
DNA microarray data analysis
using Bioconductor

DNA microarray data analysis
using Bioconductor

Jarno Tuimala

CSC, the Finnish IT center for Science

CSC – IT Center for Science Ltd. is a non-profit organization for

high-performance computing and networking in Finland. CSC is

owned by the Ministry of Education. CSC runs a national large-scale

facility for computational science and engineering and supports the

university and research community. CSC is also responsible for the

operations of the Finnish University and Research Network (Funet).

All rights reserved. The PDF version of this book or parts of it can

be used in Finnish universities as course material, provided that this

copyright notice is included. However, this publication may not be

sold or included as part of other publications without permission of

the publisher.

c© The authors and

CSC – IT Center for Science Ltd.

2008

ISBN 978-9525520-34-7

http://www.csc.fi/oppaat/R/

DNA microarray data analysis using Bioconductor 5

Preface

In this book we concentrate on analysing gene expression data generated
using DNA microarrays. Microarrays generate large amounts of numeric data
that should be analyzed effectively. R statistical software and its expansion
packages from Bioconductor project provide flexible means to manage and
analyze these data. Hence, it was selected as the analysis tool for this book.

This book is intended for researches who are involved in DNA microar-
ray data analysis. It can also be used for teaching the basics of microarray
data analysis. Much of the material has indeed been adapted from the R
and Bioconductor courses we have given at CSC. However, theoretical back-
ground on the data analysis and statistics are not extensively covered here,
because a separate book published by CSC - DNA microarray data analysis -
covers those topics more thoroughly. Readers interested in getting a theoret-
ical background about the analysis are directed to read that book first.

Structure of the book

This books is divided into several parts. Introduction covers R installa-
tion and basics of R language and graphics. Preprocessing discusses topics
of preanalysis preparations, such as information assembling, normalization
of different data types, and filtering. Analysis part emphasizes data analysis
techniques, such as statistical testing, and clustering. Extras contains mate-
rial that is not probably interesting to everybody, such as how to use R on
CSC’s servers.

The data analysis part of the book starts by going through the prepro-
cessing of Affymetrix, Agilent and Illumina data. After preprocessing the
data is stored in a uniform format, so that the following chapters are not spe-
cific to any of the data types. The order of the chapters is the possible order
of the data analysis steps: preprocessing, quality control, filtering, statistical
analyses, annotation and finally visualization.

6 DNA microarray data analysis using Bioconductor

How to read this book

The main emphasis of this book is on extensive R code examples.
The code examples are laid out in the teletype font either inside the

main text or on separate lines:

Saves numbers in a vector

a<-c(1:10)

Lines starting with the hash-sign (#) are comments, and are not executed in
R. They are written inside the chunks of code simply for code documentation
purposes. If you’re testing the code examples on your own, it is not necessary
to type these comment lines in R.

Output from R is laid out with a small teletype font:

>a

[1] 1 2 3 4 5 6 7 8 9 10

R commands inside text are typeset with teletype, and are always asso-
ciated with brackets: q(). The names of the objects in R memory and com-
mand arguments are also typeset with teletype, but without brackets: genes.

Throughout this book we use the following convension for saving the
data from the various analyses. Object dat always holds the raw data. Once
the data is normalized, it is saved into an object dat2. The normalized ex-
pression values are stored in an object dat.m. When the normalized data is
filtered or analyzed using some statistical test, the resulting data is saved into
object dat.f and dat.s, respectively.

I suggest readers to try out the code examples themselves. While testing
the examples, it is especially helpful to break down the nested commands
into individual commands, and run them one by one. Using this technique it
is possible to get a better insight into how the commands work, and what kind
of input they require. It is also a good idea to consult help pages for all new
commands one comes across while reading this book. Keeping these simple
directions in mind, we hope that this book could also successfully work as a
self-learning material.

Acknowledgements

I am in debt to all students who have attended the R and Bioconductor
courses arranged at CSC and Finnish universities during the last few years.
Without the pressure to prepare the course material this book might never
have come to existence. I also want to thank my colleagues who have teached

DNA microarray data analysis using Bioconductor 7

on the mentioned courses.
I am very interested in receiving feedback about this publication. Espe-

cially, if you feel that some essential technique has not been included, let me
know. Please send your comments to the e-mail address Jarno.Tuimala@csc.fi.

Espoo, 22nd October 2008

Jarno Tuimala

Contents 9

Contents

Preface 5

I Introduction 15

1 Installation of R and Bioconductor 17

1.1 What are R and Bioconductor? 17

1.2 Downloading R . 17

1.2.1 R installation instructions for Windows 17

1.2.2 R installation instructions for UNIX and Linux . . . 18

1.2.3 Installation instructions for Bioconductor 19

1.2.4 Installing extra packages on any system 20

1.2.5 Installing extra packages from ZIP files 20

1.3 Graphical user interfaces 21

1.3.1 TinnR . 21

2 Introduction to R language 23

2.1 Basics of R language and environment 23

2.1.1 Starting and closing R 23

2.1.2 Prompt . 23

2.1.3 Help! . 24

2.1.4 Commands . 25

2.1.5 Environment . 27

2.1.6 Packages . 27

2.1.7 Changing the working directory 28

2.2 R is an expanded calculator 28

2.2.1 Arithmetic . 29

2.2.2 Mathematical functions 29

2.2.3 Logical arithmetic 29

2.2.4 Number of decimals 30

10 DNA microarray data analysis using Bioconductor

2.3 Data input and output 30

2.3.1 Allocation . 30

2.3.2 Typing in the data 31

2.3.3 Reading tabular data 31

2.3.4 Writing tabular data 32

2.3.5 Saving output to a file 32

2.4 Calculations with vectors 32

2.4.1 Arithmetic on vectors 32

2.4.2 Mathematical operators for vectors 32

2.5 Object types . 33

2.5.1 Vector . 34

2.5.2 Factor . 34

2.5.3 Matrix . 34

2.5.4 Data frame . 36

2.5.5 S3/S4 class . 37

2.6 Data manipulation . 37

2.6.1 Generating sequences of numbers 37

2.6.2 Generating repeats 37

2.6.3 Searching and replacing 38

2.6.4 Merging tables . 38

2.6.5 Transposition . 39

2.6.6 Sorting and ordering 40

2.6.7 Missing values . 41

2.7 Loops and conditional execution 42

2.7.1 for-loop . 42

2.7.2 if . 43

2.7.3 if...else . 43

2.8 Graphics . 45

2.8.1 Plot, a general command 45

2.8.2 Changing colors and symbols 47

2.8.3 Histogram . 49

2.8.4 Boxplot . 49

2.8.5 Scatter plot . 50

2.8.6 Panel plots . 50

2.8.7 Other graphical settings 51

2.8.8 Adding new objects to the plots 55

Contents 11

2.8.9 Saving images . 59

2.9 More information . 60

II Preprocessing 61

3 Importing DNA microarray data 63

3.1 Affymetrix data . 63

3.1.1 Reading CEL-files 63

3.2 Agilent data . 64

3.2.1 Reading two-color data files 64

3.2.2 Reading one-color data files 65

3.3 Illumina data . 66

3.3.1 Reading BeadStudio v1 data 66

3.3.2 Reading BeadStudio v3 data 67

4 Normalizing DNA microarray data 69

4.1 Normalizing Affymetrix data 69

4.2 Normalizing Agilent data 70

4.2.1 Two-color data . 71

4.2.2 One-color data . 71

4.3 Normalizing Illumina data 72

4.4 Getting the raw data . 72

4.5 Saving the expression values 73

5 Quality control 75

5.1 Checking Affymetrix data 75

5.2 Checking Agilent data 78

5.2.1 Two-color data . 79

5.2.2 One-color data . 81

5.3 Checking Illumina data 82

6 Filtering and differential expression 87

6.1 Why filtering? . 87

6.2 Filtering tools . 88

6.2.1 Standard deviation filter 88

6.2.2 Expression filter 88

6.3 Filtering after statistical testing 89

12 DNA microarray data analysis using Bioconductor

III Analysis 91

7 Statistical analyses 93

7.1 Key concepts . 93

7.1.1 Model matrix for a two-group comparison 93

7.1.2 Model matrix for a three-group comparison 95

7.2 Analysis using a linear model 96

7.2.1 Differential expression and p-values 97

7.2.2 Extracting the genes from the original data 98

8 Gene set enrichment analysis 99

8.1 Gene set enrichment analysis for GO categories 99

8.2 Gene set enrichment analysis for KEGG pathways 101

8.3 Performing the gene set test 102

8.3.1 KEGG pathways 102

8.3.2 GO categories . 104

8.3.3 Extracting the genes from a particular pathway . . . 105

9 Annotating a genelist 107

9.1 Generating the report 107

10 Clustering and visualization 109

10.1 Heatmap . 109

10.1.1 Constructing a heatmap 109

10.2 K-means clustering . 111

10.2.1 Performing the K-means clustering 112

10.2.2 How to find the optimal number of clusters? 113

10.2.3 Visualizing the K-means clustering 114

IV Extras 117

11 Estimating the sample size 119

11.1 Current knowledge . 119

11.2 How to estimate the sample size? 120

12 R at CSC 123

12.1 R is available in Murska 123

12.1.1 R versions . 123

12.2 Available libraries . 123

12.2.1 The default selection 123

Contents 13

12.2.2 Installing new packages 123

12.3 Scripting on CSC server Murska 124

Part I

Introduction

1 Installation of R and Bioconductor 17

1 Installation of R and
Bioconductor

1.1 What are R and Bioconductor?

R is a programming environment specifically tailored to suit statisticians. R
is modular, which means that users can easily write extensions and distribute
the codes to other users. Most of the functionality in R is in the extension
packages written, not by the core developers, but by other users. Bioconduc-
tor is a development project that aims to offer tools for genomic data analyses.
The emphasis of the project is on DNA microarray data analysis.

1.2 Downloading R

R home page is located at http://www.r-project.org. The main site is
mirrowed in several locations around the world, but one of the closest sites to
Finland is located in Sweden at http://ftp.sunet.se/pub/lang/CRAN/.

The precompiled binary distributions for Linux, Mac OS X and Win-
dows are available. In addition, source codes for compilation to other systems
are available. The setup program is located under the base folder. This setup
program should be downloaded to the computer. It installs the R base, and a
few recommended packages. Other packages are available for downloading
in the contrib folder. Consult the following sections for detailed installation
instruction for different systems.

1.2.1 R installation instructions for Windows

Setup program is best run with administrator privileges. License should be
accepted, and a suitable installation folder selected. R shortcut can be placed
on the Desktop - this would make starting the program easier.

If there is more than 1Gb of memory available on the computer with R,
it is possible to configure R to use it. After right-clicking with mouse over
the R icon (on the Desktop), properties should be selected from the pop-up

18 DNA microarray data analysis using Bioconductor

window. A new window with detailed information should open. Target field
should be edited: Adding --max-mem-size to the end of the field enables R
to use more memory. For example, the target field might become something
like (if there’s 2 GBs of memory on the computer):

"C:\Program Files\R\R-2.7.2\bin\Rgui.exe" --max-mem-size=1.5Gb

R can now be started by double-clicking on its icon on Desktop. If in-
stallation is successful, the user interface should start:

1.2.2 R installation instructions for UNIX and Linux

The downloaded source code distribution should be moved to the correct
folder before starting the installation. To install R, type the following UNIX
commands:

gzip -d R-2.7.2.tar.gz

tar xvf R-2.7.2.tar

cd R-2.7.2

./configure

make

make check

Note that the first three commands are specific to the R version. Here, the
commands apply for the version 2.7.2, but if you’re using a different version,
you need to change the file names.

1 Installation of R and Bioconductor 19

First, the R source code distribution is unpacked. This creates a new
folder. The configuration script is run in this folder, and R is installed. Last,
the installation is checked. After a successful checking, Bioconductor and
possibly other extra packages can be installed.

The installation above creates a 32-bit R, but if a 64-bit machine is avail-
able, it might be better to install a 64-bit version of R. It would allow users to
allocate more memory for their jobs. The UNIX commands are just slightly
tweaked (more options are available in the R administration manual):

gzip -d R-2.7.2.tar.gz

tar xvf R-2.7.2.tar

cd R-2.7.2

./configure ’CC=gcc -m64’ ’F77=g77 -m64’ ’CXX=g++ -m64’

make

make check

1.2.3 Installation instructions for Bioconductor

After a successful R installation, Bioconductor should be installed. Biocon-
ductor can most easily be installed using a ready-made installation script.
First, download the script. Give the following command in R:

> source("http://www.bioconductor.org/biocLite.R")

Next, install the basic packages for Bioconductor:
> biocLite()

Test whether the installation was successful by typing:
> library(affy)

If the installation was successful, the following message should appear:

Loading required package: Biobase

Loading required package: tools

Welcome to Bioconductor

Vignettes contain introductory material. To view, type

’openVignette()’ or start with ’help(Biobase)’. For details

on reading vignettes, see the openVignette help page.

Loading required package: affyio

If you can’t access Internet directly from R, you can download the pack-
ages from the Bioconductor site at http://www.bioconductor.org. Note
the default packages from the download page, and download all of those.
Then consult the section Installing extra packages from ZIP files below.

20 DNA microarray data analysis using Bioconductor

1.2.4 Installing extra packages on any system

All R and Bioconductor packages are stored in the Internet in a place called
a repository. CRAN is the central repository for general R packages, but
Bioconductor packages are stored in a repository of their own. Packages
from CRAN or Bioconductor repositories can be installed directly from R.

First the repository should be selected in R. Type:
> setRepositories()

This gives a list of available repositories. At least one has to be selected.
Next, the packages to be installed should be specified:
> install.packages()

One mirror (e.g., Austria) should be selected from the list, and all the desired
packages from the second list. Typically, install.packages() opens a pop-up
window where this selection can be made.

Bioconductor also contains many annotation packages, such as KEGG
pathways and GO ontology. Available package names can be checked from
the Bioconductor site at http://www.bioconductor.org/download/metadata/
. The latest release should be selected from the list of releases. The names
of the packages are exactly as they appear in the list on the webpage. For
example, to download and install KEGG, GO and cMAP pathway packages,
type in R:

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("KEGG", "GO", "cMAP"))

An unlimited number of packages can be installed at the same time using
this syntax. Just add the names of the new packages enclosed with quotation
marks and separated by comma (,).

Annotation for all Affymetrix chips are available from the Bioconductor
site. These can be downloaded and installed as specified above. For example,
to install all yeast ygs98 chip related files, type:

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("ygs98", "ygs98cdf", "ygs98probe"))

These packages contain the annotations for the probe sets (ygs98), map-
pings between probes and probe sets (ygs98cdf), and probe sequences
(ygs98probe). Packages for other Affymetrix chip types are similarly named,
but the naming scheme for other technologies differs from this.

1.2.5 Installing extra packages from ZIP files

If you can’t connect to Internet directly from R, packages can be downloaded
to the local computer, and be installed from these files. For windows pack-
ages come as ZIP-files, and for UNIX systems as .tar.gz-files. These should

1 Installation of R and Bioconductor 21

not be expanded before installation.
In windows a ZIP-package can be installed from the user interface menu

Packages using the selection Install package(s) from local zip files. For UNIX
systems the installation is slightly more demanding. Command
install.packages() is used for this. For example, to install a package
called amap, the command would be:

> install.packages(repos=NULL, pkgs="amap_0.7-3.tar.gz)

Before running the installation script, you need to change the R path to
point to the folder where the package can be found. This is accomplished
with the command setwd(), where the path goes inside the brackets sur-
rounded by quotation marks, e.g., setwd("/etc/home").

1.3 Graphical user interfaces

There are several graphical user interfaces to R. These range from text editors
integrated with R to graphical point and click interfaces. Only TinnR, a code
editor, is introduced here.

