
Real-Time Flash Translation Layer for NAND Flash Memory Storage Systems

Zhiwei Qin Yi Wang Duo Liu Zili Shao
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

{cszqin, csywang, csdliu, cszlshao}@comp.polyu.edu.hk

Abstract

Due to the variable garbage collection latency, NAND
flash memory storage systems may suffer long system re-
sponse time, especially when the flash memory is close to be
full. Most of existing flash translation layer (FTL) schemes
focus on improving the average response time but ignore to
provide a desirable worst case response time upper bound.
This paper proposes a Real-time Flash Translation Layer
(RFTL) scheme to hide the long garbage collection latency
while satisfying a worst case response time upper bound
that achieves an ideal case. We achieve this by using a
distributed partial garbage collection policy that enables
RFTL to reclaim the space and to serve the write requests
simultaneously. A new block-level address mapping ap-
proach is designed to guarantee enough free space to serve
the write request arriving at any time period. Experimental
results show that our scheme improves both the worst case
system response time and the average system response time
compared with previous work.

1 Introduction

No matter in mission-critical hard real-time systems such
as aerospace [3] and military or in soft real-time systems
such as iPads and smart phones, NAND flash memory has
become an essential part due to its unique characteristics,
such as non-volatility, low power-consumption and fast ac-
cess time. However, in NAND flash, one page once be writ-
ten cannot be overwritten until this page is erased (out-of-
place update). The erase operation can only be performed
in the unit of one block (bulk-erase). These properties make
the response time become unpredictable. Most of existing
FTL schemes focus on improving the average performance
but ignore the real-time storage performance. In this pa-
per, we propose a real-time FTL scheme which can provide
a worst case response time upper bound that is close to an
ideal case for I/O requests in NAND flash storage systems.

Flash translation layer is a block-device-emulation soft-
ware layer that simulates NAND flash as a hard disk by
hiding the “out-of-place update” and “bulk-erase” proper-
ties. One function of FTL is to do address mapping be-
tween a logical address in file systems to a physical address
in flash media. Another important function is to reclaim
the space by erasing obsolete blocks in flash, also known
as garbage collection. Garbage collection will be invoked
if there are not enough free space to serve the requests.
Given a read/write request issued from file system, the best
case response time is constant since no garbage collection
is invoked. However, in the worst case, a request will be
blocked by the time-consuming garbage collection. It con-
sequently suffers a long latency which might be intolerable
for mission-critical real-time applications. Therefore, how
to design a service guaranteed FTL scheme for real-time
applications becomes an important problem.

In the previous work, several techniques have been pro-
posed to solve this problem. Chang et al. [7] is the first
in proposing real-time garbage collection for flash memory
storage systems, where predictable performance is guaran-
teed by ensuring enough free space is always available for
write requests. Although a response time upper bound can
be obtained, their approach suffers slow worst case response
time and requires extra file system support. Choudhuri et al.
[9] proposed a flash translation layer called GFTL to guar-
antee a response time upper bound. GFTL reduces the up-
per bound by adding extra blocks as the write buffer and us-
ing a partial block cleaning policy to hide the long garbage
collection latency. In order to provide enough free space to
serve write requests, the full blocks are centrally organized
in a garbage collection queue, and the garbage collection are
consecutively performed as long as the queue is not empty.
GFTL guarantees a worst case response time for write re-
quest, however, it suffers a slower worst case response time
for read requests. Moreover, it introduces a large amount
of extra page copy operations which significantly degrade
the average system response time. Since garbage collection
dose not occur very often, a scheme should not sacrifice too

1



much average response time when reducing the worst-case
response time. We address this problem in this paper.

In this paper, we propose a real-time flash translation
layer, called RFTL, which provides not only an ideal worst
case response time upper bound but also faster average re-
sponse time. A distributed partial garbage collection policy
is applied in RFTL. Different from the centralized partial
garbage collection policy [9] in which all full blocks are put
into a queue and garbage collection is performed in a cen-
tralized manner, in RFTL, garbage collection is distributed
into each logical block and a full block is reclaimed accord-
ing to the arrival sequence of write requests in a distributed
manner. The condition to invoke one partial garbage col-
lection step is when a write request arrives, and the cor-
responding requested data block is full. Since a write re-
quest is served immediately after one partial garbage collec-
tion step, the worst case response time of a request is only
the overhead to perform one partial garbage step. More-
over, in a logical block, the garbage collection of a full
block is performed only when there is a write request to
the logical block; therefore, many unnecessary valid page
copies and block erase operations are avoided so as to sig-
nificantly improve the average system response time. Com-
pared with GFTL, our approach does need more flash mem-
ory space; however, it effectively reduces the more valuable
RAM cost. To the best of our knowledge, this is the first
work to reduce both the average response time and worst
case response time by applying a distributed partial garbage
collection policy in NAND flash memory storage systems.

We evaluate our scheme with a set of benchmarks run-
ning on a NAND flash memory simulator we developed
under Linux kernel 2.6.17. The experimental results show
that our scheme can achieve a 36.30% improvement in the
worst case response time compared with GFTL. Moreover,
we make a trade-off between the flash space and the aver-
age system response time. By using doubled flash space
of GFTL, our scheme shows a 91.79% reduction in more
valuable RAM space and a 67.06% improvement in aver-
age system response time compared with GFTL.

