (in_ops)
free(in_ops);
if (out_op_alloc)
delete out_op_alloc;
if (out_slot_data)
free(out_slot_data);
if (out_slot_ops)
free(out_slot_ops);
}
msgr_rdma_context_t *msgr_rdma_context_t::create(const char *ib_devname, uint8_t ib_port, uint8_t gid_index, uint32_t mtu, int log_level)
{
int res;
ibv_device **dev_list = NULL;
msgr_rdma_context_t *ctx = new msgr_rdma_context_t();
ctx->mtu = mtu;
timespec tv;
clock_gettime(CLOCK_REALTIME, &tv);
srand48(tv.tv_sec*1000000000 + tv.tv_nsec);
dev_list = ibv_get_device_list(NULL);
if (!dev_list)
{
if (errno == -ENOSYS || errno == ENOSYS)
{
if (log_level > 0)
fprintf(stderr, "No RDMA devices found (RDMA device list returned ENOSYS)\n");
}
else
fprintf(stderr, "Failed to get RDMA device list: %s\n", strerror(errno));
goto cleanup;
}
if (!ib_devname)
{
ctx->dev = *dev_list;
if (!ctx->dev)
{
if (log_level > 0)
fprintf(stderr, "No RDMA devices found\n");
goto cleanup;
}
}
else
{
int i;
for (i = 0; dev_list[i]; ++i)
if (!strcmp(ibv_get_device_name(dev_list[i]), ib_devname))
break;
ctx->dev = dev_list[i];
if (!ctx->dev)
{
fprintf(stderr, "RDMA device %s not found\n", ib_devname);
goto cleanup;
}
}
ctx->context = ibv_open_device(ctx->dev);
if (!ctx->context)
{
fprintf(stderr, "Couldn't get RDMA context for %s\n", ibv_get_device_name(ctx->dev));
goto cleanup;
}
ctx->ib_port = ib_port;
ctx->gid_index = gid_index;
if ((res = ibv_query_port(ctx->context, ib_port, &ctx->portinfo)) != 0)
{
fprintf(stderr, "Couldn't get RDMA device %s port %d info: %s\n", ibv_get_device_name(ctx->dev), ib_port, strerror(res));
goto cleanup;
}
ctx->my_lid = ctx->portinfo.lid;
if (ctx->portinfo.link_layer != IBV_LINK_LAYER_ETHERNET && !ctx->my_lid)
{
fprintf(stderr, "RDMA device %s must have local LID because it's not Ethernet, but LID is zero\n", ibv_get_device_name(ctx->dev));
goto cleanup;
}
if (ibv_query_gid(ctx->context, ib_port, gid_index, &ctx->my_gid))
{
fprintf(stderr, "Couldn't read RDMA device %s GID index %d\n", ibv_get_device_name(ctx->dev), gid_index);
goto cleanup;
}
ctx->pd = ibv_alloc_pd(ctx->context);
if (!ctx->pd)
{
fprintf(stderr, "Couldn't allocate RDMA protection domain\n");
goto cleanup;
}
{
if (ibv_query_device_ex(ctx->context, NULL, &ctx->attrx))
{
fprintf(stderr, "Couldn't query RDMA device for its features\n");
goto cleanup;
}
if (!(ctx->attrx.odp_caps.general_caps & IBV_ODP_SUPPORT) ||
!(ctx->attrx.odp_caps.general_caps & IBV_ODP_SUPPORT_IMPLICIT) ||
!(ctx->attrx.odp_caps.per_transport_caps.rc_odp_caps & IBV_ODP_SUPPORT_SEND) ||
!(ctx->attrx.odp_caps.per_transport_caps.rc_odp_caps & IBV_ODP_SUPPORT_RECV))
{
fprintf(stderr, "The RDMA device isn't implicit ODP (On-Demand Paging) capable or does not support RC send and receive with ODP\n");
goto cleanup;
}
}
ctx->mr = ibv_reg_mr(ctx->pd, NULL, SIZE_MAX, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_ON_DEMAND);
if (!ctx->mr)
{
fprintf(stderr, "Couldn't register global RDMA memory region: %s\n", strerror(errno));