1.3.1 TinnR

TinnR is a text editor that has a capability to link directly to R. It has been
written with Windows systems in mind. There are other text editors for UNIX
and Linux system, such as Emacs (and it’s extension for communicating with
R, ESS).

TinnR can be download from http://www.sciviews.org/Tinn-R/index.

html. The current version of TinnR is compatible with R run in SDI (sin-
gle document interface) mode only. After downloading and installing R and
TinnR, right click with mouse over the R icon (on Desktop). Select proper-
ties from the pop-up window. A new window opens. Add --sdi to the end
of the target field so that the field becomes something like

"C:\Program Files\R\R-2.7.2\bin\Rgui.exe" --sdi

Now R is configured to run in SDI mode.

22 DNA microarray data analysis using Bioconductor

TinnR needs to know where R is located on the computer. The path to R
can be specified from the Options-menu, selection Main -> Application. In
the bottom of the opening setting window is a field called Rgui, where the
path to R should be typed. After typing in the path, select OK:

If you’re not sure how to find the correct path, open some file browser
(e.g., Windows Explorer), and browse to the R installation directory. Then
coyp and paste the path from the file browser to Tinn-R settings. Youn can
check that you specified the correct path by testing the connection between
TinnR and R. Selection Initiate/Close Rgui -> Initiate preferred Rgui should
start R.

TinnR can color the written code. The color scheme can be changed to R
from menu Options with selection Syntax -> Set -> R. Now Tinn R is ready
for use.

R code can be written directly to the TinnR editor. Written code can be
run in R directly from TinnR. The part of the code to be run should first be
colored. The code can then be run in R by selecting Send to R -> Selection

from the menu R.

2 Introduction to R language 23

2 Introduction to R language

2.1 Basics of R language and environment

Starting the work with R without any previous knowledge of possible com-
mands is rather demanding. This chapter offers an overview of basics of R
language and some of the most common R commands.

2.1.1 Starting and closing R

R can be started either by clicking its icon (Windows and Mac OS X) or by
typing its name on the command prompt (Linux and UNIX).

R is closed with the command q(). When R is closed, the user has an
option to save everything done in the same session. R asks whether to "Save
workspace image". If answered yes, all the objects in R memory are saved
in a file called .RData, and the command history is saved in a file called
.Rhistory. This is very helpful, since these files can later on be loaded into
R memory again, and the analysis can be continued. In windows these files
can be loaded from menu File -> Load workspace and File -> Load history.
In UNIX, Linux and Mac OS X the files can be loaded using the command
load, for example:

> load(".RData")

2.1.2 Prompt

When R starts user gets to the prompt. In the R environment user can type
commands on the line starting with larger than sign (>). This sign is called
a prompt, because it prompts or urges user to write something. Sometimes
lines start with a plus (+) sign. This means that the input on previous lines
was not complete, and R expects to get more input. This can happen when
the given commands were incomplete, possibly missing some elements of
the command, and when the command is typed on several lines, as is the case
with loops and conditional execution of commands (see more below).

24 DNA microarray data analysis using Bioconductor

2.1.3 Help!

R ships with comprehensive help files. These can be accessed directly from R
or using a web browser. The web browser is especially suitable for searching
new possibly usable commands. Direct access from R is faster, but the name
of the command is needed in order to access the help files this way.

Web browser help can be invoked with the command:
> help.start()

This opens a new browser window. A basic book on R language can be
accessed there through the link An introduction to R. Other basic manuals
are also included as web-pages. Packages-link gets to a detailed description
of functions and datasets in each package. Search Engine can be used for
searching commands and datasets by quory words.

Help can be accessed directly from R using the command help(). The
name of the command is written in parenthesis:

> help(mean)

The command opens the help page in R. Typically in a Windows system a
new window is opened for the help page. In UNIX the help page is displayed
in the editor, and pressing q exits the help page.

The general layout of the help page is as follows. The first line gives
the name of the command, and the package it can be found from. Then
comes the title of the function or the command. Command mean() calculates
arithmetic mean. After the title comes a short description and the general
usage of the command. Command mean() takes several arguments (x, trim
and na.rm) that are described in more details under the arguments part of the
help page. After arguments comes a description of the values generated by
the command. There are typically some examples of correct usage in the end
of the help page.

mean package:base R Documentation

Arithmetic Mean

Description:

Generic function for the (trimmed) arithmetic mean.

Usage:

mean(x, ...)

Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments:

2 Introduction to R language 25

x: An R object. Currently there are methods for numeric data

frames, numeric vectors and dates. A complex vector is

allowed for ’trim = 0’, only.

trim: the fraction (0 to 0.5) of observations to be trimmed from

each end of ’x’ before the mean is computed.

na.rm: a logical value indicating whether ’NA’ values should be

stripped before the computation proceeds.

...: further arguments passed to or from other methods.

Value:

For a data frame, a named vector with the appropriate method being

applied column by column.

If ’trim’ is zero (the default), the arithmetic mean of the values

in ’x’ is computed, as a numeric or complex vector of length one.

If any argument is not logical (coerced to numeric), integer,

numeric or complex, ’NA’ is returned, with a warning.

If ’trim’ is non-zero, a symmetrically trimmed mean is computed

with a fraction of ’trim’ observations deleted from each end

before the mean is computed.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S

Language_. Wadsworth & Brooks/Cole.

See Also:

’weighted.mean’, ’mean.POSIXct’

Examples:

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

2.1.4 Commands

R commands are always case sensitive and associated with parenthesis im-
mediately following the command. As we saw in the Help-section above,
command mean() calculates an arithmetic mean of an R object (x) that has
been given to the command. For example, age of ten individuals can be stored
in a variable called age, and a mean age for the group can be calculated with
function mean():

26 DNA microarray data analysis using Bioconductor

> mean(age)

The function mean() always expects to get a name of a variable containing
the values for calculation of the arithmetic mean. Thus, each command con-
sists of three parts:

• command name

• parenthesis

• argument(s) within parenthesis

In other words, age is a value assigned to to the argument x for the
command mean(). As described in the help page for mean() an argument
na.rm can also be specified. This argument is a logical value (either TRUE
or FALSE) indicating whether to remove missing values from the variable
before calculating the mean. If the argument gets a value of TRUE, missing
values are removed before calculations. If the value is FALSE, missing val-
ues are not removed. For example, mean age with missing values removed
can be calculated as:

> mean(age, na.rm=TRUE)

As already mentioned, R commands are case sensitive. Thus, the following
would not work, because function MEAN() is not recognized as a valid R
command:

> MEAN(age, na.rm=TRUE)

Error: could not find function "MEAN"

It is not always easy to guess what arguments each command takes. In such
cases, it is best to consult the help page for the function, and read the argu-
ments part of the help page meticulously. In addition, it is often helpful to
read and test the examples from help page.

In general, for an argument that take numerical or logical values, the
arguments are given without quotation marks. For arguments taking strings,
values need to be given within quotation marks. For example, command
mean() does not need any string input, and all its arguments are specified
without quotation marks:

> mean(age, na.rm=T, trim=0.1)

Commands can also be tiled, i.e., commands can be written one after another
on the same line as long as the number of parenthesis is balanced. For exam-
ple, missing values can first be removed, and then the mean of the values can
be calculated:

> # Removes missing values from age

> age2<-na.omit(age)

2 Introduction to R language 27

> # Calculates mean of age2 (no missing values)

> mean(age2)

> # The same procedure but written

> # on the same line

> mean(na.omit(age))

2.1.5 Environment

R environment has some helpful functionality. Previous commands can be
leafed through using the up and down arrow keys. This functionality is es-
pecially handy when there is a long command that was mistyped. Pressing
once the up arrow key gets back to the last command, and it can be edited
without a need to retype the whole command.

It is also possible to get a list of all the previous commands executed in R
using the command history(). By default it displayes only of a few dozen
lastest commands, but the number of commands displayed can be modified
using argument max.show. For example, the following command shows the
last 500 commands:

> history(max.show=500)

2.1.6 Packages

Additional packages can be installed in R as described in the Installation
chapter of this book. The installed packages are not by default loaded into
memory everytime R is started. Instead the user should load them into mem-
ory using the command library(). For example, package for classification
and regression tree analysis (rpart) can be loaded in the memory:

> library(rpart)

To get a list of all the packages loaded into memory, use function sessionInfo():

> sessionInfo()

Version 2.3.1 (2006-06-01)

i386-pc-mingw32

attached base packages:

[1] "methods" "stats" "graphics" "grDevices" "utils" "datasets"

[7] "base"

other attached packages:

rpart

"3.1-29"

If the package is not loaded into memory the commands or datasets contained
in the package cannot be used, and help functions in R do not find documen-
tation for the functions. For example, help(rpart) would give the following

28 DNA microarray data analysis using Bioconductor

error message if the package rpart is not loaded into memory:

No documentation for ’rpart’ in specified packages and libraries:

you could try ’help.search("rpart")’

Sometimes two packages contain functions with exactly the same name. This
can trigger a warning:

Attaching package: ’rpart’

The following object(s) are masked _by_ .GlobalEnv :

rpart

This warning simply means that the command rpart() in package rpart

cannot be used, because there is already another command with the same
name in memory. This can fixed by removing the conflicting package from
the memory using the command detach():

> detach(package:rpart)

Or, better still, restaring R.

2.1.7 Changing the working directory

It is a good practice to dedicate a single folder for a single dataset. Whenever
starting to work with a new dataset, it should be copied to a new folder.
Before data importing, R should be told where the data resides, and this can
be accomplished in Windows using the menu File -> Change Dir. This opens
a new windows where the user can browse to the correct folder. In UNIX and
Linux the user needs to specify the path to the data folder using the command
setwd(). For example, to set the path to the timeseries data folder on CSC
server Corona, user could issue a command:

> setwd("/home/csc/jtuimala/timeseries")

Sometimes it is useful to check the current working directory. The path to
the working directory can be checked using the command getwd():

> getwd()

[1] "/home/csc/jtuimala/timeseries"

Files in the current folder can be listed using the command dir():
> dir()

[1] combined.txt

2.2 R is an expanded calculator

R is an excellent calculator. It has a very comprehensive collection of math-
ematical and arithmetic functions. The standard order of precedence is used
in R. Powers and roots are calculated first, followed by multiplication and di-

2 Introduction to R language 29

vision, and last addition and subtraction. Some of the most commonly used
arithmetic and mathematical features of R are introduced here.

2.2.1 Arithmetic

Addition and subtraction are done using operators + and -:
> 9+5

[1] 14

> 9-5

[1] 4

Multiplication is done using asterisk (*):
> 4*6

[1] 24

Division uses slash (/):
> 16/4

[1] 4

Exponentiation uses the hat (∧):
2^2

[1] 4

For square root, there is a command sqrt():
> sqrt(4)

[1] 2

2.2.2 Mathematical functions

In addition to arithmetic functions, all sorts of other mathematical functions
(commands) are available, most importantly logarithms and exponentiation.

Logarithm are calculated using the command log():
log(4)

[1] 1.386294

The log() -command gives natural logarithms (base 2.718282). Logarithms
to base 10 can be calculated using the function log10(), and logarithm to
base 2 with function log2(). Command exp() calculates an exponential
(antilog) function (2.718282x):

> exp(2)

[1] [1] 7.389056

2.2.3 Logical arithmetic

Testing for equality of two objects can be done using the operator ==, and
the result is a logical expression (either true or false):

> 2==2

[1] TRUE

30 DNA microarray data analysis using Bioconductor

Other possible operators are >, <, >=, <=, and !=. These test whether the first
objects is larger than, smaller than, larger or equal to, smaller or equal to or
unequal to the last objects. For example:

> 2<3

TRUE

> 2>3

FALSE

2.2.4 Number of decimals

R makes the calculations using more decimals than are reported in the output.
Therefore, the number of decimals in the output can limited. This can be
accomplished by rounding the already acquired numbers to a certain number
of decimals (command round()).

> round(exp(2), digits=2)

[1] 7.39

2.3 Data input and output

Data can be read into R in several ways. The simplest possibility is to input
data using functions provided by R. Another, probably less laborous way for
larger datasets, is to read the data from a table. The table can be created in any
spreadsheet editor, such as Microsoft Excel, and saved in a tab-delimited text
format. Similar tables are typically produced by microarray image analysis
software. Both data input types are introduced here.

R assumes by default that the decimal delimiter for numeric values is
dot (.). Comma (,) is a delimiter for lists. Therefore, all the numerical values
that are imported into R should be checked to contain only numbers and dots.
Otherwise the values are read in as text. However, there is way around this
using the command read.table() (see below).

2.3.1 Allocation

Allocation is acquired using the operator <- that is made up from the smaller
than sign coupled with the minus sign. Allocation is used for storing informa-
tion into some named object in R memory. Allocation destroys the existing
object of the same name.

Saving a single number to an object called number is acquired as fol-
lows:

> # This works, but a better way would be

> # to use the command c(), see below

> number<-2

2 Introduction to R language 31

Names of the objects are regulated. They cannot start with a number
or contain special letters, such as å, ä or ö. If the variable name is long,
it is better to separate the parts with dot (.) not with blanks (), minus (-)
or underscore (_). It is also best to avoid using command names as object
names.

2.3.2 Typing in the data

R typically thinks in vectors. A vector is an ordered list of numbers or strings.
Vector is the simplest type of data structure available in R.

A vector is created using the command c(). The numbers that form the
vector are typed inside the parenthesis and separated by comma (,). Usually
the vector is saved in an object with assignment operator <-:

> a<-c(1,2,3,4,5)

> a

[1] 1 2 3 4 5

Note that objects can be viewed by typing their name on the command prompt.

2.3.3 Reading tabular data

Tabular data, such as tab-delimited text files, can be easily read into R using
the command read.table(). It should be provided with the name of the file
(inside quotation marks), a logical value indicating whether the table columns
have titles, the separator used in the file, and optionally the number of the
column having the row names:

> dat<-read.table("ab.txt", header=TRUE, sep="\t", row.names=1)

> dat

a b

a 1 6

b 2 7

c 3 8

d 4 9

e 5 10

Here, a tab-delimited text file containing two columns named a and b was
read in an R object dat.

If the decimal separator is something else than dot (.), it can be specified
in the command read.table() using the argument dec. For, example, the
following command would read in a rather rare pipe-separated (|) file:

> dat<-read.table("ab.txt", header=TRUE, sep="\t", row.names=1,

+ dec="|")

32 DNA microarray data analysis using Bioconductor

2.3.4 Writing tabular data

Tabular data can be written into a file using the command write.table().
The command takes as arguments the name of the data object to be written
to the file, file name inside quotation marks, and the type of the file separator
(here, tab). For example:

> write.table(ab, "ab.txt", sep="\t")

2.3.5 Saving output to a file

Output generated by R commands can be saved to a file. Before any com-
mands are run, command sink() is issued. It takes as an argument a file
name where the output is saved. After the commands are executed, sink()
is issued again, and any further output is not saved to a file anymore. For
example:

> sink("result.txt")

> print(ab)

> print(summary(ab))

> sink()

2.4 Calculations with vectors

All the functions introduced above for numbers are applicable for vectors,
also. When applied to a vector, the function is applied on every number of
the vector individually. In addition, there are several commands that can be
applied meaningfully only to vectors.