The rest of this paper is organized as follows. Section 2
shows background and related work. In Section 3, we give
the problem formulation. Section 4 presents our scheme
and the WCET analysis. In Section 5, we present the per-
formance evaluation of our scheme and finally we give the
conclusion and future work in Section 6.

2 Background and Related Work

In this section, we first present a NAND flash storage
system architecture in Section 2.1. Then we show the re-
lated work and revisit the implementation of some repre-
sentative FTL schemes in Section 2.2.

2.1 NAND Flash System Architecture

A NAND flash chip consists of multiple blocks, and each
block is composed of a fix number of pages. A page is the
basic unit for read/write operation, while a block is the min-
imum unit for erase operation. A page contains the data area
and the spare area also known as the Out Of Band (OOB)
area. The OOB area is used to store some house-keeping in-
formation (e.g., error correction code) of the corresponding
page. The typical size of a page is 512 bytes for older, small
block NAND flash, and 2KB for new large block NAND
flash. A read/write request can read/write an entire page or
an OOB area. Table 1 depicts the basic operation specifica-
tions for NAND flash [10].

Table 1. NAND flash specifications.

Characteristics Samsung 16MB Samsung 128MB
Small Block Large Block

Block size 16KB 64KB
Page size 512B 2KB
OOB size 16B 64B
Read page 36μs 25μs
Read OOB 10μs 25μs
Write page 200μs 300μs
Erase 2000μs 2000μs

A typical NAND flash memory storage system architec-
ture is shown in Figure 1. In NAND flash storage systems,
the flash translation layer is a software layer built between
the MTD (Memory Technology Device) layer and the file
system layer. The MTD layer can do primitive read, write
and erase operations on flash [1]. The flash translation layer
provides three components: address translator, garbage col-
lector, and wear-leveler. Address translator is responsible
for address translation between a logical address applied in
file system and a physical address adopted in flash mem-
ory chip. It maintains an address mapping table in RAM.
According to the “out-of-place update” property, one page
once be written cannot be overwritten. The rewritten data
has to be written to a new free page, the old page becomes
invalid (called an invalid-page) and the new page is con-
sidered as a valid-page. Garbage collector reclaims space
by erasing obsolete blocks, which includes a series of page
read, page write and block erase operations. In NAND flash
memory, blocks have a limited erase lifetime. Wear-leveler
is a component that distributes erase counts evenly across
all blocks, so as to extend the lifetime of flash memory. Our
work focuses on the FTL design for real-time data storage
based on the architecture shown in Figure 1.

When file system layer issues a read or write request
with a logical address (sector) to NAND flash memory, ad-
dress translator locates the corresponding physical address
<block, page> by searching the address mapping table.
This procedure is called address translation. The time cost

2



n

Figure 1. Architecture for NAND flash storage system.

in this procedure is the address translation overhead. Ac-
cording to the “out-of-place update” property, if a logical
address is mapped to a physical address that contains valid
data, the updated data should be written to a free physical
page. The mapping table should then be updated due to the
newly changed address mapping. In this process, we define
system response time of a request as the time cost from the
request issued from file system to the finishing time of the
requested operation. System response time is determined
by the address mapping approach and the garbage collec-
tion policy. It reflects the efficiency of the FTL scheme.

2.2 Related Work

In the past decades, several techniques have been pro-
posed to improve the system performance of NAND flash
storage systems [4, 6, 11, 12, 16]. Some techniques ex-
ploit different system architectures and some techniques ex-
plore the flash translation layer designs. In particular, Ha et
al. [12] proposed a new architecture exploration method-
ology for NAND flash based multimedia card to improve
the throughput and the cost for low-end embedded systems.
Lee et al. [11] used NAND flash memory to store program
codes, and proposed a new paging technology that allows
program codes stored in NAND flash memory to be ex-
ecuted satisfying real-time requirements with the minimal
usage of SRAM. Different from the above work, we aim to
design a new FTL scheme to provide a guaranteed real-time
service for data accessing in NAND flash storage systems.

In terms of FTL design, three kinds of address map-
ping schemes have been proposed: the page-level FTL
[4, 10, 13], the block-level FTL [5, 15] and the hybrid-level
FTL [8, 14, 16]. In page-level FTL [4], one logical page
(sector) is mapped to one physical page. Since a large map-
ping table is involved, page-level FTL is inapplicable for
RAM-constrained embedded systems. The garbage collec-

tion in page-level FTL is invoked when the NAND flash
runs out of space, and each time only one victim block will
be reclaimed. In general, the block with the least valid pages
is taken as the victim block. The victim block will be erased
after the valid pages are copied into a new free block. Sup-
pose one block consists of π pages and the victim block has
M valid pages (π ≥ M ≥ 0), the time overhead to reclaim
the victim block is M∗(Trdpg+Twrpg)+Ter, where Trdpg is
the time to read a page, Twrpg is the time to write a page,
and Ter is the time to erase a block.

In block-level FTL schemes [5], a logical page number
(LPN) is made up of a logical block number (LBN) and a
block offset (BO). One logical block is mapped to a physi-
cal block (called primary block). In case of a rewrite oper-
ation (or if the primary block is full), a new physical block
(called replacement block) is chosen to serve the write re-
quests. Since the mapping table only maintains the map-
ping information between the blocks, it has lower RAM re-
quirements. However, it suffers worse address translation
efficiency. The garbage collection in a block-level FTL is
invoked once both primary block and replacement are full.
They will be erased after being merged into a new free
block. Since two blocks are involved in this process, the
garbage collection latency is much longer in the worst case
compared with the one in page-level FTL.