goto cleanup;
}
ctx->channel = ibv_create_comp_channel(ctx->context);
if (!ctx->channel)
{
fprintf(stderr, "Couldn't create RDMA completion channel\n");
goto cleanup;
}
ctx->max_cqe = 4096;
ctx->cq = ibv_create_cq(ctx->context, ctx->max_cqe, NULL, ctx->channel, 0);
if (!ctx->cq)
{
fprintf(stderr, "Couldn't create RDMA completion queue\n");
goto cleanup;
}
if (dev_list)
ibv_free_device_list(dev_list);
return ctx;
cleanup:
delete ctx;
if (dev_list)
ibv_free_device_list(dev_list);
return NULL;
}
msgr_rdma_connection_t *msgr_rdma_connection_t::create(msgr_rdma_context_t *ctx, uint32_t max_send,
uint32_t max_recv, uint32_t max_sge, uint64_t op_slots, uint64_t op_memory)
{
msgr_rdma_connection_t *conn = new msgr_rdma_connection_t;
max_sge = max_sge > ctx->attrx.orig_attr.max_sge ? ctx->attrx.orig_attr.max_sge : max_sge;
conn->ctx = ctx;
conn->max_send = max_send;
conn->max_recv = max_recv;
conn->max_sge = max_sge;
ctx->used_max_cqe += max_send+max_recv;
if (ctx->used_max_cqe > ctx->max_cqe)
{
// Resize CQ
// Mellanox ConnectX-4 supports up to 4194303 CQEs, so it's fine to put everything into a single CQ
int new_max_cqe = ctx->max_cqe;
while (ctx->used_max_cqe > new_max_cqe)
{
new_max_cqe *= 2;
}
if (ibv_resize_cq(ctx->cq, new_max_cqe) != 0)
{
fprintf(stderr, "Couldn't resize RDMA completion queue to %d entries\n", new_max_cqe);
delete conn;
return NULL;
}
ctx->max_cqe = new_max_cqe;
}
conn->op_memory = op_memory;
conn->in_data_buf = memalign_or_die(MEM_ALIGNMENT, op_memory);
conn->in_data_mr = ibv_reg_mr(ctx->pd, conn->in_data_buf, op_memory,
IBV_ACCESS_ZERO_BASED | IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE | IBV_ACCESS_ON_DEMAND);
if (!conn->in_data_mr)
{
fprintf(stderr, "Couldn't register %lu MB RDMA memory region for incoming data: %s\n",
(op_memory+1024*1024-1)/1024/1024, strerror(errno));
delete conn;
return NULL;
}
conn->op_slots = op_slots;
conn->in_ops = (msgr_rdma_cmd_t *)malloc_or_die(sizeof(msgr_rdma_cmd_t) * op_slots);
conn->in_op_mr = ibv_reg_mr(ctx->pd, conn->in_ops, sizeof(msgr_rdma_cmd_t) * op_slots,
IBV_ACCESS_ZERO_BASED | IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE | IBV_ACCESS_ON_DEMAND);
if (!conn->in_op_mr)
{
fprintf(stderr, "Couldn't register %lu KB RDMA memory region for incoming operation headers: %s\n",
(sizeof(msgr_rdma_cmd_t) * op_slots + 1023)/1024, strerror(errno));
delete conn;
return NULL;
}
ibv_qp_init_attr init_attr = {
.send_cq = ctx->cq,
.recv_cq = ctx->cq,
.cap = {
.max_send_wr = max_send,
.max_recv_wr = max_recv,
.max_send_sge = max_sge,
.max_recv_sge = max_sge,
},
.qp_type = IBV_QPT_RC,
};
conn->qp = ibv_create_qp(ctx->pd, &init_attr);
if (!conn->qp)
{
fprintf(stderr, "Couldn't create RDMA queue pair\n");
delete conn;
return NULL;
}
conn->addr.lid = ctx->my_lid;
conn->addr.gid = ctx->my_gid;
conn->addr.qpn = conn->qp->qp_num;
conn->addr.psn = lrand48() & 0xffffff;
ibv_qp_attr attr = {
.qp_state = IBV_QPS_INIT,
.qp_access_flags = IBV_ACCESS_REMOTE_WRITE,