2.4.1 Arithmetic on vectors

Basic arithmetic operators can be applied for vectors:
> x; y

[1] 0 1 0 0 1 0 0 1 0

[1] 0 0 1 0 0 1 0 0 1

> x+y

[1] 0 1 1 0 1 1 0 1 1

2.4.2 Mathematical operators for vectors

The most commonly used commands for vectors might be sum() and mean()

that calculate a sum or an arithmetic average of the numbers of the vector:
> sum(x)

[1] 3

mean(x)

[1] 0.33

2 Introduction to R language 33

Commands min(), max() and range() give the minimum, maximum and
range of the numbers in a vector:

> min(x)

[1] 0

> max(x)

[1] 1

> range(x)

[1] 0 1

Basic statistics for a vector are generated by the command summary():
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.000 0.000 0.333 1.000 1.000

Standard deviation, variance and correlation are calculated as:
> sd(x)

[1] 0.5

> var(x)

[1] 0.25

> cor(x,y)

[1] -0.5

2.5 Object types

The object types introduced below are the basic object types that are available
in R. The object type can be found out using the command class(). This
is important, since not all commands or functions are available for all object
types. Some statistical commands generate large objects. To get a list of
all elements contained in the object, command str() should be used. To
demonstrate these:

> class(x)

[1] "numeric"

> class(dat3)

[1] "matrix"

> str(dat3)

num [1:2, 1:9] 0 0 1 0 0 1 0 0 1 0 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: NULL

Here, command str() gives a detailed description of a matrix that contains
2 columns and 9 rows. That information is given on the first line of output
from str(). The second line says that there are names for the dimentions of
the matrix, and those names are then listed. Columns have names x and y,
but rows do not contains names, and the names are listed as NULL (no data).

34 DNA microarray data analysis using Bioconductor

2.5.1 Vector

A vector is an ordered list of numbers or strings. Vectors have been discussed
above in details, and the same information is not duplicated here.

A function not yet introduced, but that might be of use is length(). It
calculates the lenght (number of values) of a vector:

> length(a)

[1] 9

2.5.2 Factor

A factor is a vector that is used for grouping components of other vectors.
Factors are often used for storing categorical data. Therefore, they are typi-
cally used in statistical models, such as linear regression models.

Vectors can easily be converted into factors using the command as.factor():

> xf<-as.factor(x)

> xf

[1] 0 1 0 0 1 0 0 1 0

Levels: 0 1

Note that by default, as.vector() converts the vector to a factor with the
same levels that were present in the vector. If argument mode="numeric" is
used, the factor levels in ascending order are recoded with numbers starting
from 1.

2.5.3 Matrix

A matrix is a table of n rows times m colums. All columns of a matrix
should contain similar information. For example, all the columns of a matrix
could contain numbers, but numbers and strings can not be mixed in the same
matrix. For example:

> dat2

x y

[1,] 0 0

[2,] 1 0

[3,] 0 1

[4,] 0 0

[5,] 1 0

[6,] 0 1

[7,] 0 0

[8,] 1 0

[9,] 0 1

> class(dat2)

[1] "matrix"

2 Introduction to R language 35

Every value in a matrix can be accessed using a subscript. Subscript indicates
the row and column of the observation to be accessed:

> # The first row and the first column

> dat2[1,1]

[1] 0

> # The first row only

> dat2[1,]

x y

0 0

> # The first column only

> dat2[,1]

[1] 0 1 0 0 1 0 0 1 0

> # The rows from 1 to 3

> dat2[1:3,]

x y

[1,] 0 0

[2,] 1 0

[3,] 0 1

Subscripts can be used for getting a subset of a dataset. There are several
ways to do this, but only a couple are introduced here.

> a

[1] 0 1 11 0 1 11 0 1 11

> # Gives only the rows of dat2 for which

> # a is equal to 11

> dat2[a==11,]

x y

[1,] 0 1

[2,] 0 1

[3,] 0 1

> # Command which gives a list of index numbers

> # indicating the rows of the matrix.

> # This can be used for getting a subset

> # of the data.

> which(a==11)

[1] 3 6 9

> dat2[which(a==11),]

x y

[1,] 0 1

[2,] 0 1

[3,] 0 1

The dimensions of a matrix can be checked using the command dim() that
prints two numbers. The first number is the number of rows, the seconds
number being the number of columns:

> dim(dat2)

[1] 9 2

36 DNA microarray data analysis using Bioconductor

2.5.4 Data frame

A data frame is a table, where different columns can contain different kinds
of information. In contrast to matrices, data frames can contain a mix of
columns having numbers and strings.

Data frames can be subscripted as described above for matrices. In ad-
dition data frames can contain names for columns and rows. These can be
found out using the commands colnames() and rownames(), respectively.

A data frame can be created, e.g., from two vectors:
x<-c(0,1,0,0,1,0,0,1,0)

y<-c(0,0,1,0,0,1,0,0,1)

dat2<-data.frame(x, y)

Names of a data frame can be easily changed. For example:
> dat2

x y

[1,] 0 0

[2,] 1 0

[3,] 0 1

[4,] 0 0

[5,] 1 0

[6,] 0 1

[7,] 0 0

[8,] 1 0

[9,] 0 1

> names(dat2)

[1] "x" "y"

> row.names(dat2)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"

> # Setting the names for rows

> # Naming each row using a letter

> l<-letters[1:9]

> l

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"

> row.names(dat2)<-l

> row.names(dat2)

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"

In addition to subscripting, each column of a data frame can be accessed
using its name. The name is written after the data frame name followed by a
dollar sign ($):

> dat2$x

[1] 0 1 0 0 1 0 0 1 0

An existing matrix can be converted to a data frame with a specific conversion
command:

dat2<-as.data.frame(dat2)

2 Introduction to R language 37

2.5.5 S3/S4 class

Some objects, such as AffyBatch objects created using certain functions from
affy-package developed by Bioconductor project create S3 or S4 class struc-
tures. These class structures store data in slots. Names of the slots can be
checked using the command str(). Data in slots can be accessed using
the operator @. For example dat@cdfName would show the data in the slot
cdfName of object dat.

2.6 Data manipulation

2.6.1 Generating sequences of numbers

The simplest way to generate a sequence of numbers is by using the colon
operator (:). When colon separates two numbers, a regularly spaced sequence
of numbers is generated:

> 1:5

[1] 1 2 3 4 5

More complicated sequences are generated with command seq(). It takes
three arguments. The first indicates the start of the sequence, the second the
end of the sequence, and the third the increment or decrement to use. For
example:

> seq(1, 5, 0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

> seq(5, 1, -0.5)

[1] 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

2.6.2 Generating repeats

Repeats can be generated easily with the command rep(). Repeats are an
easy way to generate new variables for statistical models. Command rep()

takes two argument, what to repeat and how many times:
> # Repeat number 1 five times

> rep(1, 5)

[1] 1 1 1 1 1

> rep("Hello!", 5)

[1] "Hello!" "Hello!" "Hello!" "Hello!" "Hello!"

> # Repeat number 1-3 two time

> rep(1:3, 2)

[1] 1 2 3 1 2 3

> # Repeat numbers 1-3 each two times before

> # proceeding to the next number

> rep(1:3, each=2)

[1] 1 1 2 2 3 3

38 DNA microarray data analysis using Bioconductor

2.6.3 Searching and replacing

Searching and replacing is most easily done using the command ifelse().
It takes three arguments, a logical comparison, the value to return if the com-
parison is true, and the value to return if the comparison is false. Command
ifelse() can be used, for example, for recoding variables. Here, the original
variable is recoded into two dummy contrast variables:

> a<-rep(c(0,1,11), 3)

> a

[1] 0 1 11 0 1 11 0 1 11

> # If a is equal to 1, return 1,

> # otherwise return 0

> x<-ifelse(a==1, 1, 0)

> # If a is equal to 11, return 1,

> # otherwise return 0

> y<-ifelse(a==11, 1, 0)

> # Prints first x, then y

> x; y

[1] 0 1 0 0 1 0 0 1 0

[1] 0 0 1 0 0 1 0 0 1

It is a good practise to check that the recoding works as it was supposed to
work. This can be done using the command table() that calculates a cross-
tabulation of two vectors provided for it:

> table(a, x)

x

a 0 1

0 3 0

1 0 3

11 3 0

> table(a, y)

y

a 0 1

0 3 0

1 3 0

11 0 3

2.6.4 Merging tables

Merging two tables is done with command merge(). Command takes two
obligatory arguments, names of the tables. It is often necessary to specify the
column by which matching of elements is done. Columns are specified using
options by.x and by.y. For example, merging two tables might proceed as
follows:

> g<-data.frame(y=1:5)

2 Introduction to R language 39

> # Naming rows with some letters

> row.names(g)<-c(letters[1:2], letters[7:9])

> g

y

a 1

b 2

g 3

h 4

i 5

> h<-data.frame(x=6:10)

> # Naming rows with some letters

> row.names(h)<-letters[1:5]

> h

x

a 6

b 7

c 8

d 9

e 10

> # Matching is done using the row names

> merge(g, h, by.x="row.names", by.y="row.names")

Row.names y x

1 a 1 6

2 b 2 7

Note that only rows with a name a or b are combined, because they exist in
both tables g and h. Other non-matching rows are discarded.

2.6.5 Transposition

Sometimes the data matrix needs to be flipped around so that columns be-
come rows and rows become columns. This is especially useful when certain
statistical models are applied to microarray data. Classic statistical tools as-
sume that columns contain variables, and rows individual observations for the
variables. In microarray data this is not usually the case, because individual
chips constitute columns. Transposition is accomplished using the command
t():

> # Making a simple table of two vectors

> dat2<-cbind(x,y)

> dat2

x y

[1,] 0 0

[2,] 1 0

[3,] 0 1

[4,] 0 0

40 DNA microarray data analysis using Bioconductor

[5,] 1 0

[6,] 0 1

[7,] 0 0

[8,] 1 0

[9,] 0 1

> dat3<-t(dat2)

> dat3

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

x 0 1 0 0 1 0 0 1 0

y 0 0 1 0 0 1 0 0 1

2.6.6 Sorting and ordering

Sorting and ordering vectors are basic manipulations that are often very use-
ful. Sorting a vector either in ascending or descending order in done with
command sort(). Command order() returns a permutation vector that will
sort the original vector in ascending order. To demonstrate this:

> # Generating five integers and a sequence

> # and binding them to a data frame

> i<-data.frame(x=round(abs(c(rnorm(5)*10))), y=c(1:5))

> # Naming rows with letters

> row.names(i)<-letters[1:5]

> i

x y

a 4 1

b 5 2

c 4 3

d 2 4

e 11 5

> # Returns the values in ascending order

> sort(i$x)

[1] 2 4 4 5 11

> # Returns a vector with which the values

> # can be sorted

> order(i$x)

[1] 4 1 3 2 5

The output from order() is slightly more demanding to comprehend. The
output vector lists the ordering in which the values should taken from the
original vector in order to get them into ascending order. In the example
above, the fourth value (2) of the original vector would be taken first. The
first value would be next in order, and so forth until all the values have been
ordered.

Command order() can be used for sorting whole tables. Sorting tables
uses subscripts as follows:

2 Introduction to R language 41

> # Sorting table i according to x

> i[order(i$x),]

x y

d 2 4

a 4 1

c 4 3

b 5 2

e 11 5

Sorting table proceeds in a row wise fashion. As command order() gave a
permutation vector, the original table’s rows are sampled in the order given
by the permutation vector, and a new table is returned. This new table is
sorted in ascending order according to the values of the vector specified in
the command order().

2.6.7 Missing values

Biological data often contains missing values. Those are indicated in R with
string NA. Missing values complicate many analyses, such as hierarchical
clustering or even calculation of arithmetic average of a vector.

Two simple solutions to the missing value problem are removal and im-
putation. If missing values are removed from the data, all rows (observa-
tions) that contain at least one missing value for at least one variable are
removed from the data set. Removal is accomplished using the command
na.omit():

> # Creating a vector with one missing value

> vwm<-c(1,2,3,NA,5)

> # Removing missing values

> vwom<-na.omit(vwm)

> vwom

[1] 1 2 3 5

attr(,"na.action")

[1] 4

attr(,"class")

[1] "omit"

> # Calculating a mean of the vector

> # If missing values exist, this gives NA as a result

> mean(vwm)

[1] NA

> # Without missing values this succeeds

> mean(vwom)

[1] 2.75

Command na.omit() works similarly for matrices and data frames, but in-
stead of single values, whole rows are removed.

42 DNA microarray data analysis using Bioconductor

Missing values can also be replaced with imputing a value for all missing
observations. Function impute() is available in the library e1071:

> library(e1071)

There are two possibilities for imputation. Missing values can be replaced
with either mean or median of the other observations in the same variable.
Note that imputation needs a matrix or a dataframe as an input.

> # Creating a matrix

> v<-matrix(1:10, ncol = 2)

> v[1,1]<-NAv[1,]<-NA

> # Mean imputation

> v2<-impute(v, what=c("mean"))

> v2

> v2

[,1] [,2]

[1,] 3.5 6

[2,] 2.0 7

[3,] 3.0 8

[4,] 4.0 9

[5,] 5.0 10

> # Median imputation

> v2<-impute(v, what=c("median"))

> v2

[,1] [,2]

[1,] 3.5 6

[2,] 2.0 7

[3,] 3.0 8

[4,] 4.0 9

[5,] 5.0 10

2.7 Loops and conditional execution

Loops are control structures that enable execution of the same command or
commands several times. For-loop is probably the most general one, and it is
introduced below. Conditional execution makes it possible to execute some
command only if a certain rule in fulfilled. Conditional execution in R is
programmed using commands if() and if()...else.

2.7.1 for-loop

For-loop requires a name of an index and range it takes on. The name of the
index can be any R legitimate object name, although it is best to avoid names
of already existing objects and commands. The lines belonging to the loop
are typed within curly brackets.

2 Introduction to R language 43

For example, a loop that calculates 2x for values of x between 1-5, would
be writtes as:

> # Here i is the index name

> # Values of i range from 1 to 5

> for(i in 1:5) {

+ print(2^i)

+ }

[1] 2

[1] 4

[1] 8

[1] 16

[1] 32

2.7.2 if

If evaluates a logical comparison, and if the comparison is true, the com-
mands within curly brackets are executed. For example, to calculate 2x for
values of x between 1-5, only if variable k equals 1, would be programmed
as:

> k<-c(1)

> if(k==1) {

+ for(i in 1:5) {

+ print(2^i)

+ }

+ }

You can test the conditional execution in the example above by changing
the value of k to, e.g., 2.

2.7.3 if...else

Sometimes it is desirable to do something else if the condition in the if-clause
is not met. For example, 22 is calculated only if k equals 1 otherwise 32 is
calculated:

> k<-c(1)

> if(k==1) {

+ print(2^2)

+ } else {

+ print(3^2)

+ }

The same procedure can also be implemented using two if-clauses:
> if(k==1) {

+ print(2^2)

+ }

> if(k!=1) {

44 DNA microarray data analysis using Bioconductor

+ print(3^2)

+ }

The last example uses an operator != that means unequal in R language.
Sometimes several comparisons need to be made. These can be implemented
using operators | and &. The former operator means or, and the latter is and.
These are logical operators, and can be used in any commands. For example,
the loop above can be modified to print the square of two if k is equal to one
or two, and print square of three if k is larger than 2:

> if(k==1 | k==2) {

+ print(2^2)

+ }

> if(k>2) {

+ print(3^2)

+ }

2 Introduction to R language 45

2.8 Graphics

R has very good graphics capabilities. It is only possibly to scratch the sur-
fase of its capabilities here, and the emphasis is on basic consepts of R graph-
ics.