In hybrid-level FTL schemes [8, 14, 16], physical blocks
are logically partitioned into data blocks (primary blocks)
and log blocks (replacement blocks). Data block is used to
store the first written data, while the updated data is stored
in log blocks. In a merge operation in hybrid-level FTL
schemes, valid pages scattered on data block and its corre-
sponding log blocks are copied into a free block. Hybrid-
level FTL shows better address translation efficiency, how-
ever, it also suffers long worst case response time due to
the two-blocks merge operations. As a good supplement
for above schemes, we focuses on designing a hybrid-level
FTL scheme with the objective to hide the long garbage col-
lection latency and provide a deterministic response time.

3 Problem Formulation

The non-deterministic response time of requests in
NAND flash memory is caused by the variable garbage
collection latency. Figure 2 shows an illustration exam-
ple of garbage collection (GC) process in page-level FTL
schemes. For the sake of illustration, we assume that each
block consists of 8 physical pages. In Figure 2, the vic-
tim block consists of 5 valid pages. These valid pages are
copied to a new free block. After that, all pages in the
victim block become invalid and the victim block is then
erased for reuse. Based on the specifications of a small
block NAND flash shown in Table 1, the time overhead to
reclaim this block is 5∗(36+200)+2000=3180μs. Given

3



a write request, the response time is 200μs if no garbage
collection is triggered. Otherwise, the response time be-
comes 3380μs when the request is blocked by the garbage
collection with 5 valid-page copy operations. Such long
time latency limits the usage of NAND flash in real-time
applications. Moreover, since the number of valid pages in
different victim blocks are different, the time overhead to
reclaim these blocks vary which makes the response time
of the requests non-deterministic.

Victim Block Victim BlockNew Block New Block

Free PageValid Page Invalid Page

copy

Before GC After GC

Figure 2. Illustration example of garbage collection.

In order to remove the unpredictability, we model the
NAND flash storage system as follows. Each I/O request
issued from file system to the FTL is modeled as an inde-
pendent real-time task T= {p, e, d}, where p is the period,
e is the execution time and d is the deadline. Without loss
of generality, we assume that p is equal to d. Multiple I/O
requests form a set of real-time tasks V ={T1, T2, ..., Tn}.
There are two kinds of tasks in task set V : read request task
Tr={pr, er, dr}, and write request task Tw={pw, ew, dw}.
pr and pw denote the frequency of a read or write request
arriving from file system. er represents the time taken to
search for a target page, read the data from the page and
return a success or failure to the file system. ew is the time
overhead to search a free page to store the data. The values
of er and ew are determined by the specific FTL. A lower
bound on p (denoted as L(p)) gives the maximum request
arrival rate that an FTL can handle. The upper bound on e
(denoted as U(e)) shows the worst case execution time of
requests when no garbage collection is involved. From the
perspective of file system, L(p) represents the worst case
response time when garbage collection is considered.

For comparison purpose, we first present a hypothetical
ideal case as a baseline. In the ideal case, a read/write re-
quest task can be executed directly without any garbage col-
lection involved. This is the best case scenario and both the
execution time and the response time are constant. Here we
only consider the flash operation time overhead since the
address translation overhead in RAM operation is at least
an order of magnitude less than the flash operation time.
The upper bounds on U(e) in the ideal case are shown in
Table 2. In the table, Trdoob represents the time to read an

OOB of a page. In the worst case scenario, the execution
of a read/write request task will be blocked by garbage col-
lection. Note that, Ter is the longest atomic operation in
flash media since the erase of one block cannot be inter-
rupted. Therefore, Ter is the minimum time a request will
be blocked and L(p) should be Ter in the ideal case.

Table 2. Service guarantee bounds.
Bounds Ideal GFTL [9] RFTL
U(er) Trdpg Trdpg+πTrdoob Trdpg+Trdoob

U(ew) Twrpg Twrpg Twrpg+Trdoob

L(p)
Ter Ter+max{U(er), max{Ter + U(ew),

U(ew)} U(er)}

In this paper, we design a real time FTL scheme (called
RFTL) which guarantees U(e) for both reads and writes
that are marginally Trdoob larger than Ter. Our scheme pro-
vides service guarantees for requests that have a lower worst
case response time (L(p)) compared with GFTL [9], since
Trdpg+πTrdoob tends to be greater than Twrpg+Trdoob ac-
cording to the NAND flash specifications shown in Table 1.

Based on the model and problem analysis, we formulate
the problem as follows:

Given an NAND flash memory chip and a task set
V ={T1, T2, ..., Tn}, how to design a FTL scheme that can
jointly schedule the requests and corresponding garbage
collection operations such that a request can be executed
within an upper bound L(p) that is close to Ter?

4 RFTL: Real-time Flash Translation Layer

In this section, we describes the technique details for our
RFTL scheme. We first present the address mapping ap-
proach and task schedule policy in Section 4.1 and Sec-
tion 4.2, respectively. Then we show the read operation,
write operation and garbage collection policy of RFTL in
Section 4.3 and Section 4.4, respectively. Finally, we give
the WCET analysis in Section 4.5.