.pkey_index = 0,
.port_num = ctx->ib_port,
};
if (ibv_modify_qp(conn->qp, &attr, IBV_QP_STATE | IBV_QP_PKEY_INDEX | IBV_QP_PORT | IBV_QP_ACCESS_FLAGS))
{
fprintf(stderr, "Failed to switch RDMA queue pair to INIT state\n");
delete conn;
return NULL;
}
return conn;
}
static ibv_mtu mtu_to_ibv_mtu(uint32_t mtu)
{
switch (mtu)
{
case 256: return IBV_MTU_256;
case 512: return IBV_MTU_512;
case 1024: return IBV_MTU_1024;
case 2048: return IBV_MTU_2048;
case 4096: return IBV_MTU_4096;
}
return IBV_MTU_4096;
}
void msgr_rdma_connection_t::set_out_capacity(uint32_t out_data_rkey, uint32_t out_op_rkey, uint64_t out_op_slots, uint64_t out_op_memory)
{
assert(!out_op_alloc);
this->out_data_rkey = out_data_rkey;
this->out_op_rkey = out_op_rkey;
this->out_op_slots = out_op_slots;
this->out_op_memory = out_op_memory;
out_op_alloc = new allocator(out_op_slots);
out_data_alloc.free(0, out_op_memory);
out_slot_data = (msgr_rdma_out_pos_t *)malloc_or_die(sizeof(msgr_rdma_out_pos_t) * out_op_slots);
out_slot_ops = (osd_op_t **)malloc_or_die(sizeof(osd_op_t *) * out_op_slots);
}
int msgr_rdma_connection_t::connect(msgr_rdma_address_t *dest)
{
auto conn = this;
ibv_qp_attr attr = {
.qp_state = IBV_QPS_RTR,
.path_mtu = mtu_to_ibv_mtu(conn->ctx->mtu),
.rq_psn = dest->psn,
.sq_psn = conn->addr.psn,
.dest_qp_num = dest->qpn,
.ah_attr = {
.grh = {
.dgid = dest->gid,
.sgid_index = conn->ctx->gid_index,
.hop_limit = 1, // FIXME can it vary?
},
.dlid = dest->lid,
.sl = 0, // service level
.src_path_bits = 0,
.is_global = (uint8_t)(dest->gid.global.interface_id ? 1 : 0),
.port_num = conn->ctx->ib_port,
},
.max_rd_atomic = 1,
.max_dest_rd_atomic = 1,
// Timeout and min_rnr_timer actual values seem to be 4.096us*2^(timeout+1)
.min_rnr_timer = 1,
.timeout = 14,
.retry_cnt = 7,
.rnr_retry = 7,
};
// FIXME No idea if ibv_modify_qp is a blocking operation or not. No idea if it has a timeout and what it is.
if (ibv_modify_qp(conn->qp, &attr, IBV_QP_STATE | IBV_QP_AV | IBV_QP_PATH_MTU |
IBV_QP_DEST_QPN | IBV_QP_RQ_PSN | IBV_QP_MAX_DEST_RD_ATOMIC | IBV_QP_MIN_RNR_TIMER))
{
fprintf(stderr, "Failed to switch RDMA queue pair to RTR (ready-to-receive) state\n");
return 1;
}
attr.qp_state = IBV_QPS_RTS;
if (ibv_modify_qp(conn->qp, &attr, IBV_QP_STATE | IBV_QP_TIMEOUT |
IBV_QP_RETRY_CNT | IBV_QP_RNR_RETRY | IBV_QP_SQ_PSN | IBV_QP_MAX_QP_RD_ATOMIC))
{
fprintf(stderr, "Failed to switch RDMA queue pair to RTS (ready-to-send) state\n");
return 1;
}
return 0;
}
bool osd_messenger_t::connect_rdma(int peer_fd, std::string rdma_address,
uint32_t out_data_rkey, uint32_t out_op_rkey, uint64_t out_op_slots, uint64_t out_op_memory)
{
// Try to connect to the peer using RDMA
msgr_rdma_address_t addr;
if (msgr_rdma_address_t::from_string(rdma_address.c_str(), &addr))
{
auto rdma_conn = msgr_rdma_connection_t::create(rdma_context, rdma_max_send, rdma_max_recv, rdma_max_sge, rdma_op_slots, rdma_op_memory);
if (rdma_conn)
{
int r = rdma_conn->connect(&addr);