2.8.1 Plot, a general command

The elementary command of graphics is plot(). It can be used for visu-
alizing many different kinds of objects. The image produced by plot() is
typically a scatter plot. Two vectors are needed for producing a scatter plot:

> # Generate two random vectors containing

> # a hundred values from a normal distribution

> x<-rnorm(100)

> y<-rnorm(100)

> # Plot the vectors in a scatter plot

> plot(x, y)

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

x

y

If plot() is provided with a table (matrix or data frame), the command
defaults to another command pairs() that plots all columns aginst each

46 DNA microarray data analysis using Bioconductor

other with scatter plots:
> # Makes a data frame with four columns

> # called a, b, c, and d

> dat<-data.frame(a=rnorm(100), b=rnorm(100), c=rnorm(100),

+ d=rnorm(100))

> plot(dat)

a

−2 −1 0 1 2 −2 −1 0 1 2

−
2

−
1

0
1

−
2

−
1

0
1

2

b

c
−

3
−

1
0

1
2

−2 −1 0 1

−
2

−
1

0
1

2

−3 −1 0 1 2

d

Command plot() takes other arguments, also. The type of the plot can
be specified using the argument type. The possible options are points (p),
lines (l), both points and lines (b), overplotted (o), histogram like bars (h),
and steps. These possibilities are illustrated below.

2 Introduction to R language 47

type="p" type="l"

type="b" type="o"

type="h" type="s"

2.8.2 Changing colors and symbols

In addition to the command specific arguments, graphics commands usually
accept graphics parameter arguments, and title related arguments. A title
can be generated for a plot adding the title arguments inside the graphics’
command’s parenthesis. For example:

> # A scatter plot with main title and x

> # and y axis labels

> plot(x, y, main="Scatter plot", xlab="X variable",

+ ylab="Y variable")

General graphics parameters, such as color for titles and axis labels, and plot-
ting color can be specified before plotting using the command par() that is
used for setting also many other graphics specific options. It is also possible
to give the same information within the graphics’ command’s parenthesis.
Plotting symbol can also be specified as a graphics parameter in the plotting
command. For example:

> # Generating a vector for colors

> # of the dots

> color<-c(rep(1, 50), rep(2, 50))

48 DNA microarray data analysis using Bioconductor

> # Argument col specifies the colors

> plot(x, y, col=color)

> # Generating a vector for point

> # types of the dots

> pnt<-c(rep(1, 50), rep(2, 50))

> # Argument pch specifies the point types

> plot(x, y, col=color, pch=pnt)

There is one value in color and pnt vectors for each observation in the data.
However, it is not obligatory to give the colors and point types this way.
Vector giving the color and point type can be of lenght 1, i.e., contain only
one value. Then all the points are colored and plotted with the same point
type. These settings (col and pch) are actually passed on to the command
par that makes the changes for this specific plot only. For example:

> plot(x, y, col=2, pch=3)

All possible point types are shown below.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Colors can also called with their names instead of numbers. Valid color
names are such as black, white, yellow, lightgreen. In addition to the listed
point types, letters and other marks can be utilized. For example, specifying

2 Introduction to R language 49

pch="H" would result into a plot where each observation is depicted with the
letter H.

2.8.3 Histogram

Vectors can be visualized as histograms. The command for histogram is
hist(). There are 10 bars in the histogram by default, but the number can
be changed using the argument breaks. For example, the code:

> hist(x)

> hist(x, breaks=40)

produces the following two images:

Histogram of x

x

F
re

qu
en

cy

−4 −2 0 2 4

0
50

0
10

00
15

00
20

00

Histogram of x

x

F
re

qu
en

cy

−4 −2 0 2 4

0
20

0
40

0
60

0
80

0

2.8.4 Boxplot

Boxplots can be produced using the command boxplot(). It can be used for
plotting a single vector as a single boxplot, or a data frame as several boxplots
in the same figure. If a matrix is plotted using boxplot(), it is treated as a
vector, and only a single boxplot is produced. For example, the code:

> # Plotting a vector

> boxplot(x)

> # Plotting a matrix

> boxplot(dat)

creates the two images below:

50 DNA microarray data analysis using Bioconductor
−

2
0

2

X1 X2 X3 X4
−

4
−

2
0

2
4

There are several arguments available for boxplot, one of witch is notch.
It highlights the median of the distribution using a notch. If the notches of
two boxplots do not overlap it is strong evidence that the two medians differ.

2.8.5 Scatter plot

Scatter plot is produced by plotting two vectors using the command plot()

as described above.

2.8.6 Panel plots

Panel plots are figures where several individual plots are visualized in the
same figure. Typically all the plots are of the same type, but not necessarily.
For example, the command pairs() generates a panel of scatter plots for a
data frame.

There is a graphical parameter mfrow that can be used for setting the
number of rows and columns in the panel. After setting the dimensions, an
equal number of plotting commands are issued. These plots are plotted in the
panel in the order from the top left to the bottom right corner of the panel.

For example, the figure below was produced using the following com-
mands:

> # The dimentions of the panel:

> # 2 rows and 2 columns of plots

> par(mfrow=c(2,2))

> hist(x, main="A")

> hist(x, breaks=20, main="B")

2 Introduction to R language 51

> boxplot(x, main="C")

> boxplot(dat, notch=T, main="D")

A

x

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
20

B

x

F
re

qu
en

cy

−2 −1 0 1 2

0
2

4
6

8
12

−
2

−
1

0
1

2

C

a b c d

−
3

−
2

−
1

0
1

2

D

Note that the figure was set to be composed of four individuals plots (2
rows and 2 columns = 4 "cells"). Therefore, the par command dividing the
plot region in four is followed by exactly four plotting command.

2.8.7 Other graphical settings

As already discussed, the graphical settings can be changed using the com-
mand par(). Next, a few of the most commonly used settings are introduced.
If the settings are applied using par(), they apply for all of the plots produced
in the same R session. If the options are applied plotwise, the settings apply
only for the current plot.

One of the most common tasks is changing the range of axes. In R this
is done using the arguments xlim and ylim. Both arguments take a vector
that holds two values, the lower end and the upper end of the axis range. For
example, the two images in the figure below were produces as:

52 DNA microarray data analysis using Bioconductor

> # Default axis range

> plot(x, y)

> # User defined axis range

> plot(x, y, xlim=c(-1, 1), ylim=c(-1, 1))

−2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Another common task is changing the symbol and font size. This is ac-
complished with cex-arguments. Argument cex changes the plotting symbol
size. Arguments cex.axis, cex.label and cex.main change the size of the
axis annotation, x and y axis labels and plot main title. For example, this
produces the image below:

> plot(x, y, cex=0.5, cex.axis=0.5, cex.lab=0.5)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

2 Introduction to R language 53

Changing the plot type using command plot() was covered above. If
the plot type is lines (type="l"), the type and width of the line can be
changed using the arguments lty and lwd, respectively. For example:

> # Plots dashed lines with width 2

> plot(z, x, type="l", lty=2, lwd=2)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

z

y

Legitimate settings for the line type are numbers 0-6 ((0=blank, 1=solid,
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash). Line width can
be any positive number, even a decimal number, although not all plot types
support line widths less than 1 (the default).

The argument bty specifies the type of the box drawn around the plot.
Legitimate values are "o", "l", "7", "c", "u", and "]". The shape of the box
resembles the capital letter of the argument value. For example:

> plot(x, y, bty="7")

−2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

54 DNA microarray data analysis using Bioconductor

Setting margins correctly is probably the most complicated issue of graph-
ical settings. The argument mar specifies the number of margins on each side
of the plot. The argument requires a vector of four values in the order bottom,
left, top, right. The default is c(5, 4, 4, 2) + 0.1. To remove all the blank areas
around the plot, the following settings can be used (bottom-left image):

> par(mar=c(0,0,0,0))

> plot(x, y)

However, this effectively removes the areas reserved for titles, tick marks
of axes, etc. A better result is often acquired by leaving some space for these
around the plot. For example (bottom-right image):

> par(mar=c(2,2,2,0)+0.1)

> plot(x, y)

The small addition (+0.1) in the end of the margins settings leaves a small
space between the plotted axes labels and titles and the outer limit of the plot
area.

−2 −1 0 1 2 3

−
2

−
1

0
1

2

2 Introduction to R language 55

2.8.8 Adding new objects to the plots

New objects can be added to an already plotted image. Command abline()

adds a horizontal or vertical line to a specified position in the existing plot:
> plot(x, y)

> abline(h=0)

> abline(v=0)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

Arguments h and v specify the horizontal or vertical position of the line.
The position is given in the space of the plot. In the top-left image above,
values of x and y range from -2 to +2, and the argument should be given
values in this range. Otherwise the line is drawn but is does not appear in the
plot, because it falls out the plotting area.

Lines can be added to an existing plot using the command lines(), also.
It is a more general command than abline(), and even non-linear lines can
be added to the plot. For example, a red lowess smoother line can be added:

56 DNA microarray data analysis using Bioconductor

> plot(z, y, type="l")

> # Calculates the lowess smoother

> l<-lowess(z, y)

> # Plot the lowess smother in the

> # existing line graph with red

> lines(l, col="red", lwd=2)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

z

y

2 Introduction to R language 57

Sometimes it is of interest to know the labels of the observations plotted
in the scatter plot. Labels can be added using the command text(). It re-
quires three arguments, x coordinate of the text, y coordinate of the text and
the text to plot. Additionally, it is often helpful to specify the size of the text
to be plotted using graphical parameter cex as an argument:

> plot(x, y)

> # 0.1 is subtracted from the

> # y coordinate to make the

> # label not to overlap the

> # observations

> text(x, y-0.1, z, cex=0.5)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42
43

44

45

46

47

48

49
50

51

52

53

54

55

56

57

58

59
60

61 62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899
100

If there is a need to add new observations to the plot, it is possible to
do this using the command points(). Points takes two arguments, x and y
coordinates of the new observation. Color(s) of the new observation(s) can
be specified using the graphical parameter col, and the size and type of the
symbol can be changed simultaneously using arguments cex and pch:

58 DNA microarray data analysis using Bioconductor

> plot(x, y)

> points(-2, -2, col="red", cex=1.5, pch=19)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

Legends are always added after the actual plotting of an image. Com-
mand legend() adds a legend. The arguments it takes vary with the plot
type, but the two obligatory arguments are the position of the legend (x) and
the text to be written in the legend (legend). For scatter plots, an extra argu-
ment specifying the colors of the filled boxes to appear next to the texts can
be specified (fill). For line graphs, colors of the lines (col) and type (lty)
and width (lwd) of the lines can be setup:

2 Introduction to R language 59

> # Scatter plot with legend

> plot(z, x)

> points(1, -2, col="red", pch=19)

> legend(x="bottomright", legend=c("Original", "Added later"),

+ fill=c("black", "red"))

> # Line graph with legend

> plot(z, x, type="l")

> lines(lowess(z, x), col="red", lwd=2)

> legend(x="bottomright", legend=c("Original", "Smoothed"),

+ col=c("black", "red"), lty=1, lwd=2)

0 20 40 60 80 100

−
2

−
1

0
1

2

A

z

Original
Added later

0 20 40 60 80 100

−
2

−
1

0
1

2

B

Original
Smoothed

2.8.9 Saving images

There are several ways to save images from R. In windows it is possible
to activate the image windows (it is active just after plotting), and to save
the image using the menu choise File -> Save as. It is possible to save the
image as Windows metafile, postscript, PDF, PNG, bitmap or JPG. Windows
metafile is not available in other systems. A general way to save the image to
a file is to use the commands for directing the output for a graphical device.

The graphics device is first activated, the plot is generated and the graph-

60 DNA microarray data analysis using Bioconductor

ical device is closed. The graphical devices are opened with one of the com-
mands postscript(), pdf(), png(), bmp(), jpeg(). The plot is then gen-
erated as usual, and the devices is closed with the command dev.off(). All
graphical device commands require slightly different options, so consulting
the help page for the command is recommended. However, the obligatory ar-
gument for all the commands is the name of the file to plot to. For example:

jpeg("scatterplot.jpg")

plot(x, y)

dev.off()

The plot generated with the command plot(x, y) is now saved in the file
scatterplot.jpg.

2.9 More information

R manuals can be accessed from web help pages (help.start()). An Intro-
duction to R provides more details on the R language and an introduction to
basic statistical and graphical commands. The R Language Definition gives
extensive description of the language per se. For example, it lists all the
possible operators.

The web page at http://cran.r-project.org/other-docs.html con-
tains a list of documentation for the R language and environment written
by people not directly associated with R development. A Finnish introduc-
tion to R has been written by Jari Oksanen from University of Oulu, and it
can be accessed from http://cc.oulu.fi/∼jarioksa/opetus/rekola/
Rekola.pdf.

A reference card for R commands is available from http://cran.r-project.

org/doc/contrib/Short-refcard.pdf. It lists many R commands that
can be used for data inport, manipulation, analysis and graphics.

Part II

Preprocessing

3 Importing DNA microarray data 63

3 Importing DNA
microarray data

This chapter describes how Affymetrix, Agilent, and Illumina data can be
imported into R.

You need to have R and Bioconductor installed on your computer in
order to be able to work through these instructions. See Chapter 1 for instal-
lation instructions if you don’t have the tools available yet.

Before importing the data you should first change to the working direc-
tory where the data for analyses the resides. All data files are assumed to be
located in the same folder. If you don’t know how to change the working
directory, please consult Chapter 2 for further instruction.

3.1 Affymetrix data

Traditional 3’-expression arrays are designed to include several probes per
transcript. Affymetrix CEL-files contain slightly processed raw data of these
probe intensities. The probe intensities are acquired from a scanned array
image after background correction.

Data for other Affymetrix array formats, such as exon arrays or tiling ar-
rays, can also be stored in CEL-files, but importing these data are not covered
in this Chapter.

3.1.1 Reading CEL-files

Functions for reading Affymetrix data are available in the package affy. The
function ReadAffy() reads in the raw data files, and stores the data as an
AffyBatch object. By default, all CEL-files in the same directory are read.
Alternatively, the files to be read can be specified using an additional argu-
ment.

In order to read the CEL-files you need to give the following commands:

> library(affy)

> dat<-ReadAffy()

64 DNA microarray data analysis using Bioconductor

The raw data is now stored in an object dat. You can check that every-
thing was read correctly just by typing the name of the object to the prompt:

> dat

AffyBatch object

size of arrays=712x712 features (11 kb)

cdf=HG-U133A (22283 affyids)

number of samples=17

number of genes=22283

annotation=hgu133a

notes=

It seems that the data stored in dat is from human HG-U133A arrays,
and those interrogate 22283 transcripts. There were 17 arrays (samples), so
everything we needed was read in, and the array type was correctly recog-
nized. As everything is in order, you can move on to Chapter 4, and normal-
ize your data.

3.2 Agilent data

Agilent data files contain data from image analysis of scanned arrays. In
addition to spot and background intensities they include several dozens of
columns of quality control information.

3.2.1 Reading two-color data files

Functions for reading two-color data are in the package limma. Function
read.maimages() takes care of the actual data import step. You need to
specify the files you want to import by giving their names in the argument
files to the function read.maimages(). If all the files in the same directory
should be imported, a rapid way to generate a vector of the file names is to
call the function dir(), which lists the files in the directory. In addition, you
need to specify the datatype, which is given in the argument source. For
example:

> library(limma)

> dat<-read.maimages(files=dir(), source="agilent")

Read GSM48254_wt.txt

Read GSM48255_mut.txt

Read GSM48501_mut.txt

Read GSM48503_mut.txt

Read GSM48507_wt.txt

Read GSM48510_wt.txt

Read GSM48539_mut.txt

Read GSM48543_mut.txt

Read GSM48546_wt.txt

Read GSM48584_wt.txt

3 Importing DNA microarray data 65

Read GSM48585_wt.txt

Read GSM48586_wt.txt

Read GSM48587_mut.txt

Read GSM48588_mut.txt

Command read.maimages() reads all the files from GSM48254_wt.txt
to GSM48488_mut.txt in an object called dat. This object is now of a type
RGList. The type of an object can be checked using the function class(),
e.g., class(dat). You can check what it contains by typing its name to the
prompt.