4.1 Address Mapping in RFTL

In RFTL, we use a hybrid-level mapping approach. A
logical page number (LPN) is divided into a logical block
number (LBN) and a block offset (BO). A block mapping
table is used to map a logical block to three physical blocks:
the primary block, the replacement block and the buffer
block as shown in Figure 3. Three indices that direct to
the next available page in each block are recorded in the
table. The primary block is firstly used to serve the write
requests, and the buffer block will serve the pending write
requests when the primary block is full, while the replace-
ment block provides a space to reclaim the primary block.
These three blocks can periodically change their functions
to provide guaranteed space for writes.

4



LBN PB_Index RB_Index BB_Index
Block Mapping Table Page Mapping Table Index

PPN_N

Page Mapping Table 
(PMT) 

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

PMT_N

BO

Pi-1
Pi-2

1
0

PPN_2PPN_1

PMT_1

PMT_2

PPN

LBN: Logical block number PPN: Physical page numberBO: Block offset

Free PageValid Page Invalid Page

Figure 3. Architecture of RFTL.

For each logical block, a page-level mapping table is
used to map a logical page to a physical page that may be-
long to one of these three physical blocks. In order to reduce
the RAM cost, the page mapping table is divided into N
small tables, and each small table is stored in the OOB area
of the newly allocated page. Suppose each logical block
and each physical block include π pages, the entire page-
mapping table for a logical block has π entries. Assume
the OOB area of a physical page can store α (π≥α>0) en-
tries of mapping slots, then the whole page mapping table is
divided into N subtables according to the logical page num-
ber, where N=�π/α�. The N page mapping table indices are
recorded in the RAM. Using the page-level mapping table
indices, RFTL can obtain the address mapping information
rapidly by reading one OOB.

4.2 Task Schedule in RFTL

After obtaining the address mapping information, the
read/write request should be serviced in three physical
blocks. If no garbage collection is involved, RFTL will
only execute this request in one period p. Otherwise, if
the primary block is full and the garbage collection is in-
voked. The valid-page copy operations and the erase oper-
ation performed on the garbage collection are divided into
partial steps, and the time taken to perform each step is no
longer than the longest atomic operation in flash (that is the
block erase operation Ter). In such scenario, RFTL will
first execute the request and then serve one partial garbage
collection step in one period p.

e_w0 e_w2 e_w3

p
e_copy1 e_copy2 e_eraseTasks

time
e_w1 e_w4

p p

serve read/write requests serve garbage collection

Figure 4. Task schedule in RFTL.

Figure 4 shows the task schedule policy of RFTL, in
which the requests and the garbage collection can be alter-
natively scheduled. Five requests w0, w1, w2 w3, and w4
are mapped to the same primary block. w0 is scheduled di-
rectly since free space is available. When the primary block
is full, the pending tasks are scheduled in each period p and
the time cost to execute each task is e w1, e w2 and e w3,
respectively. In the time left for each period, the partial
garbage collection operations of this primary block will be
scheduled. In Figure 4, there are two copy operations and
one erase operation. The time cost of these three opera-
tions are e copy1, e copy2 and e erase, respectively. After
garbage collection, the primary block becomes free and w4
can be scheduled.

4.3 Write Operation and Read Operation

A write request issued from file system is represented by
a data and a logical page number (LPN), e.g., write(D,126),
where D is the data and 126 is the LPN. The LPN is trans-
lated to a LBN and a BO. Three physical blocks are mapped
to the logical block with LBN. The first write to the LBN is
written to the first free page of the primary block, and the
pages in the primary block are allocated sequentially from
page 0. After π writes, the primary block becomes full, the
buffer block will then serve the coming write requests, and
the distributed partial garbage collection will be invoked
simultaneously to reclaim the primary block. The buffer
block serves as the buffer for requests from the time the
primary block becomes full until it is reclaimed. The valid
pages in the primary block will be copied to the replacement
block, where the copy operation can be interleaved with the
requests. In the page copy process, a free page is guaran-
teed to be available in the buffer block to serve the requests
simultaneously (to be explained in Section 4.5).

When a physical page is allocated to serve the write re-
quest, one mapping slot (BO, PBN) is formed. The corre-
sponding subtable and the data are written to the OOB area
and data area, respectively. A page table index is stored
in RAM to keep track of the mapping information. For
a rewrite (update) operation, the out-of-date mapping slot
needs to be read out from the OOB of the page pointed to by
the pointers in RAM. The corresponding mapping slot will
be updated and then written to the OOB of the new page.
The page table index in RAM will also direct to the new
physical page. If a free page can always be guaranteed in the
buffer block, the time to execute a write request is constant:
Trdoob+Twrpg (one OOB read and one page write). The
best case response time is also Trdoob+Twrpg. In the worst
case that the partial garbage collection operation is sched-
uled, the worst case response time is Ter+Trdoob+Twrpg.

A read request issued from file system is represented by
a logical page number (LPN), e.g., read (36). The LPN

5



is translated to a LBN and a BO. The corresponding LBN
will be first searched in the block mapping table in RAM.
Then the page mapping subtable for the requested BO can
be obtained using the page table index in RAM. From the
subtable, we can get the physical page which stores the re-
quested data. Since no space is required in serving the read
request, no partial garbage collection is invoked. Therefore,
the best case response time and the worst case response time
of a read request are the same Trdoob+Trdpg.