if (r != 0)
{
delete rdma_conn;
fprintf(
stderr, "Failed to connect RDMA queue pair to %s (client %d)\n",
addr.to_string().c_str(), peer_fd
);
}
else
{
// Remember connection, but switch to RDMA only after sending the configuration response
clients_by_qp[rdma_conn->qp->qp_num] = peer_fd;
rdma_conn->set_out_capacity(out_data_rkey, out_op_rkey, out_op_slots, out_op_memory);
auto cl = clients.at(peer_fd);
cl->rdma_conn = rdma_conn;
cl->peer_state = PEER_RDMA_CONNECTING;
return true;
}
}
}
return false;
}
bool osd_messenger_t::try_send_rdma(osd_client_t *cl)
{
auto rc = cl->rdma_conn;
if (!cl->send_list.size() && !rc->in_slots_freed.size() || rc->cur_send >= rc->max_send)
{
return true;
}
int i = 0;
while (i < rc->in_slots_freed.size())
{
auto op_slot = rc->in_slots_freed[i++];
assert(op_slot < 0x80000000);
ibv_send_wr *bad_wr = NULL;
ibv_send_wr wr = {
.wr_id = 0,
.opcode = IBV_WR_RDMA_WRITE_WITH_IMM,
.imm_data = 0x80000000 | op_slot,
};
int err = ibv_post_send(cl->rdma_conn->qp, &wr, &bad_wr);
if (err || bad_wr)
{
fprintf(stderr, "RDMA send failed: %s\n", strerror(err));
exit(1);
}
rc->cur_send++;
if (rc->cur_send >= rc->max_send)
{
break;
}
}
rc->in_slots_freed.erase(rc->in_slots_freed.begin(), rc->in_slots_freed.begin()+i);
if (!cl->send_list.size() || rc->cur_send >= rc->max_send)
{
return true;
}
ibv_sge sge[rc->max_sge];
int op_start = 0;
while (op_start < cl->send_list.size())
{
uint64_t op_data_size = 0;
int op_end = op_start;
while (!(cl->outbox[op_end].flags & MSGR_SENDP_LAST))
{
op_data_size += cl->send_list[op_end].iov_len;
op_end++;
}
op_data_size += cl->send_list[op_end].iov_len;
op_end++;
op_data_size -= cl->send_list[op_start].iov_len;
// Operation boundaries in send_list: op_start..op_end, first iovec is the header
uint64_t op_slot = rc->out_op_alloc->find_free();
if (op_slot == UINT64_MAX)
{
// op queue is full
return true;
}
uint64_t data_pos = UINT64_MAX;
if (op_data_size >= 0)
{
if (rc->cur_send > rc->max_send-1-(op_end-op_start-1+rc->max_sge)/rc->max_sge)
{
// RDMA queue is full
return true;
}
// FIXME: Oops, and what if op data is larger than the whole buffer... :)
data_pos = rc->out_data_alloc.alloc(op_data_size);
if (data_pos == UINT64_MAX)
{
// data buffers are full
return true;
}
int cur_sge = 0;
for (int data_sent = 1; data_sent < op_end; data_sent++)
{
sge[cur_sge++] = {
.addr = (uintptr_t)cl->send_list[data_sent].iov_base,
.length = (uint32_t)cl->send_list[data_sent].iov_len,
.lkey = rc->ctx->mr->lkey,
};
if (data_sent == op_end-1 || cur_sge >= rc->max_sge)
{
ibv_send_wr *bad_wr = NULL;
ibv_send_wr wr = {
.wr_id = op_slot,
.next = NULL,
.sg_list = sge,
.num_sge = cur_sge,
.opcode = IBV_WR_RDMA_WRITE,
.send_flags = 0,
.wr = {
.rdma = {
.remote_addr = data_pos,
.rkey = rc->out_data_rkey,
},
},
};
int err = ibv_post_send(cl->rdma_conn->qp, &wr, &bad_wr);
if (err || bad_wr)
{
fprintf(stderr, "RDMA send failed: %s\n", strerror(err));
exit(1);
}
rc->cur_send++;