You can also quickly check whether all required fields were generated:

> names(dat)

[1] "G" "Gb" "R" "Rb" "targets" "genes" "source"

3.2.2 Reading one-color data files

In addition to the traditional two-color format, Agilent data can also come in
a one-color variaty. This data is generated by hybrizing just one sample to
every array. Hence, the data files contain data for only one channel. Reading
these data files is not as straight-forward as reading the two-color files, since
function read.maimages() expects to get a file with two channels. It can be
used for reading one-color data also, but for this to work, we need to trick the
funtion to think we have two-color data (even if we actually don’t).

First you need to find out whether the data is reported for the green chan-
nel or for the red channel. You can find this out just by opening the data file in
a spreadsheet such as Excel. If it contains the column gMeanSignal, then the
data is reported for the green channel. If the column is called rMeanSignal,
then you know it’s reported for the red channel. How the data is reported
depends on how you did the scanning of the array.

Function read.maimages() can take an argument columns that we can
use for specifying which columns in the data files we want to treat as data
columns. Argument columns should be given a list of column names to be
used for red (R) and green (G) spot intensities and red (Rb) and green (Rg)
background intensities. As we only have one channel, we give exactly the
same spot and background intensities for both red and green channels. For
example:

> dat<-read.maimages(files=dir(), columns=list(

+ G = "gMeanSignal", Gb = "gBGMedianSignal",

+ R = "gMeanSignal", Rb = "gBGMedianSignal"))

Now the data is read into R so that both red and green channels contain
data from the column gMeanSignal and both red and green channel back-

66 DNA microarray data analysis using Bioconductor

grounds contain data from the column gBGMedianSignal.
In addition, we might read in the probe annotations from the data files.

This is accomplished by giving a vector of column names that should be
read as annotation during the data import. These column names are specified
using the argument annotation. For example:

> dat<-read.maimages(files=dir(), columns=list(

+ G = "gMeanSignal", Gb = "gBGMedianSignal",

+ R = "gMeanSignal", Rb = "gBGMedianSignal"),

+ annotation=c("Row", "Col", "Start", "Sequence",

+ "SwissProt", "GenBank", "Primate", "GenPept",

+ "ProbeUID", "ControlType", "ProbeName", "GeneName",

+ "SystematicName", "Description"))

Again, the resulting object dat is of type RGList.

3.3 Illumina data

Illumina data can come in very many variaties, but here we discuss importing
BeadSummaryData that is output from the image analysis of Illumina arrays.
BeadSummaryData can come in several formats, and the format is customiz-
able, so some of the columns might be missing from certain BeadSummary-
Data files. We will cover two formats, one from the BeadStudio version 1
that uses TargetIDs as identifiers, and another one from BeadStudio version
3 that reports expression for every ProbeID. There can be several ProbeIDs
per gene. TargetID is a summary of these ProbeIDs, and can be thought to
represent a single gene.

Regardless of the BeadStudio version, each BeadSummaryData file might
contain data for more than 1 array. The functions that are covered in the fol-
lowing sections read in the whole file, and it should not be modified before
importing it.

3.3.1 Reading BeadStudio v1 data

The functions for reading Illumina data are in two different packages, beadar-
ray and lumi. Here, we will use beadarray for reading in the data. Function
readBeadSummaryData() reads the data in. Usually the data are stored in
a tab-delimited file. To be able to read it in, a file containing the BeadSum-
maryData should be specified (here, Testi.txt). In addition, our BeadSumma-
ryData file identifies the genes using TargetIDs, which we indicate using the
argument ProbeID. The file is tab-delimited, and the argument sep is used
for indicating this. Last, there is a header with seven lines that we don’t want
to read, so we skip those lines (argument skip=7).

3 Importing DNA microarray data 67

> dat<-readBeadSummaryData("Testi.txt",

+ ProbeID="TargetID", sep="\t", skip=7)

Data are now stored in an object dat that is an ExpressionSetIllumina.
You can check that everything went fine just by typing dat to the prompt:

> dat

ExpressionSetIllumina (storageMode: list)

assayData: 24350 features, 8 samples

element names: exprs, se.exprs, NoBeads, Detection

phenoData

rowNames: sample1, sample2, ..., sample8 (8 total)

varLabels and varMetadata description:

sampleID: NA

featureData

featureNames: GI_10047089-S, ..., GI_9998947-A (24350 total)

fvarLabels and fvarMetadata description:

ProbeID: NA

experimentData: use ’experimentData(object)’

Annotation:

QC Information

Available Slots: exprs se.exprs NoBeads controlType

featureNames:

sampleNames:

3.3.2 Reading BeadStudio v3 data

BeadStudio version 3 files can be imported using the same readBeadSummaryData
-function as the older data files, but the function calls needs modifications.
First, BeadStudio version 3 files don’t include any header by default, so we
don’t need to skip any lines from the beginning of the file (skip=0). Second,
the unique identifier is now in the column ProbeID that contains identifiers
for all probes (not genes!) on the array:

> dat<-readBeadSummaryData("ProbeProfile.txt",

+ ProbeID="ProbeID", sep="\t", skip=0)

Again, data are now in an object dat that is an ExpressionSetIllumina.
You can check that everything went fine just by typing dat to the prompt.

4 Normalizing DNA microarray data 69

4 Normalizing DNA
microarray data

Normalization is a broad term for methods that are used for removing sys-
tematic variation from DNA microarray data. In other words, normalization
makes the measurements from different arrays inter-comparable. The meth-
ods are largely dissimilar for different DNA microarray technologies. For
example, robust multiarray average (RMA) is a commonly used method for
preprocessing and normalizing Affymetrix data, but it can’t be applied to any
other data types. However, one part of the RMA method is quantile normal-
ization that is applicable to all data types.

Typically log2-transformed data is used for further analysis. Most of
the normalization functions produce data in this format by default. If this is
not the case, it is indicated below after the normalization. After normaliza-
tion and possible log-transformation, the data is saved in a tabular format for
further analysis.

Some of the most typical normalization methods are covered in this
chapter. These methods apply to whole genome chips, where we can as-
sume that most of the genes are not changing. Normalization is applied to
the imported data that was stored in an object dat in the previous chapter.

4.1 Normalizing Affymetrix data

Normalization is just one part of Affymetrix data processing before estimates
of gene expression are ready for further analyses. Typically preprocessing
methods, such as RMA, consist of several steps: background correction, nor-
malization of probes, and summarization where individual probes are com-
bined into a probeset.

Functions for Affymetrix normalization are distributed over several pack-
ages. The MAS5 method developed by Affymetrix is available in the package
affy, command mas5(). A newer method Plier, also developed by Affymetrix
is available in package plier, command plier(). The RMA method is im-

70 DNA microarray data analysis using Bioconductor

plemented in package affy (command rma(), but it’s adaption for taking into
account the differences in probe’s GC% (GCRMA), is available in a separate
package gcrma (command gcrma().

Here, we will apply RMA preprocessing to the data. The reason why
RMA was chosen is based on observations that it gives highly precise esti-
mates of expression (which is desirable), although it might not give as accu-
rate results as MAS5. In other words, RMA seems systematically to under-
estimate gene expression.

RMA preprocessing can be applied to the imported data, if the affy li-
brary has been loaded into memory. The preprocessed data will be stored in
an object dat2:

dat2<-rma(dat)

Function rma() assumes that all raw data are first read into R. When the
dataset is larger than about a dozen or few a dozen arrays, the data might not
fit into the computer’s memory. In such cases RMA preprocessing should be
applied without reading the data into memory. Function justRMA() accom-
plishes this. It assumes that the working directory is pointing to the directory
where the data resides:

dat2<-justRMA()

Note that the preprocessed Affymetrix data is now stored as an Expres-
sionSet:

> dat2

ExpressionSet (storageMode: lockedEnvironment)

assayData: 22283 features, 17 samples

element names: exprs

phenoData

sampleNames: GSM11805_normal.CEL, ..., GSM12444_normal.CEL (17 total)

varLabels and varMetadata description:

sample: arbitrary numbering

featureData

featureNames: 1007_s_at, ..., AFFX-TrpnX-M_at (22283 total)

fvarLabels and fvarMetadata description: none

experimentData: use ’experimentData(object)’

Annotation: hgu133a

4.2 Normalizing Agilent data

Agilent data normalization typically consists of two phases, background cor-
rection and normalization. Normalization is slightly different for one-color
and two-color Agilent data so these are presented separately.

4 Normalizing DNA microarray data 71

4.2.1 Two-color data

For background correction, several methods exist. The most simple is sub-
traction where the background intensities are simply subtracted from the spot
(foreground) intensities. The downside of subtraction is that it typically gen-
erates plenty of negative estimates of expression. Therefore, other methods
that guarantee that the estimates of expression are positive have been devel-
oped. According to a published comparison, the best of these alternative
methods is normexp with an offset 50. Offset is the number added to the spot
intensities to assist in the background correction step.

Dye-bias is a common phenomenan in any two-color platform. It is
acaused by unequal labeling by the two dyes. Dye-bias can be somewhat
corrected using a lowess (or loess) normalization, which fits a curve to the
data, and uses this curve for normalizing the expression values. Therefore,
lowess normalization is probably the most commonly used method for any
two-color data, and it will be covered here.

Functions for normalizing two-color Agilent data are available in pack-
age limma. Function normalizeWithinArrays() does both background
correction and loess normalization for arrays. It can be used in conjunction
with normexp background correction with offset of 50:

> library(limma)

> dat2<-normalizeWithinArrays(dat, method="loess",

> "normexp", offset=50)

The resulting normalized data is stored in an object dat2 that is of type
MAList.

In addition to the array normalization, one can also want to normal-
ize the genes. This is not necessary to make the arrays comparable, but is
sometimes used. However, note that the gene-wise normalization might af-
fect the results of filtering and statistical analyses. Most typically the gene-
wise normalization is used with visualization methods, such as hierarchi-
cal clustering. Normalization of genes is carried out using the command
normalizeBetweenArrays(). It can be applied to the array-normalized data
the same way as it is applied to the one-color Agilent data (see the next sec-
tion), with a possible exception that the argument method=scale is used
instead of method="quantile".

4.2.2 One-color data

One-color data is normalized in two steps. First the background correction
is applied to the raw data (using normexp + offset 50 method), and then the

72 DNA microarray data analysis using Bioconductor

corrected values are normalized. As the last step the data is log2-transformed.
This requires running three separate functions. Here, quantile normalization
is used:

dat2<-backgroundCorrect(dat, "normexp", offset=50)

dat2<-normalizeBetweenArrays(dat2$R, method="quantile")

dat2<-log(dat2)

4.3 Normalizing Illumina data

Illumina data can come either background corrected or not corrected. Illu-
mina’s BeadStudio software does the background correction, and we are not
going to touch it here. As a consequence, normalization of Illumina data con-
sists of just one step, normalization. Illumina suggests using rank invariant
normalization that is based on genes that don’t change their rank very much
on different arrays. Another commonly used method is quantile normaliza-
tion. The function normaliseIllumina(), available in package beadarray,
is able to carry out both of these possibilites, but we will use quantile nor-
malization here. It is the default option in the normalization function:

> dat2<-normaliseIllumina(dat)

Note that the data type of dat2 is ExpressionSetIllumina.

4.4 Getting the raw data

The previous sections have explained how to get from the raw data to the
normalized values. Sometimes it is useful to be able to get the raw data also.
It is rather typical to compare the raw data to the normalized values in the
quality control phase.

For Affymetrix data there is no such concept as raw data, if one wants
to see the values already grouped into probesets. There are just different
preprocessing methods.

For Agilent data, the raw data can be produced by using the normaliza-
tion method none. In other words, instead of using the arguments method="loess"
or method="quantile" in the calls to commands normalizeithinArrays()
or normalizeBetweenArrays(), one can change the argument to method="none".
This produces an object that holds the un-normalized data. In addition, it is
possible to drop the background correction phase to get to the really untrans-
formed data.

For Illumina data, an argument method="none" can be provided in the
call to the command normaliseIllumina(). Similarly to Agilent data, it
produces an object that holds the untransformed raw data read from the ar-

4 Normalizing DNA microarray data 73

rays, and put into a suitably formatted R object.

4.5 Saving the expression values

After normalization the data is stored in a format that is internal to certain
Bioconductor packages, such as affy or beadarray. Most of the functions in
R don’t know how to handle these types, so it might be worth while to write
the expression values to disk in a tab-delimited text file.

For Affymetrix and Illumina data the expression values (already log2-
transformed) can be extracted using the command exprs():

> dat.m<-exprs(dat2)

In addition, Illumina data should be log2-transformed

> dat.m<-log2(dat.m)

For Agilent data the procedure is different depending on the data type.
For two-color data, we should first extract the expression values (the M-
values), and then assigning the genes their correct names:

> dat.m<-dat2$M

> rownames(dat.m)<-dat2$genes$ProbeName

In case you’re wondering where one can find out what values to save,
first check the help file for the command normalizeBetweenArrays(). It
lists all the values it produces in the Value-field. Second, you can check what
fields there are in the normalized data object dat2 by typing the command
str(dat2). Command str() is a shorthand for "structure", and it prints on
the screen the structure of the data object.

For one-color Agilent data no such tricks are required, since the normal-
ized data is already in a tabular format. However, we can save it using the
same name (dat.m) as for other data type by:

> dat.m<-dat2

Object dat.m containing the expression values in a tabular format can be
written to disk using the command write.table(). It takes several argu-
ment. In the order of appearance these are the name of object to be writ-
ten, name of the file the data should be written to, separator (here tabulator),
whether to write row names, whether to write column names, and whether
to quote the character values, such as probe IDs. So the following command
writes row and column names and data to a file called affymetrix.txt, and
nothing gets quoted.

> write.table(dat.m, "affymetrix.txt", sep="\t",

+ row.names=T, col.names=T, quote=F)

5 Quality control 75

5 Quality control

This chapter introduces some simple graphical exploration methods for check-
ing the quality of the data both before and after normalization.

Arrays are often thrown out just by looking at the quality control infor-
mation. It might be better to base the decision on several sources of data. If
several quality control plots suggest that there is something terribly wrong,
then it might make sense to exclude that particular sample from further anal-
ysis. Or, if there is strong evidence from the lab that the sample was mis-
handled, then it might be better it remove it, also.

Rather often ordination methods, such as principal component analysis
or non-metric multidimensional scaling are used for checking whether the
biological replicates go together. It is rather typical that there is some mixing
of biological groups in these images, so excluding samples from the analysis
on the basis of ordination plots might not always make sense.

5.1 Checking Affymetrix data

Quality control of Affymetrix arrays is performed for raw data, i.e., imported
CEL files. In Chapter 3 Affymetrix CEL files were read in an object dat.
Quality checks can be performed using that raw data.

Basic quality control for Affymetrix consists of checking for RNA degra-
dation and examining the expression for control genes, scaling factors, per-
centage of present genes and the average background. Functions for perform-
ing these analyses are devided between two packages, affy and simpleaffy. In
addition, boxplot, hierarchical clustering and non-metric multidimensional
scaling can be used to complement these basic tools. Thse work with the
normalized data matrix (dat.m) as specified for the Agilent one-color and
Illumina data in their respective sections.