4.4 Distributed Garbage Collection

The garbage collection in RFTL is invoked once a pri-
mary block is full and a write request is issued to this pri-
mary block. Given a block with π pages, the garbage col-
lection can be partitioned into k periods (steps) if all the π
pages are valid:

k = �{π× (Trdpg +Twrpg +2Trdoob)+Ter}/Ter� (1)

In one period p, the write request will firstly be serviced,
and the execution time is ew, where ew=Twrpg+Trdoob. Af-
ter the request be serviced, the time left in this period is
t, where t ≥ Te. In the time t, the garbage collection
operations (valid-page copy or block erase) will be per-
formed. For valid-page copy operations, suppose the maxi-
mum pages can be copied in this period is β, then:

β = �t/(Trdpg + Twrpg + 2Trdoob)� (2)

Figure 5 gives an example of the garbage collection pro-
cess in RFTL. We assume β=4 and k=3, which means four
valid-page copies can be finished in one period p and three
periods are needed in the worst case. In Figure 5 (a), the
primary block is full and garbage collection is triggered.
Write request w0 is serviced in the first page of buffer block,
meanwhile, four valid pages in the primary block are copied
to the replacement block after copy0 as shown in Figure 5
(b). After w1 is serviced, all the valid pages in the primary
block are copied into the replacement block by copy1 op-
eration. The primary block is erased after the write request
w2 is serviced.

Exchange Operation After the primary block is re-
claimed, an exchange operation is performed to change the
position of the primary block and the replacement block as
shown in Figure 5 (d). The new primary block will serve
the coming requests if free space is available (i.e.,w3 and
w4). After the primary block is full, the coming requests
are written to the buffer block (i.e.,w5 and w6). When the
buffer block has only k (i.e., k=3) free pages left, the par-
tial garbage collection of primary block is triggered again.
The replacement block will store the valid pages from both
the primary block and the buffer block. The partial garbage

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

erase
Primary Block 

(PB)
Buffer Block 

(BB)
Replacement Block

 (RB)

w0
w1

copy0

copy1

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

w2

B
ef

or
e 

G
C

G
ar

ba
ge

C
ol

le
ct

io
n 

PB

A
fte

r G
C

Free PageValid Page Invalid Page

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

w3
w4

w5
w6
w7

G
ar

ba
ge

C
ol

le
ct

io
n 

PB

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

A
fte

r G
C

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

G
ar

ba
ge

 
C

ol
le

ct
io

n 
R

B

w10

w9

w8

erase

Primary Block 
(PB)

Buffer Block 
(BB)

Replacement Block
 (RB)

A
fte

r G
C w11

erase

exchange

circular shift

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5. Garbage collection in RFTL.

collection is interleaved with pending requests served in the
buffer block (i.e.,w7, w8 and w9). After the buffer block is
full, the primary block is free as shown in Figure 5 (e).

Circular Shift Operation After the buffer block is full,
a circular shift operation is taken to change the position of

6



three blocks. The free primary block will be reallocated as
a buffer block, and the original buffer block is transfered to
a new replacement block. The original replacement block
will serve as the new primary block as shown in Figure 5
(f). Partial garbage collection for replacement block is trig-
gered. Since the replacement block has k valid pages, the
garbage collection can be split into j partial steps:

j = �k × (Trdpg + Twrpg + 2Trdoob)/Ter + 1� (3)

Figure 5 (g) shows an example of reclaiming replace-
ment block when j equals to two. The replacement block
becomes free after two write requests w10 and w11 are
served in the buffer block. The primary block can serve the
requests again if free pages are included. A new garbage
collection will be invoked if the new primary block is full
and a new request wants to access this block.

In RFTL, garbage collection of one physical block is par-
titioned into multiple independent steps, and each step is
triggered by one request. If the requests arrive and want
to access the same logical block, the partial steps are per-
formed consecutively within the physical blocks mapped to
the same logical block. Otherwise, if the requests want
to access different logical blocks, the garbage collection
operations are distributed to different logical blocks corre-
spondingly. In Figure 5, the garbage collection of the pri-
mary block or replacement block is triggered and finished
by consecutive requests which are mapped to the same log-
ical block.

e_w2

serve read/write request serve garbage collection (GC)

e_copy2Tasks
time

e_w0 e_w3e_copy0

GC B0
e_eraseTasks

time

GC B0

e_copy1Tasks
time

GC B1

GC B2

e_w1

Figure 6. Distributed garbage collection.

Figure 6 gives an example of garbage collection which
are distributed to different logical blocks by the requests
mapped to different logical blocks. We suppose four re-
quests w0, w1, w2, w3 arrive sequentially. Write requests
w0 and w3 are mapped to primary block B0, and w1 is
mapped to primary block B1 while w3 is mapped to pri-
mary block B2. In the first period, garbage collection of
B0 is performed in which valid-page copy copy0 is exe-
cuted after the schedule of request w0. In the second pe-
riod, primary block B1 is reclaimed since the request w1 is
mapped to it, and block erase operation erase is executed.
When it comes to period 4, primary block B0 is reclaimed

again since the garbage collection is not finished in the first
period. Two benefits can be achieved by distributed partial
garbage collection. First, the long garbage collection la-
tency can be fundamentally hidden, such that the worst case
response time of requests can be reduced to L(p), where
L(p)=max{Trdpg+Trdoob, Ter+Twrpg+Trdoob}. Second,
the garbage collection overhead can be reduced since the
valid page numbers in one block may decrease when the
garbage collection is distributed. In other words, the chang-
ing from reclaiming one block to a new block postpones the
garbage collection of the old block. The postponed recla-
mation of the old block may reduce the valid page numbers
within it, since a later rewrite operation may make the origi-
nal valid page become invalid. The average system response
time is consequently reduced due to the decreased garbage
collection overhead.