cur_sge = 0;
}
}
}
if (rc->cur_send > rc->max_send-1)
{
// RDMA queue is full
return true;
}
rc->out_op_alloc->set(op_slot, true);
assert(cl->send_list[op_start].iov_len == OSD_PACKET_SIZE);
sge[0] = {
.addr = (uintptr_t)cl->send_list[op_start].iov_base,
.length = (uint32_t)cl->send_list[op_start].iov_len,
.lkey = rc->ctx->mr->lkey,
};
rc->out_slot_data[op_slot] = { .data_pos = data_pos, .data_size = op_data_size };
rc->out_slot_ops[op_slot] = (cl->outbox[op_end-1].flags & MSGR_SENDP_FREE)
? cl->outbox[op_end-1].op : NULL;
sge[1] = {
.addr = (uintptr_t)(rc->out_slot_data+op_slot),
.length = sizeof(rc->out_slot_data[op_slot]),
.lkey = rc->ctx->mr->lkey,
};
ibv_send_wr *bad_wr = NULL;
ibv_send_wr wr = {
.wr_id = op_slot,
.next = NULL,
.sg_list = sge,
.num_sge = 2,
.opcode = IBV_WR_RDMA_WRITE_WITH_IMM,
.send_flags = IBV_SEND_SIGNALED,
.imm_data = (uint32_t)op_slot,
.wr = {
.rdma = {
.remote_addr = op_slot*sizeof(msgr_rdma_cmd_t),
.rkey = rc->out_op_rkey,
},
},
};
int err = ibv_post_send(cl->rdma_conn->qp, &wr, &bad_wr);
if (err || bad_wr)
{
fprintf(stderr, "RDMA send failed: %s\n", strerror(err));
exit(1);
}
rc->cur_send++;
op_start = op_end;
}
if (op_start > 0)
{
cl->send_list.erase(cl->send_list.begin(), cl->send_list.begin()+op_start);
}
return true;
}
static void try_recv_rdma_wr(osd_client_t *cl, ibv_sge *sge, int op_sge)
{
ibv_recv_wr *bad_wr = NULL;
ibv_recv_wr wr = {
.wr_id = (uint64_t)(cl->peer_fd*2),
.sg_list = sge,
.num_sge = op_sge,
};
int err = ibv_post_recv(cl->rdma_conn->qp, &wr, &bad_wr);
if (err || bad_wr)
{
fprintf(stderr, "RDMA receive failed: %s\n", strerror(err));
exit(1);
}
cl->rdma_conn->cur_recv++;
}
static void copy_data_to_recv_list(uint8_t *data_buf, uint64_t data_size, osd_client_t *cl)
{
uint64_t pos = 0;
while (cl->recv_list.done < cl->recv_list.count)
{
uint64_t cur = cl->recv_list.buf[cl->recv_list.done].iov_len;
assert(cur <= data_size-pos);
memcpy(cl->recv_list.buf[cl->recv_list.done].iov_base, data_buf+pos, cur);
pos += cur;
}
cl->recv_list.reset();
}
bool osd_messenger_t::try_recv_rdma(osd_client_t *cl)
{
auto rc = cl->rdma_conn;
while (rc->cur_recv < rc->max_recv)
{
try_recv_rdma_wr(cl, NULL, 0);
}
return true;
}
bool osd_messenger_t::rdma_handle_op(osd_client_t *cl, uint32_t op_slot)
{
auto rc = cl->rdma_conn;
if (op_slot >= rc->in_op_cap)
{
// Invalid incoming index
fprintf(stderr, "Client %d invalid incoming RDMA op slot: %u, dropping connection\n", cl->peer_fd, op_slot);
stop_client(cl->peer_fd);
return false;
}
osd_op_header_t *hdr = (osd_op_header_t *)rc->in_ops[op_slot].header;
uint8_t *data_buf = (uint8_t*)rc->in_data_buf + rc->in_ops[op_slot].pos.data_pos;
uint64_t data_size = rc->in_ops[op_slot].pos.data_size;
if (hdr->magic == SECONDARY_OSD_REPLY_MAGIC)
{
// Reply
if (cl->read_op)
{
delete cl->read_op;
cl->read_op = NULL;
}
if (!handle_reply_hdr(rc->in_ops[op_slot].header, cl))
return false;
if (cl->read_state == CL_READ_REPLY_DATA)
{
// copy reply data to cl->recv_list