First we need to calculate the quality control information. RNA degra-
dation is assessed using the function AffyRNAdeg() from the affy package,
and the other descriptives can be calculated using the function qc() from
the package simpleaffy. Note that the input for both of these quality control

76 DNA microarray data analysis using Bioconductor

measures is the AffyBatch object holding the raw data:

> library(affy)

> library(simpleaffy)

> aqc<-qc(dat)

> deg<-AffyRNAdeg(dat)

It might be interesting to see what kind of information objects deg and
aqc contain, but typically we want to examine a visualization of the result.
Plotting the general quality control statistics is simple. Command:

> plot(agc)

will produce the following image:

0

0 QC Stats

GSM11805_normal.CEL

GSM11814_cancer.CEL

GSM11823_normal.CEL

GSM11830_cancer.CEL

GSM12067_cancer.CEL

GSM12075_normal.CEL

GSM12079_cancer.CEL

GSM12098_normal.CEL

GSM12100_cancer.CEL

GSM12105_cancer.CEL

GSM12268_normal.CEL

GSM12270_cancer.CEL

GSM12283_normal.CEL

GSM12298_cancer.CEL

GSM12300_normal.CEL

GSM12399_cancer.CEL

GSM12444_normal.CEL

0

321−3 −2 −1 0

48.7%
55.2

52.52%
60.19

44.4%
56.88

37.64%
110.37

42.31%
131.95

41.19%
55.39

36.19%
76.4

43.84%
56.16

33.39%
142.28

47.84%
88.75

44.82%
70.54

49.85%
59.25

41.26%
70.21

45.57%
70.67

44.11%
72.05

42.24%
139.04

47.03%
59.75

0

gapdh3/gapdh5
actin3/actin5

QC stats plot reports quality control parameters for the chips. Different
chips are separated by vertical grey lines in the plot. The red numbers on
the left report the number of probesets with present flag, and the average
background on the chip. The blue region in the middle denotes the area where
scaling factors are less than 3-fold of the mean scale factors of all chips. Bars
that end with a point denote scaling factors for the chips. The triangles denote
beta-actin 3’:5’ ratio, and open circles are GADPH 3’:5’ ratios. If the scaling

5 Quality control 77

factors or ratios fall within the 3-fold region (1.25-fold for GADPH), they are
colored blue, otherwise red. The deviant chips are therefore easy to pick of
by their red coloring.

Here, all scaling factors are within the acceptable range, but some of the
housekeeping genes fall outside the acceptable range. However, most of the
chips having very deviant control gene expression are samples from cancer-
ous tissue, and the quality control genes might represent the large gene ex-
pression changes typically displayed by the cancer tissue. So, there is nothing
too worrying in the quality control images.

RNA degradation plot is slightly more demanding to plot, since get-
ting a good image requires tinkering with some graphical parameters. First
we sample a number of colors from a set of all available colors, and save
these to an object cols. This object then contains as many distinct col-
ors as there are samples in the dataset (number of rows in the experimen-
tal description of the AffyBatch object). Then we plot the image (command
plotAffyRNAdeg()) using the colors so that every line in the image is col-
ored individually. Adding the argument col=cols in the plotting command
accomplishes that. Last we add a title (command legend()) that labels the
arrays in the plot using the names of the original datafiles (again read from
the experimental description part of the affyBatch object). The legend goes
to the top left corner of the image (argument x="topleft"), and for every
array it holds one thin line (argument lty=1) that is colored according to the
color we earlier generated for the arrays (argument col=cols) and labeled
with small text (argument cex).

> cols<-sample(colors(), nrow(pData(dat)))

> plotAffyRNAdeg(deg, col=cols)

> legend(legend=sampleNames(dat), x="topleft",

+ lty=1, cex=0.5, col=cols)

78 DNA microarray data analysis using Bioconductor

RNA degradation plot

5’ <−−−−−> 3’
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

60

GSM11805_normal.CEL
GSM11814_cancer.CEL
GSM11823_normal.CEL
GSM11830_cancer.CEL
GSM12067_cancer.CEL
GSM12075_normal.CEL
GSM12079_cancer.CEL
GSM12098_normal.CEL
GSM12100_cancer.CEL
GSM12105_cancer.CEL
GSM12268_normal.CEL
GSM12270_cancer.CEL
GSM12283_normal.CEL
GSM12298_cancer.CEL
GSM12300_normal.CEL
GSM12399_cancer.CEL
GSM12444_normal.CEL

In the resulting image every single array is represented by one line. The
idea is to check whether the slopes and profiles of the lines are similar for
all the arrays. It is easy to spot the two lines that deviate from the others by
having a steeper slope. Even if they seem to be dissimilar to others, it would
probably not be too worrisome a phenomenan, and it is acceptable to retain
them in the analysis.

5.2 Checking Agilent data

For Agilent two-color arrays there are two very commonly used quality con-
trol tools, namely MA plot, and density plot. MA plot visualizes the modified
red and green intensities against each other. Density plot creates a smoothed
histogram (or more correctly kernel density estimate) of expression values.
After normalization MA plots should not contain any visible non-linearities
and all the chips should display about the same smoothed histogram in the
density plot. In addition, boxplot, hierarchical clustering and non-metric
multidimensional scaling can be used to complement these basic tools. These
work with the normalized data matrix (dat.m) as specified for the Agilent

5 Quality control 79

one-color and Illumina data in their respective sections.
It might be a good idea to produce the quality control plots for both

normalized and un-normalized data to check how the data has changed. See
the chapter Normalizing DNA microarray data for more details on how to
produce both normalized and un-normalized values for Agilent data.

5.2.1 Two-color data

Quality control for Agilent data is typically carried out on the normalized
data. In Chapter 4 we normalized the raw data, and saved the normalized
values in an object dat2. We will use this object for running the quality
control analyses.

MA plots can be generated one array at a time, but it is easier to plot
six arrays at a time. There is function plotMA3by2() in limma package that
does exactly that. This function actually automatically creates image files,
each of which contains MA plots for six arrays. To generate the plot, you can
use the command:

plotMA3by2(dat2, device="pdf")

The command saves the plots in PDF files (argument device="pdf")that
can be opened (outside R) with some PDF reader, such as Adobe Reader.
Here we had 14 arrays, so three separate files were created.

The plots in the first file (see below) show show some saturation in the
higher end of the scale. Saturation can be spotted by looking for lines in the
lower of higher end of the expression value scale. For example, in the first
plot on top-left, saturated spots form a very distinct line extending from top-
left to lower-right in the plot. There are often some saturated spots, but their
frequency should not be too high. If there are very many saturated spots, then
the scanner settings used while scanning the slides could have been wrong.

80 DNA microarray data analysis using Bioconductor

The other quality control image containing the smoothed histograms for
both channels and all arrays of the normalized data, can be produced using
the command:

> plotDensities(dat2)

The resulting image looks something like:

5 Quality control 81

6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

RG densities

Intensity

D
en

si
ty

Since the smoothed histograms for all arrays and both channels look very
similar, there are no systematic biases in the data anymore, and normalization
has done a good job in removing them (if some was present in the beginning).

5.2.2 One-color data

Agilent one-color data can be checked using similar tools to Agilent two-
color data. One-color data can not be automatically visualized using the
function plotDensities(), since it doesn’t work with one-color data. The
same information can be derived from a boxplot. Normalized data is stored
as a matrix in an object dat.m. Before generating the boxplot, object needs
to be converted into a data frame:

> boxplot(data.frame(dat.m))

The resulting image should look something like the one below. This is
a standard boxplot where every single array is represented by one box. One
should check that the median are all on the same level. Medians are marked
with the horizontal bars inside the boxes. In this case all arrays seem to
have exactly the same distribution of expression values, and this is a result

82 DNA microarray data analysis using Bioconductor

of applying quantile normalization that specifically makes the distribution
exactly the same. Thus, for quantile normalized data the boxplot is not a
very informative quantile control tool.

1 2 3 4 5 6 7 8 9 10 12 14

4
5

6
7

8
9

10
11

In addition, hierarchical clustering and non-metric multidimensional scal-
ing can be used to complement these basic tools. These work with the nor-
malized data matrix (dat.m) as specified for the Illumina data in the section
below.

5.3 Checking Illumina data

The same methods that were used for the Agilent data are in principle appli-
cable to Illumina data. One caveat is that quantile normalization is typically
used for Illumina data, and that renders boxplots, and smoothed histograms
practically useless. But there are other means available for checking, e.g.,
replication. The two widely used methods for checking the quality of replica-
tion is to produce a dendrogram and see if the samples from the same group
are clustered together, and to produce an ordination plot using non-metrix

5 Quality control 83

multidimensional scaling (NMDS).
Let’s start with hierarchical clustering in order to produce a dendrogram.

First we need to calculate all pairwise distances between the samples us-
ing the command dist(). Note that the expression matrix where columns
represent samples need to be transposed so that samples become rows be-
fore calculating distance. This is important, since the dist()-function cal-
culates distances between rows, and calculating distances between tens of
thousands of rows would take a long time. Transposition is taken care of by
the command t(). Then these distances between samples are turned into a
dendrogram using the unweighted pair group method with arithmetic mean
(UPGMA or average linkage) method. UPGMA is the default tree construc-
tion method in the command hclust(). Last the tree can be visualized using
a call to the command plot().

> dat.dist<-dist(t(dat.m))

> plot(hclust(dat.dist))

The resulting plot looks something like the one below. Now, all the sam-
ples group very nicely according to their biological grouping, which indicates
that the data is at least in that sense clean and ready for further analyses.

T
ot

al
P

re
p

1

T
ot

al
P

re
p

2

A
m

bi
on

 o
ld

 p
ro

to
co

l n
ew

 b
io

tin
 3

A
m

bi
on

 o
ld

 p
ro

to
co

l n
ew

 b
io

tin
 1

A
m

bi
on

 o
ld

 p
ro

to
co

l n
ew

 b
io

tin
 2

E
nz

o
B

io
tin

−
16

−
U

T
P

 1

E
nz

o
B

io
tin

−
16

−
U

T
P

 2

E
nz

o
B

io
tin

−
16

−
U

T
P

 3

10
00

0
40

00
0

70
00

0

Cluster Dendrogram

hclust (*, "complete")
dat.dist

H
ei

gh
t

84 DNA microarray data analysis using Bioconductor

The same distances can be used for producing an ordination plot. The
function for calculating an NMDS solution is in the package MASS. The
NMDS can be produced by the command isoMDS() and the resulting ordi-
nation is then plotted using the two first axes of the NMDS solution.

In the command plot() we plot the first axis (mds$points[,1]) of
the NMDS on the x-axis (it’s mentioned first in the plotting command),
and the second axis (mds$points[,2]) to the y-axis. We label the plot as
NMDS (argument main="NMDS"), and the axes as Dimension 1 (argument
xlab="Dimension 1") and Dimension two (argument ylab="Dimension
2"), but we do not mark the samples in the plot with any symbols (argu-
ment type="n"). After the plot has been created, we add the sample names
as labels in the plot using the command text().

> library(MASS)

> mds<-isoMDS(dat.dist)

> plot(mds$points[,1], mds$points[,2], main="NMDS",

+ xlab="Dimension 1", ylab="Dimension 2",

+ type="n")

> text(mds$points[,1], mds$points[,2],

+ rownames(mds$points)), cex=0.75)

5 Quality control 85

The resulting plot resembles the one below.

−30000 −10000 0 10000 20000 30000 40000

−
15

00
0

−
50

00
0

50
00

10
00

0

NMDS

Dimension 1

D
im

en
si

on
 2

Enzo Biotin−16−UTP 1

Ambion old protocol new biotin 1

TotalPrep 1

Enzo Biotin−16−UTP 2

Ambion old protocol new biotin 2

TotalPrep 2

Enzo Biotin−16−UTP 3

Ambion old protocol new biotin 3

The samples that belong to the same group can be easily distinguished
from the other groups using these two axes, so the NMDS plot supports our
view that the quality of the replicates is good.

6 Filtering and differential expression 87

6 Filtering and differential
expression

6.1 Why filtering?

Filtering is often used to describe both unspecific filtering, a topic covered
in this chpater, and specific filtering, a topic covered in the next chapter.
Unspecific filtering refers to methods for excluding a certain part of the data
without any knowledge of the grouping of the samples. Specific filtering is
used is situations when the filtering is affected by the known grouping of
the samples. For example, in a case-control study genes that are expressed
on a very low level across all samples might be removed in an unspecific
filtering process. Genes could also be removed from the data using some
statistical test or some other method that requires group knowledge. These
latter approaches are specific filtering methods.

Unspecific filtering is typically used for excluding any uninteresting genes
from the dataset. Genes that are not changing at all during the experiment or
are expressed on a very low level so that their measurements are unreliable,
are usually excluded from further analyses. There is an on-going discussion
whether this is actually a good or bad habit, since filtering often somewhat
alters the results of the subsequent statistical tests (making the adjusted p-
values lower than they would be without filtering first). If the filtering in
truly unspecific, then no bias has been introduced to the statistical testing,
and it’s results should be valid. If in doubt whether to filter or not, one can
alway first run a statistical test, and after that use unspecific filtering.

This chapter introduces two unspecific filtering methods, filtering by
standard deviation and filtering by expression. These are just two examples
of a wide range of possible filters, but they have been selected due to their
popularity in the published papers of the field.

88 DNA microarray data analysis using Bioconductor

6.2 Filtering tools

After normalization we saved the normalized expression values in a matrix
called dat.m. This object is used as input for the filtering tools introduced
next.

6.2.1 Standard deviation filter

Library genefilter contains ready-made functions for filtering. For the stan-
dard deviation filter, we first calculate a standard deviation for every single
gene. Function rowSds() does the calculation fast. After calculating these
row-wise statistics, they are used for excluding the genes; we only retain
those rows (genes) of the expression matrix that have a standard deviation of
at least 2. The following code does the calculations:

> library(genefilter)

> rsd<-rowSds(dat.m)

Now that we have the standard deviation saved in a vector rsd, we can
use it for filtering the matrix. If you don’t recall how matrices (or data frames)
were subsetted using subscripts, please see the chapter Introduction to R. The
following code does the actual filtering. The filtered dataset is saved in a new
matrix called dat.f.

> i<-rsd>=2

> dat.f<-dat.m[i,]

On the first line of the code above a vector of logical (TRUE or FALSE)
values is created. If the value in rsd is larger than or equal to 2, then the log-
ical value returned is TRUE, otherwise FALSE gets returned. On the second
line of the code this vector is used for filtering the data matrix. If the value in
the vector i is TRUE, the corresponding row from the data matrix is selected
and saved in the new object dat.f.

6.2.2 Expression filter

When filtering by expression, it is not a sensible assumption that all arrays
would behave similarly. On some arrays the gene might be expressed, but
for some reason on some other arrays, it does not seem to be expressed at
all or is expressed at a very low level. Therefore, the filter needs to take into
account this possible discrepancy. This is implemented by letting the gene
pass the filter (and to be included in the dataset), if the gene is expressed at
the set level in at least some proportion of the samples. This kind of filters can
be easily created using the functions kOverA() and pOverA(). The former
function uses the absolute number of samples during filtering, whereas the

6 Filtering and differential expression 89

latter function uses the proportion. We will use the proportion method here.
Filtering proceeds in several steps. First, a filtering function is created

using the function pOverA(). Then this function is applied to all rows of
the matrix using an accessory function genefilter(). Here we assume that
we want to find 2-fold over-expression (A=1), and that the gene has to be
over-expressed in at least 50% (p=0.5) of the arrays. The result is a vector
of TRUE and FALSE values indicating whether the gene passes the filter or
not. This vector is then used for subtracting the passed genes from the whole
dataset using subscripts. The complete filter is as follows:

> ff<-pOverA(A=1, p=0.5)

> i<-genefilter(dat.m, ff)

> dat.fo<-dat.m[i,]

To be precise, we now have a set of over-expressed genes. If we also
want ot get the under-expressed genes, we can invert the matrix, i.e, make
under-expressed values over-expressed and vice versa. The procedure is ex-
actly the same as the one outlined above, but we add a minus sign in front of
the name of the matrix. This inverts it’s values.