4.5 WCET Analysis

Based on the distributed garbage collection policy, we
can obtain the worst case response time for requests in
RFTL is L(p) if enough free space can be guaranteed. In
order to verify that the block management in RFTL can pro-
vide enough space for all requests, we present the worst case
analysis and give one theorem. The theorem gives the suffi-
cient condition that a write request can be deterministically
serviced.

Theorem 4.1. The sufficient condition that deterministic
service can be provided for each request is that: at least
one free block and k free pages should be reserved when
the distributed partial garbage collection is triggered.

Proof. In the worst case, all pages in the victim block are
valid pages. If the space reserved is less than one free block,
at least one of the valid pages in the victim block has no
place to be stored. If less than k free pages is provided, at
least one pending write will be blocked.

Based on Theorem 4.1, we can get two lemmas for our
scheme. The first lemma shows the sufficient condition that
deterministic service can be guaranteed when doing partial
garbage collection for one block with k valid pages. The
second lemma presents the minimum number of blocks that
are needed to guarantee the deterministic service.

Lemma 4.1. Given a victim block with k valid pages, the
sufficient condition that partial garbage collection can work
is that: at least k+j free pages should be reserved.

Proof. In the worst case scenario, enough free space should
be guaranteed to stored the k valid pages and the j pending
writes which are interleaved with the partial garbage collec-
tion. Therefore, if less than k+j space are provided, at least
one valid page or one pending write will be blocked.

In RFTL, the partial garbage collection of the replace-
ment block is triggered after the circular shift operation. In

7



the worst case, k valid pages are needed to be copied into
buffer block. Since the buffer block can provide at least
2k+j free pages, the partial garbage collection can be guar-
anteed according to Lemma 4.1.

Lemma 4.2. When distributed partial garbage collection is
applied in block-level mapping schemes, the minimum num-
ber of blocks to guarantee deterministic service is 3.

Proof. If one logical block is mapped to one physical block,
no free space is provided to do partial garbage collection. It
violates the sufficient condition in Theorem 4.1. If one log-
ical block is mapped to two physical blocks, only one free
block is provided. It also violates the sufficient condition in
Theorem 4.1. Therefore, in order to provide deterministic
service with distributed partial garbage collection, at least
three blocks are needed

In RFTL, we adopt a block-level mapping approach
that one logical block is mapped to three physical blocks.
Lemma 4.2 provides the guideline on how to design a deter-
ministic FTL scheme with block-level mapping approach.

5 Evaluation

5.1 Experimental Setup

Table 3. Experimental setup.
CPU Intel Dual Core 2GHz

Hardware Disk Space 200GB
RAM 2GB

Simulation
Environment

OS Kernel Linux 2.6.17
Flash Simulator NAND flash simulator

Flash Size 128/256/512MB

To evaluate the effectiveness of the proposed scheme,
we developed a trace-driven NAND flash simulator under
Linux kernel 2.6.17 and implemented three FTL schemes:
GFTL [9], NFTL [5] and RFTL. NFTL scheme is a general
purpose block-level FTL scheme. GFTL is a representa-
tive deterministic FTL scheme. Therefore, we compare our
scheme with NFTL and GFTL. Table 3 summarizes our ex-
perimental setup. Three NAND flash memory chips with
capacity 128MB, 256MB and 512MB separately are simu-
lated. The framework of our simulation platform, as shown
in Figure 7, consists of two modules: a NAND flash simu-
lator providing basic read, write and erase capabilities; and
a desired flash translation layer management scheme that
can be executed on top of the NAND flash simulator. The
traces along with various flash parameters, such as block
size and page size, page read time and page write time etc.,
are fed into our simulation framework. The parameters in
our simulation are based on the flash memory data sheet
values shown in (Table 1).

DiskMon Traces

Input
Parameters Flash

Translation
Layer

NAND
Flash

Simulator
Results

SPC

Figure 7. The framework of simulation platform.

We use the following benchmarks from both the real-
world and the synthetic traces to study the system perfor-
mance for different FTL schemes. Multimedia is a real-
world trace we obtained from a PC with Windows XP on
NTFS file system downloading and playing multimedia files
(e.g., Movie, MP3). It consists of 1,633,269 write requests
and 1,002,748 read requests. Financial is a well known
write-dominant I/O trace obtained from an OLTP applica-
tion running at a financial institution [2]. It consists of
4,099,354 write requests and 1,235,633 read requests. In
order to perform a rigorous evaluation of different schemes,
each read/write request in the traces is simulated with a pe-
riodicity of L(p) without idle period involved.

5.2 Results and Discussion

In this section, we present the simulation results of the
proposed RFTL scheme, GFTL scheme and NFTL scheme
in terms of real time and average performance as well as the
space overhead (RAM cost and flash memory cost).