copy_data_to_recv_list(data_buf, data_size, cl);
// and handle reply with data
handle_reply_ready(cl->read_op);
cl->read_op = NULL;
cl->read_state = 0;
cl->read_remaining = 0;
}
}
else
{
// Operation
cl->read_op = new osd_op_t;
cl->read_op->peer_fd = cl->peer_fd;
cl->read_op->op_type = OSD_OP_IN;
memcpy(&cl->read_op->req, hdr, OSD_PACKET_SIZE);
handle_op_hdr(cl);
if (cl->read_state == CL_READ_DATA)
{
copy_data_to_recv_list(data_buf, data_size, cl);
// And handle the incoming op with data
cl->received_ops.push_back(cl->read_op);
set_immediate.push_back([this, op = cl->read_op]() { exec_op(op); });
cl->read_op = NULL;
cl->read_state = 0;
}
}
// We don't need the incoming data buffer anymore, notify peer about it
// FIXME: Allow to pass memory to the internal layer without copying and notify after handling it
rc->in_slots_freed.push_back(op_slot);
return true;
}
#define RDMA_EVENTS_AT_ONCE 32
void osd_messenger_t::handle_rdma_events()
{
// Request next notification
ibv_cq *ev_cq;
void *ev_ctx;
// FIXME: This is inefficient as it calls read()...
if (ibv_get_cq_event(rdma_context->channel, &ev_cq, &ev_ctx) == 0)
{
ibv_ack_cq_events(rdma_context->cq, 1);
}
if (ibv_req_notify_cq(rdma_context->cq, 0) != 0)
{
fprintf(stderr, "Failed to request RDMA completion notification, exiting\n");
exit(1);
}
ibv_wc wc[RDMA_EVENTS_AT_ONCE];
int event_count;
do
{
event_count = ibv_poll_cq(rdma_context->cq, RDMA_EVENTS_AT_ONCE, wc);
for (int i = 0; i < event_count; i++)
{
auto cqp_it = clients_by_qp.find(wc[i].qp_num);
int peer_fd = cqp_it != clients_by_qp.end() ? cqp_it->second : -1;
auto cl_it = clients.find(peer_fd);
if (cl_it == clients.end())
{
continue;
}
osd_client_t *cl = cl_it->second;
if (wc[i].status != IBV_WC_SUCCESS)
{
fprintf(stderr, "RDMA work request failed for client %d", peer_fd);
if (cl->osd_num)
fprintf(stderr, " (OSD %lu)", cl->osd_num);
fprintf(stderr, " with status: %s, stopping client\n", ibv_wc_status_str(wc[i].status));
if (peer_fd >= 0)
stop_client(peer_fd);
continue;
}
auto rc = cl->rdma_conn;
if (wc[i].opcode == IBV_WC_RDMA_WRITE)
{
// Operation or reply is sent, we can free it
auto & op = rc->out_slot_ops[wc[i].wr_id];
if (op)
{
delete op;
op = NULL;
}
rc->cur_send--;
try_send_rdma(cl);
}
else if (wc[i].opcode == IBV_WC_RECV)
{
if (!(wc[i].imm_data & 0x80000000))
{
// Operation or reply received. Handle it
if (!rdma_handle_op(cl, wc[i].imm_data))
{
// false means that the client is stopped due to invalid operation
continue;
}
rc->cur_recv--;
try_recv_rdma(cl);
}
else
{
// Outbox slot is marked as free (the remote side doesn't need it anymore)
uint32_t op_slot = wc[i].imm_data & 0x7FFFFFFF;
auto & pos = rc->in_ops[op_slot].pos;
if (pos.data_size > 0)
rc->out_data_alloc.free(pos.data_pos, pos.data_size);
rc->out_op_alloc->set(op_slot, false);
}
// Try to continue sending
try_send_rdma(cl);
}
}
} while (event_count > 0);
for (auto cb: set_immediate)
{
cb();
}
set_immediate.clear();
}