> ff<-pOverA(A=1, p=0.5)

> i<-genefilter(-dat.m, ff)

> dat.fu<-dat.m[i,]

We can combine these two matrices into one matrix, if we want to retain
both under- and over-expressed genes in the same dataset. This can be ac-
complished using the funtion cbind() that combines two matrices row-wise,
i.e., it adds the rows in the second matrix after the rows in the first matrix.
This is explained in the chapter Introduction to R in more details. The proce-
dure is as follows:

dat.f<-rbind(dat.fo, dat.fu)

6.3 Filtering after statistical testing

The tools presented above can be applied either before or after normalization.
Here, the tools have been used for the normalized data, but you wish to apply
them for the data that contains only the statistically significant genes, change
the name of the object from dat.m to dat.s. If you have followed through
the analysis in the statistical testing chapter, dat.s should contain the data
for the differentially expressed genes only.

Part III

Analysis

7 Statistical analyses 93

7 Statistical analyses

Statistical analysis of DNA microarray experiments is still under heavy de-
velopment. There are no concensus, no strict guidelines or real rules of thumb
when to apply some tests and when never to apply certain other tests. One of
the widely used tools for the statistical analysis is limma, which implements
linear models. One of the assumptions of the limma’s method is that the data
is normally distributed (otherwise the significance tests give wrong results),
but the real world data is not always normally distributed. From a typical
Affymetrix experiment, maybe only about 20% of the expression values are
normally distributed (inferred from several chips, of course). Other are non-
normally distributed, and one should probably use non-parametric methods
for the analysis. However, usually the same method is used for all genes, and
the results are therefore only approximate. One can probably rank the genes
according to the p-values, but assuming that the p-values are un-biased in the
traditional statistical sense is an illusion.

Here, we will present the statistical analysis using limma package from
the Bioconductor project.

7.1 Key concepts

Linear models are very versatile tools that can be used for analyzing even
very complicated experimental setups. However, in order to be able to use
tools in limma package, one must be able to build a model matrix that de-
scribes the experiment. Fortunately, the limma manual presents examples of
many different experimental setups, both for one- and two-color data. We
will introduce the concepts below using an example from a comparsion of
control and treatment groups, but we do not cover any of the more compli-
cated designs.

7.1.1 Model matrix for a two-group comparison

R comes with a command model.matrix() that makes building the model
matrix a bit easier. Let’s take a concrete example where we want to compare

94 DNA microarray data analysis using Bioconductor

control samples and treatment samples. The experiment has been conducted
using Affymetrix chips, with an equal number of samples in both groups (3
in each). The data has been normalized using RMA as oulined in the chapter
Normalizing DNA microarray data. In the resulting matrix, the first three
columns are control samples, and the last three columns are the treatment
samples. Now, we want to code this information in R somehow. The easiest
way is to a create a vector that contains one entry for every column in the
normalized data matrix. We can code the samples with "C"and "T", so that
the control samples are coded as "C" and treatment samples as "T". The R
code that does that is as follows:

> groups<-c("C", "C", "C", "T", "T", "T")

Now the vector groups holds the information about the groups. Three
columns coded as "C" and three columns coded as "T".

In order to be able to analyze these data, next we need to generate the
model matrix. The vector groups helps as here a bit. Now, it is extremely
important to understand that the same data can be analyzed in several ways,
all of which give exactly the same answer. We will present here only one of
these, in order to avoid introducing too much confusion.

If you’ve ever read any statistics, you might recall that in linear regres-
sion there usually is a constant term that tells us where the regression line
crosses the Y-axis (if the expression is on the Y-axis, and the groups-variable
on the X-axis). You might also recall that linear regression gives an estimate
for the effect of every variable put into the model. Now we only have one
variable we want to use (groups), and the only decision we need to make is
whether to put an intercept in the model or not. Usually we want to keep the
intercept in the model, since we do not want to assume that gene expression
would be zero when the group is control.

To create such a model matrix, one needs to give the following R com-
mands. First we convert the vector groups into a factor groups using the
command as.factor(). This is not essential here, but if you used numeri-
cal codes for the groups in the first place, and especially if you have several
groups to compare, the vector needs first to be converted into a factor in order
to build the correct model matrix (for details, see the next section). The fac-
tor is then subsequently used to create the model matrix using the command
model.matrix()

> groups<-as.factor(groups)

> design<-model.matrix(~groups)

> design

7 Statistical analyses 95

(Intercept) groups2

1 1 0

2 1 0

3 1 0

4 1 1

5 1 1

6 1 1

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$groups

[1] "contr.treatment"

Object design now harbors the model matrix. There is one row in the
model matrix for every sample in the dataset. You can see from the names of
the design that there is an intercept, which is just a column filled with 1s, and
another column groups2, which specifies that we want to compare treatment
(coded with 1s in the model matrix column groups2) with the control group
(coded with 0s in the model matrix column groups2). This is a general feature
of the model matrix. The baseline group is coded with zeros, and the group
that is compared to it is coded with ones.

What you need to keep in mind is that there is practically always one col-
umn filled with ones (the intercept) and one or more columns with, usually,
zeros and ones.

7.1.2 Model matrix for a three-group comparison

In the previous section we covered the basics of the model matrix for a two-
group case. The same principle is very easily expanded to a three-groups
case. Let’s assume that we have one control group and two treatment groups.
Let’s further assume that every group consists of two samples. This principle
actually applies also when a short time series is analyzed. Different time
points can be treated as seperate groups.

To create a model matrix, we first need to code the samples of the data
matrix as we did in the two case:

> groups<-c("C", "C", "T1", "T1", "T2", "T2")

> groups<-as.factor(groups)

> design<-model.matrix(~groups)

> design

96 DNA microarray data analysis using Bioconductor

(Intercept) groupsT1 groupsT2

1 1 0 0

2 1 0 0

3 1 1 0

4 1 1 0

5 1 0 1

6 1 0 1

attr(,"assign")

[1] 0 1 1

attr(,"contrasts")

attr(,"contrasts")$groups

[1] "contr.treatment

Now there are two columns in addition to the intercept in the model
matrix. The first column compares the treatment 1 to the control and the
second compared treatment 2 to the control.

It is worthwhile to name the groups wisely, since construction of the
model matrix is then easier. By default R sorts the names of the groups
alphabetically when the command as.factor() is called. In the example,
the control group (C) is alphabetically the first, treatment 1 (T1) is the next,
and the treatment 2 (T2) is the last. So, by naming the groups conveniently
we can construct a model matrix with very little hassle.

7.2 Analysis using a linear model

Once the design matrix is ready we can move on to the actual analysis. The
method in limma is called empirical Bayes, since it uses a method where
certain parameter are inferred from the data (hence, empirical), and Bayes is
term used to describe certain approaches in statistics. Empirical Bayes is a
better analysis method than, say, traditional t-test for DNA microarray data,
since it gives us more precise estimates of the statistical significance of the
genes.

Empirical bayes analysis is simple in practise. The analysis is carried
out by using the command lmFit() followed by eBayes(). The lmFit()

wants to get the data matrix, and a design matrix. The analysis can be carried
out using the filtered data or with the original un-filtered data as long as the
data is in a matrix format.

For the unfiltered data:

> fit<-lmFit(dat.m, design)

> fit<-eBayes(fit)

7 Statistical analyses 97

For filtered data (only the name of the data matrix has been changed):

> fit<-lmFit(dat.f, design)

> fit<-eBayes(fit)

The object fit contains the results of the analysis. Results can be ex-
tracted using the command toptable(). By default it gives output for the
first column of the design matrix, in other words, the intercept. However, this
coefficient is seldom of interest, but the coefficient to report can be changed
in the function call using the argument coef. If the experiment was a com-
parison between two groups, the following command would extract the genes
that are statistically significantly differentially expressed between the control
and treatment groups:

> toptable(fit, coef=2)

logFC t P.Value adj.P.Val B

1437 -5.080 -27.43783 3.371796e-05 0.4762233 0.13339585

527 -2.165 -20.40133 9.424038e-05 0.4762233 0.01676968

4134 3.695 17.77480 1.518048e-04 0.4762233 -0.06198460

9455 -1.860 -17.56082 1.582920e-04 0.4762233 -0.06982439

8879 -1.870 -16.15531 2.111136e-04 0.4762233 -0.12829384

4527 -2.945 -15.79118 2.283778e-04 0.4762233 -0.14570050

21232 -4.385 -15.20258 2.603142e-04 0.4762233 -0.17614837

5487 3.345 14.43324 3.112599e-04 0.4762233 -0.22082107

1851 -1.565 -14.35081 3.174521e-04 0.4762233 -0.22597133

514 -1.570 -14.31917 3.198711e-04 0.4762233 -0.22796837

How to read the output? The first column (without a name) is the row
number in the original data. So, in this case, the most significant gene was
the one on the row 1437 of the data matrix we gave to lmFit(). The next
(logFC) reports a log2-based fold change between the groups. If the value
is negative, it indicates down-regulation in the treatment group, and a pos-
itive value would indicate up-regulation in the treatment group. There are
two statistics, t and B. The t is the moderated t-statistics from the empirical
Bayes method, and the B is the log-odds that the gene is differentially ex-
pressed. The two p-value columns contain the raw p-value (P.Value) and the
p-value corrected for multiple comparisons (adj.P.Val) using the Benjamini
and Hochberg’s false discovery rate.

7.2.1 Differential expression and p-values

The results above indicate that after correcting for multiple comparisons there
were no significantly differentially expressed genes. However, this is prob-
ably not true, since the differences in expression among the top 10 genes
vary from about 12X over-expression to 32X under-expression (the valuses
are log2-transformed, hence −52 = -32X). The insignificant p-values just

98 DNA microarray data analysis using Bioconductor

indicate that the sample size was too small to draw statistically reliable con-
clusions. The situation may change if more samples are gathered.

On the other hand, if the aim of the study is to show differential expres-
sion using the microarray data only, it is important to draw conclusions based
on the adjusted p-values. If the aim is to find, say, 20 top genes that are to be
verified using some other method, such as RT-PCR, then it does not matter
which p-values you’re using for selecting those top genes. The rank of the
genes remains the same after the multiple testing correction.

7.2.2 Extracting the genes from the original data

One is often interested in seeing the original values of the data after the sta-
tistical testing. Let’s say that we want to get the top 100 genes. We can do
this by first getting the rownames of those gene from the toptable() result.
Here we generate the toptable results for the best 100 genes only, and save
their rownames in the vector rn.

rn<-rownames(toptable(fit, coef=2, n=100))

Or we can extract all the genes that have the unadjusted p-value at most
0.001. First we create the toptable result for all genes in the analyzed data
set (here dat.m). Then we get from this toptable-result only the rows (genes)
that have a p-value less than 0.001, and put their gene names in the vector
rn. Note that the toptable() output is a matrix, so individual columns can
be extracted using the $-notation - this is used for the p-value column in the
example below.

tt<-toptable(fit, coef=2, n=nrow(dat.m))

rn<-rownames(tt)[tt$P.Value<=0.001]

In both cases object rn now stores the numbers of the rows of the original
data matrix. Those names are actually stored in a character vector, but we
need to convert it into a numeric vector first:

rn<-as.numeric(rn)

Then we can extract the genes from the original data:

dat.s<-dat.m[rn,]

Now object dat.s stores the data for the genes that were selected (as
differentially expressed).

8 Gene set enrichment analysis 99

8 Gene set enrichment
analysis

Term gene set enrichment analysis (GSEA) is used in several discrepant
senses. First of all, it is the name of the tool from the Broad Institute, MIT.
Second, GSEA is also used to describe all methods that are used for statis-
tically testing whether genes in our list of interesting genes are enriched in
some pathways or functional categories. Typically these methods employ hy-
pergeometric test -based statistics. Third, approaches where genes are first
assigned to pathways or categories and their statistical significance is tested
using both the knowledge of the category and the expression data, are also
called gene set enrichment analyses.

Although it is nowadays possible to use R for GSEA analyses in Broad
Institute sense, we are not touching on that topic any further in this chapter.
Rather, we introduce the two other mentioned approaches. We call the former
approach gene set enrichment analysis and the latter approach gene set test
according to the Bioconductor package it is implemented in.

Prior to gene set enrichment analysis a statistical test is typically con-
ducted in order to find the statistically significantly regulated genes from the
data. We assume here that such a test has been conducted using limma or by
some other means. The results of the statistical test are stored in a matrix,
which has a similar shape to the original data matrix got after normalization,
but it contains less rows.

In contrast, gene set test takes the original, unfiltered data matrix as it
come out after the normalization.

8.1 Gene set enrichment analysis for GO categories

Library GOstats implements some tools for gene set enrichment analysis.
Before the analysis, microarray probe IDs need to be converted to EntrezIDs.
EntrezIDs are gene-specific identifiers used by NCBI to cross-link different
databases together. Fortunately, annotation packages produced in the Bio-

100 DNA microarray data analysis using Bioconductor

conductor project contain the mappings from probe IDs to EntrezIDs.
Conversion is rather simple. First an EntrezID is searched for every mi-

croarray probe ID using the annotation package. Those are initially contained
in an environment (R’s version of hash tables), which needs to be converted
into a data frame. This requires a little bit of R gymnastics. First, the annota-
tion package is loaded into memory, and the environment ENTREZID from
the package is saved as a new object allg. Next, allg is converted from an
environment to a data frame. This requires the following steps: converting
the environment to a list, unlisting the list, and creating the data frame.

Last, we retain the unique EntrezIDs only for the genes in our list of
interesting genes. We get the matrix of interesting genes (dat.s) from the
data matrix created after the limma analysis. Let’s assume that this is a HG-
U133a array from Affymetrix, and the correct annotation package is thus
hgu133a. The conversion proceeds as follows:

> library(hgu133a)

> allg<-get("hgu133aENTREZID")

> allg<-as.data.frame(unlist(as.list(allg)))

> myids<-unique(allg[rownames(dat.s),])

Now myids contains all the probes that we considered interesting.
The actual test is run in three steps, since the GO hierarchy consists

of three distinct ontologies. These are biological process (BP), molecular
function (MF) and cellular component (CC). First the hypergeometric test
parameters are initialized using the command new(). It takes several argu-
ments, such as the names of the interesting genes (geneIds), an annotation
package (annotation), which ontology to test (ontology), p-value cutoff
(pvalueCutoff), and whether to test over- or under-enrichment (testDirection).
After initialization, the test is calculated using the command hyperGTest().
The following commands test all three ontologies, and store the results in ob-
jects resultBP, resultMF and resultCC. They all use the p-value of 0.05,
which is a rather typical choise, and test for over-enrichment, which is also a
typical choise.

8 Gene set enrichment analysis 101

> params<-new("GOHyperGParams", geneIds=myids,

+ annotation=c("hgu133a"), ontology="BP", pvalueCutoff=0.05,

+ conditional=FALSE, testDirection="over")

> resultBP<-hyperGTest(params)

> params<-new("GOHyperGParams", geneIds=myids,

+ annotation=c("hgu133a"), ontology="MF", pvalueCutoff=0.05,

+ conditional=FALSE, testDirection="over")

> resultMF<-hyperGTest(params)

> params<-new("GOHyperGParams", geneIds=myids,

+ annotation=c("hgu133a"), ontology="CC", pvalueCutoff=0.05,

+ conditional=FALSE, testDirection="over")

> resultCC<-hyperGTest(params)

Once the analysis is ready, you can check how many of the pathways
were significant simply just printing the object to the screen:

> resultBP

A report can also be generated. Command htmlReport() generates
from the test results an HTML-page that can be viewed using a web browser.
It takes three essential arguments, the name of the object that contains the
results of the gene enrichment analysis, name of the output file and a logical
argument indicating whether to add (append) the results to end of the file, if
the file already exist. The following commands save the results from all the
three tests to the same file (hypergeo.html):

> htmlReport(resultBP, "hypergeo.html", append=T)

> htmlReport(resultMF, "hypergeo.html", append=T)

> htmlReport(resultCC, "hypergeo.html", append=T)

8.2 Gene set enrichment analysis for KEGG pathways

Analysis for KEGG pathways is very similar to the one outlined for GO
categories above. Prior to the test, we need to generate a list of EntrezIDs
as outlined above. These are saved in an object myids. The following
command runs the test using the same settings that were used for the GO
category test. The only difference is in the first argument, which is now
KEGGHyperGParams instead of GOHyperGParams:

> params<-new("KEGGHyperGParams", geneIds=myids,

+ annotation="hgu133a", pvalueCutoff=0.05,

+ testDirection="over")

> result<-hyperGTest(params)

Similarly to the GO analysis, once the analysis is ready, you can check
how many of the pathways were significant by printing the object to the
screen. For these demodata, 5 KEGG pathways were significant with a p-

102 DNA microarray data analysis using Bioconductor

value less than 0.05:

> result

Gene to KEGG test for over-representation

49 KEGG ids tested (5 have p < 0.05)

Selected gene set size: 42

Gene universe size: 2032

Annotation package: hgu133a

And the report can be generated for the KEGG analysis the same way as
for the GO analysis:

> htmlReport(result, "hypergeo.html", append=T)

8.3 Performing the gene set test

Gene set test is implemented in the Bioconductor package globaltest. In con-
trast to a simple enrichment analysis outlined above, gene set test takes both
pathway information and expression data into account at the same time. Gene
set test requires an unfiltered data set, otherwise the analysis in the form pre-
sented here will crash.