Table 4 presents the performance of RFTL scheme for
the two traces based on varying flash utilization and num-
ber of pages per block π. The first three columns under
Rbest, Ravg and Rworst denote the best case, the average
and the worst case response time for read requests, respec-
tively. The next three columns Wbest, Wavg and Wworst

represent the best case, the average and the worst case re-
sponse time for write requests. The average response time
for all requests, the total number of valid-page copy opera-
tions and the total number of erase operations are also mea-
sured which are denoted by Tavg , Σcp and Σer respectively.

Based on Table 4, we can observe that, the worst case
response time for a read request is 50μs, which is equal to
Trdoob+Trdpg. For a write request, the worst case response
time is 2325μs, which is equal to Ter+Trdoob+Twrpg. The
worst case response time for read request and write request
is independent of the flash utilization and the flash size. It
presents no variation when the flash utilization and the page
size per block (π) vary. This observation shows that our
scheme can provide guaranteed service for different flash
specifications and different traces.

The average response time for read requests is close to
the best case response time, and the average response time
for write requests is close to the worst case response time.
This is because that, little valid-page copy operations or

8



Table 4. RFTL performance.

Benchmarks % π
Rbest Ravg Rworst Wbest Wavg Wworst Tavg Σcp Σer(μs) (μs) (μs) (μs) (μs) (μs) (μs)

Multimedia

50 32 50 50 50 325 400 2,325 335 137,630 69,142
50 64 50 50 50 325 359 2,325 298 66,508 33,296
50 128 50 50 50 325 339 2,325 280 32,414 16,208

100 32 50 50 50 325 419 2,325 341 270,903 205,297
100 64 50 50 50 325 375 2,325 303 131,281 99,021
100 128 50 50 50 325 353 2,325 285 64,295 48,367

Financial

50 32 50 50 50 325 389 2,325 274 31,822 26,943
50 64 50 50 50 325 354 2,325 248 15,445 13,049
50 128 50 50 50 325 338 2,325 236 7,488 6,285

100 32 50 50 50 325 390 2,325 271 68,687 79,720
100 64 50 50 50 325 355 2,325 245 33,409 38,714
100 128 50 50 50 325 337 2,325 232 16,381 18,812

block erase operations are involved in one period p. This
verifies that the distributed garbage collection can provide
enough space to serve the sustained coming requests. The
average response time for each trace is decreased while the
number of valid-page copy and block erase operations are
reduced with the increase of the flash size (e.g., π increases
from 32 to 128). This is based on the fact that more free
flash space will lead to less garbage collection when servic-
ing the same amount of requests. Moreover, the valid-page
copy and block erase operation are increased when the flash
utilization is increased for a fixed flash size. This is due to
the fact that free space becomes less when the flash contin-
ually serves the write request. More garbage collection will
be invoked to reclaim the obsolete pages, which increases
the average system response time.

Figure 8. Average time distribution per period.

Figure 8 shows the distribution of request service time
and the garbage collection (GC) overhead in one period p.
The total length of a bar represents the upper bound of re-
sponse time which is L(p) as mentioned in Table 2. The
“Request” bar denotes the execution time of request, and

the “GC” bar represents the average time cost in garbage
collection which includes a series of valid-page copy and
block erase operations. The time left is the idle time. Since
the total length of the bar is calculated under the worst case
scenario, from the results we can see that, a large amount of
time is idle in one period. The idle time increases when the
value of π is increased. This is because more space are pro-
vided leading to less garbage collection overhead. Note that
in case of a read request, the idle time left is much longer
than that of a write request for both two traces. This is be-
cause the time cost to execute a page read is less than that
of a page write. From the figure, we can also observe that
the idle time for trace Financial is longer than that of trace
Multimedia. This is due to the fact that, trace Financial
follows higher temporal locality and more update opera-
tions occur resulting in less valid-page copy operations in
garbage collection.

Table 5. Performance for RFTL, GFTL[9] and NFTL[5].

Traces Metrics FTL Schemes
RFTL GFTL NFTL

Multimedia

Tworst (μs) 2,325 3,650 4,335
Tavg (μs) 303 525 321
Σcp 1.31e5 5.38e5 3.95e5
Σer 0.99e5 1.29e5 0.48e5
Σoob 0.05e8 0.29e8 1.37e8
L(p) (μs) 2,325 3,650 4,335

Financial

Tworst (μs) 2,325 3,650 4,557
Tavg (μs) 245 2,997 522
Σcp 0.03e6 7.65e7 0.38e7
Σer 0.38e5 6.60e5 1.23e5
Σoob 0.02e8 0.40e8 2.86e8
L(p) (μs) 2,325 3,650 4,557

Table 5 compares the system performance of RFTL,
GFTL and NFTL under the same flash size and space uti-
lization ratio. Both RFTL and GFTL show great improve-
ment in the worst case response time compared with NFTL

9



scheme which is a general purpose FTL. In NFTL scheme,
two block merge operations are involved and the blocked
time of each request in the worst case is at least 2*Ter. In
GFTL scheme and RFTL scheme, one victim block recla-
mation is needed and the garbage collection is partitioned
into multiple small steps. Therefore, they present lower
worst case response time compared with NFTL. Note that
RFTL achieves a 36.30% improvement in the worst case
response time compared with that of GFTL, which means
RFTL can accept requests at a higher arrival rate while pro-
viding read/write service guarantees. This is based on the
fact that GFTL requires to search all the OOB area of one
block in order to read the valid page. But in RFTL, the ad-
dress mapping information can be obtained by reading one
OOB area.

RFTL scheme shows better average response time com-
pared with NFTL scheme while GFTL presents the longest
average response time. In order to provide enough space
to serve the real time requests, GFTL scheme invokes the
garbage collection once a block becomes full. The recla-
mation of one block is performed in a concentrated man-
ner, which incurs many unnecessary valid page copy and
block erase overhead. As shown in Table 5, these extra
overhead increases the average response time significantly
compared with NFTL and RFTL. In RFTL scheme, the par-
tial garbage collection is distributed to each logical block in
an on-demand fashion. The valid page copy and block erase
are performed only when needed. The delayed reclamation
reduces the valid page copy number and block erase num-
ber. Therefore, RFTL achieves a 67.06% improvement in
average response time compared with GFTL.

5.3 Overhead

In order to provide deterministic service, both GFTL
and RFTL introduce extra flash space to serve as the write
buffer for partial garbage collection. The number of buffer
blocks required for GFTL is the same as that of data blocks,
while RFTL needs double of data blocks to serve as re-
placement blocks and buffer blocks. Although RFTL has
more extra overhead on flash space, it shows great reduction
in much more valuable RAM space. Given a large block
based 128MB NAND flash with 64 pages per block, RFTL
requires 16KB (16B*1024) RAM space to store the block
mapping table and page mapping table index. For GFTL
scheme, the RAM cost is 195KB which consists of three
parts: the block level mapping table for data blocks (3KB),
the page mapping table for buffer blocks (64KB) and one
block buffer in RAM (128KB). RFTL shows a 91.79% re-
duction in RAM cost compared with GFTL. In terms of reli-
ability, RFTL can startup safely by scanning the flash media
in which the mapping table is stored permanently.

6 Conclusion and Future Work

In this paper, we proposed a real time flash translation
layer (called RFTL) for NAND flash memory storage sys-
tems which can provide real time service guarantees by hid-
ing the long garbage collection latency. A novel hybrid-
level address mapping approach and a distributed garbage
collection policy are introduced. Experimental results show
that our scheme can achieve a 36.30% improvement in the
worst case response time upper bound for requests com-
pared with GFTL. Moreover, we achieve a 67.06% reduc-
tion in average system response time and a 91.79% reduc-
tion in RAM cost compared with GFTL. In the future, how
to further reduce the extra flash space overhead is an in-
teresting problem. Moreover, how to fully utilize the free
pages in buffer blocks to further improve the average re-
sponse time for some specific applications is also one direc-
tion.

References

[1] Intel Corporation. Understanding the flash translation layer
(FTL) specification. http://developer.intel.com.

[2] OLTP trace from umass trace repository. http://traces.
cs.umass.edu/index.php/storage/storage.

[3] Airlines electronic engineering committee (AEEC). ARINC
Specification, 651, 1991.

[4] A. Ban. Flash file system. US patent 5,404,485, 1995.
[5] A. Ban. Flash-memory translation layer for NAND flash

(NFTL). M-systems, 1998.
[6] L.-P. Chang and T.-W. Kuo. An adaptive striping architecture

for flash memory storage systems of embedded systems. In
RTAS ’02, pages 187–196, 2002.

[7] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time garbage
collection for flash-memory storage systems of real-time em-
bedded systems. TECS, 3(4):837–863, 2004.

[8] H. Cho, D. Shin, and Y. I. Eom. KAST: K-associative sector
translation for NAND flash memory in real-time systems. In
DATE’09, pages 393 –398, 2009.

[9] S. Choudhuri and T. Givargis. Deterministic service guar-
antees for NAND flash using partial block cleaning. In
CODES+ISSS ’08, pages 19–24, 2008.

[10] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash trans-
lation layer employing demand-based selective caching of
page-level address mappings. In ASPLOS ’09, pages 229–
240, 2009.

[11] J.-C. Kim, D. Lee, C.-G. Lee, K. Kim, and E. Y. Ha. Real-
time program execution on NAND flash memory for portable
media players. In RTSS ’08, pages 244–255, 2008.

[12] S. Kim, C. Park, and S. Ha. Architecture exploration of
NAND flash-based multimedia card. In DATE ’08, pages
218–233, 2008.

[13] Z. Qin, Y. Wang, D. Liu, and Z. Shao. A two-level caching
mechanism for demand-based page-level address mapping in
NAND flash memory storage systems. In RTAS ’11, pages
179–188, 2011.

[14] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan. MNFTL: An
efficient flash translation layer for MLC NAND flash memory
storage systems. In DAC ’11, pages 17–22, 2011.

[15] Y. Wang, D. Liu, M. Wang, Z. Qin, Z. Shao, and Y. Guan.
RNFTL: a reuse-aware NAND flash translation layer for flash
memory. In LCTES ’10, pages 163–172, 2010.

[16] C.-H. Wu and T.-W. Kuo. An adaptive two-level manage-
ment for the flash translation layer in embedded systems. In
ICCAD ’06, pages 601–606, 2006.

10