The testing procedure outlined below goes through all KEGG pathways
of GO categories, and tests whether the genes that belong to those groups are
statistically significantly under- or over-expressed as a group. In other words,
the information of the grouping of the genes and their expression are taken
into account at the same time.

8.3.1 KEGG pathways

First we need to extract the pathway information from the annotation pack-
age. If we assume that the chiptype is hgu133a, the pathway information can
be extracted using the command get(), and then saved in an object kegg as
a list as follows:

> library(hgu133a)

> pathway2probe<-get("hgu133aPATH2PROBE")

> kegg<-as.list(pathway2probe)

No matter what the annotation package is, the PATH2PROBE is always
appended to the end of its name as above.

Now that we have the KEGG pathway information in a suitable for-
mat, we can perform the gene set test using the function globaltest().
It requires the normalized data (dat.m), knowledge of grouping of the sam-
ples (which are, say, controls and which are treatments, here a vector called
groups, with zero coding for a control sample, and a one coding for a treat-
ment sample), and the KEGG pathway information (in object kegg):

8 Gene set enrichment analysis 103

> library(globaltest)

> groups<-c(0,1,0,1)

> test.kegg<-globaltest(as.matrix(dat.m), groups, kegg)

The results (in object test.kegg) can be adjusted for multiple tests,
also. Function gt.multtest() does the adjustment using the Benjamini and
Hochberg’s false discovery rate as follows:

> test.kegg<-gt.multtest(test.kegg)

> test.kegg<-sort(test.kegg)

Now, the object test.kegg contains the final results of the test. The
simplest way to view the results is to print the object on the screen:

> test.kegg

Global Test result:

Data: 4 samples with 22283 genes; 6 gene sets

Model: logistic

Method: All 3 permutations

Genes Tested Statistic Q Expected Q sd of Q P-value FDR.adjusted

00900 12 12 24.168 13.708 9.0608 0.33333 0.69097

00020 44 44 94.983 47.008 41.5620 0.33333 0.69097

00190 153 153 34.256 17.413 14.5950 0.33333 0.69097

00290 18 18 20.136 10.156 8.6531 0.33333 0.69097

00281 6 6 219.300 86.895 114.8200 0.33333 0.69097

00750 6 6 137.310 58.205 68.6300 0.33333 0.69097

...

03050 36 36 8.586300 11.3870 2.9499 1 1

00563 31 31 5.004200 6.4045 1.4102 1 1

00785 2 2 0.045724 1.8137 1.7124 1 1

00471 9 9 17.853000 25.0310 6.5186 1 1

00860 51 51 22.184000 24.3290 1.8815 1 1

00520 6 6 4.998800 18.4790 11.7350 1 1

The first column contains the KEGG pathway identifiers. The Genes
column and Tested column list the number of genes in each pathway and the
number of genes in our list that belong to that particular pathway. Q statistic
gives the observed and expected number of genes in each category. P-value
column reports the raw p-values, and the FDR.adjusted column gives the
FDR-values that are p-values corrected for the number tests.

We can also write out a report of the results. At first the following com-
mands look a little bit hard to comprehend, but the four first commands just
assemble a table in a suitable format so that it can be written out using the
standard R function write.table(). The resulting tab-delimited text file
(globaltest-result-table.tsv) contains KEGG pathway IDs and names, as well
as p-values for all pathways.

104 DNA microarray data analysis using Bioconductor

> table.out<-data.frame(pathway=names(test.kegg),

+ pvalue=p.value(test.kegg))

> names(test.kegg)<-as.list(KEGGPATHID2NAME)[names(test.kegg)]

> table.out<-data.frame(table.out,

+ Description=names(test.kegg))

> table.out<-table.out[order(table.out$pvalue),]

> write.table(table.out, file="globaltest-result-table.tsv",

+ sep="\t", row.names=T, col.names=T, quote=F)

8.3.2 GO categories

The gene set test for GO pathways is slightly more complicated than the one
for KEGG pathways. Getting the GO category information is similar to the
KEGG procedure, but instead of PATH2PROBE after the annotation package
name we use GO2ALLPROBES:

> library(hgu133a)

> go2allprobes<-get("hgu133aGO2ALLPROBES")

> go<-as.list(go2allprobes)

The actual test is carried out exactly the same way as for the KEGG
pathways:

> test.go<-globaltest(as.matrix(dat.m), groups, go)

As is the multiple testing correction:

> test.go<-gt.multtest(test.go)

> test.go<-sort(test.go)

The results can be written on the screen the same way as the KEGG
results:

> test.go

Global Test result:

Data: 4 samples with 22283 genes; 6 gene sets

Model: logistic

Method: All 3 permutations

Genes Tested Statistic Q Expected Q sd of Q P-value FDR.adjusted

GO:0004964 1 1 0.25324 0.20165 0.044674 0.33333 0.86419

GO:0030350 1 1 0.39569 0.13307 0.227430 0.33333 0.86419

GO:0046904 2 2 4.58120 1.69710 2.497700 0.33333 0.86419

GO:0030568 2 2 4.58120 1.69710 2.497700 0.33333 0.86419

GO:0042362 2 1 3.40470 2.65430 0.649810 0.33333 0.86419

GO:0042840 1 1 35.46000 24.50100 9.491300 0.33333 0.86419

...

GO:0001774 2 1 0.043965 0.043965 0 1 1

GO:0005766 2 1 0.043965 0.043965 0 1 1

GO:0045360 2 1 0.043965 0.043965 0 1 1

GO:0045362 2 1 0.043965 0.043965 0 1 1

GO:0032603 2 1 0.043965 0.043965 0 1 1

GO:0016263 1 1 3.561200 3.561200 0 1 1

8 Gene set enrichment analysis 105

The results table is read exactle the same way as the results table for
KEGG analysis.

The largest difference lies in the procedure that puts the results in a suit-
able format for writing on a disk. For example, we need a small loop (com-
mand for()) for extraction of the GO category names from the result object.
In the end, the output is a table similar to the one produced by the gene set
test for KEGG pathways.

> test.go<-sort(test.go)

> test.go2<-test.go[1:x,]

> table.out<-data.frame(pathway=names(test.go2),

+ pvalue=p.value(test.go2))

> n<-c()

> for(i in 1:x)

> n<-c(n, get(names(test.go2[i,]),GOTERM)@Term)

>

> names(test.go2)<-n

> table.out<-data.frame(table.out, Description=names(test.go2))

> table.out<-table.out[order(table.out$pvalue),]

> write.table(table.out, file="globaltest-result-table.tsv",

+ sep="\t", row.names=T, col.names=T, quote=F)

8.3.3 Extracting the genes from a particular pathway

The analysis is now ready, but we would like to know what are the genes in
the category or pathway that come up on the top. The genes can be extracted
using the pathway of category identifier. We will illustrate this using the
KEGG pathway result. The pathway that was the most significant was 00900.
To get from the pathway identifier to the genes, we have to extract the gene
names from the object kegg that was created during the analysis above:

> genes<-kegg[["00900"]]

The notation used extracts an entry for 00900 from the list object kegg.
Object genes now holds the affymetric gene IDs:

> genes

[1] "208647_at" "210950_s_at" "201275_at" "217344_at" "204615_x_at"

[6] "208881_x_at" "209218_at" "213562_s_at" "213577_at" "202321_at"

[11] "202322_s_at" "217631_at"

That list of gene names can be turned into a list of annotations. This
procedure is outlined in the chapter Annotating a genelist. Follow the chapter
onwards from the point where the object genes was created.

9 Annotating a genelist 107

9 Annotating a genelist

Annotating the genes, or in other words, combining the gene expression data
with other knowledge, is typically carried out after statistical testing. Biocon-
ductor project produces annotation packages for many chiptypes, and these
can be directly used for annotating the results. As an input, the annotation
process takes a vector of gene names. Those can typically be extracted from
a matrix of limma results. Output of the process is a text or an HTML file
containing the annotations.

9.1 Generating the report

First we need a list of genenames that we want to combine with other infor-
mation, i.e., annotations. These can be very easily extracted from a matrix
with the command rownames(), e.g.:

> genes<-rownames(dat.m)

or from the limma results:

> genes<-as.numeric(rownames(toptable(fit)))

> genes<-rownames(dat.m[genes,])

Now, the vector genes contains the gene identifiers.
The actual annotation process is implemented in package annaffy. De-

spite its name this package can be used for annotating other chiptypes also,
as long as they have a valid annotation package. The annotation process con-
sists of three steps. Selecting the annotation fields, constructing an annotation
table and writing this table to an HTML file.

Here, we will select all available fields to be included in the annotations:

> library(annaffy)

> annot.cols<-aaf.handler()

Next the annotation table is built. Here the name of the annotation pack-
age is needed. As an example, we will annotate Affymetrix data (chiptype
hgu133a). The first argument is a vector of genenames (here genes), the next
is the name of the annotation package, and the last is the object that specifies
which fields we want to include to the annotations:

108 DNA microarray data analysis using Bioconductor

annot.table<-aafTableAnn(genes, "hgu133a", annot.cols)

Building the annotation table might take several minutes, even closer to
an hour, if the whole chip is being annotated.

Once the annotation table is ready, it can be written to a file using the
command saveHTML() or saveText(). The first argument is always the
annotation table created above, and the second is the name of the file the
information should be saved in:

> saveHTML(annot.table, "annotations.html")

or:

> saveText(annot.table, "annotations.txt")

10 Clustering and visualization 109

10 Clustering and
visualization

Clustering is a very common analysis performed for DNA microarray data.
The most often used clustering is hierarchical clustering, typically in a form
of a heatmap. Another very common clustering is K-means. This chapter
will present these two methods.

10.1 Heatmap

Heatmap presents hierarchical clustering of both genes and arrays, and addi-
tionally displays the expression patterns, all in the same visualization. Be-
fore visualization the genes and arrays need to be clustered. Clustering con-
sists of two separate phases. In the first phase all pairwise distances a) be-
tween genes and b) between samples are calculated using a selected distance
method. There’s a plethora of different distance measures available, but prob-
ably the most used ones are Euclidean distance and Pearson (or Spearman)
corralation. The choise of the distance measure affects the results, but there
are usually no good reasons to select one over another. After calculation of
distances, a tree construction method needs to be selected. The typical choise
is average linkage (same as UPGMA), but other methods, such as single or
complete linkage are also available.

10.1.1 Constructing a heatmap

Library amap offers some convenient functions for calculating the hierarchi-
cal clustering for both genes and chips. Command hcluster() can calculate
the differences using any of the aforementioned distances. Here, we will use
Pearson correlation (argument method="pearson"), but it can be changed to,
e.g., Euclidean distance (argument method="euclidean") or Spearman cor-
relation (argument method="spearman"). For tree construction we use aver-
age linkage (argument link="average"), and it can also be changed to, e.g.,
complete linkage (link="complete") or single linkage (link="single").

110 DNA microarray data analysis using Bioconductor

Let’s calculate a clustering first for the genes and then for the chips.
Here we are clustering the normalized data, but we could equally well cluster
filtered data (dat.f) or the differentially expressed genes (dat.s).

> library(amap)

> clust.genes<-hcluster(x=dat.m, method="pearson",

+ link="average")

> clust.arrays<-hcluster(x=t(dat.m), method="pearson",

+ link="average")

The normalized data can be so large that clustering all the genes (or
arrays) becomes impossible. Clustering about 23000 genes takes about 1
GB of memory, and clustering 45000 genes would consume about 4 GBs of
memory, and would not be feasible on a standard Windows workstation. If
the genes really need to be clustered, the data can be sampled, and this sample
is then clustered. This should convey approximately the same information as
the clustering of the whole dataset.

Sampling is done in two phases. First we create a vector of numbers from
1 to the number of rows in the dataset. This vector is stored in the object n.
Command sample() does the sampling. We sample the vector n to create a
new vector n.s that contains the row indexes of the rows to be sampled from
the original dataset. The sample size is here 10% of the original dataset. Then
we create a new data set dat.sample that now contains randomly selected
10% of the original dataset. Last, we cluster the genes and arrays in the
sampled dataset as already described above.

> n<-1:nrow(dat.m)

> n.s<-sample(n, nrow(dat.m)*0.1)

> dat.sample<-dat.m[n.s,]

> library(amap)

> clust.genes<-hcluster(x=dat.sample, method="pearson",

+ link="average")

> clust.arrays<-hcluster(x=t(dat.sample), method="pearson",

+ link="average")

Before visualizing the clustering results as a heatmap, we might want to
think about the coloring of the image. The usual coloring scheme for mi-
croarray data in heatmaps is to present down-regulated genes with green, and
up-regulated genes with red. This kind of a scheme can be generated with the
command colorRampPalette(). The first argument specifies the color for
the smallest observation (the most down-regulated gene), and second argu-
ment the color for the largest observation (the most up-regulated gene). The
number after the command specifies how many different colors between the
extremes should be generated, here we use 32 colors.

10 Clustering and visualization 111

> heatcol<-colorRampPalette(c("Green", "Red"))(32)

Other coloring schemes may be generated by changing the names of the
colors in the colorRampPalette().

Finally, the heatmap can be generated using the command heatmap(). It
takes four arguments: x specifies the dataset, which should be a matrix. Here
we convert dat.m to a matrix to make sure that it really is a matrix. Argu-
ments Rowv and Colv take the clustering results that were generated earlier.
The clustering results need first to be converted to dendrograms with the com-
mand as.dendrogram() as shown here. The last argument col specifies the
coloring scheme to be used while generating the image.

> heatmap(x=as.matrix(dat.m), Rowv=as.dendrogram(clust.genes),

+ Colv=as.dendrogram(clust.arrays), col=heatcol)

The resulting heatmap resembles something like the one below. Hierar-
chical clustering of genes and arrays are on the left side and on the top of the
colored area, respectively. In the colored area, every gene is represented by a
colored bar. Colors represent the down- (green) or up (red) -regulation of the
genes.

8 11 16 10 12 3 6 17 1 14 4 7 13 15 2 5 9

9604512925971228465738168695877273806819062847235027448732555467580559442144548026150563418524010298439787177679331373219078348019354119562364363948307826492487530478634708791937397748960768499539642067167773857688812933119164771611718586439673846532104664497963988461112854746964951571543189338836982312824418784553583922226385725410003105216979122615924773745197060360688295823841045343673617353394513466541212967037497664503714232335712392429258368848855977864147139477189146391823274791738192505701514228841653951442909271882869234134821670512139179336853988399577088460567212269281148287271424545697187728078617345326161095077902067117972805548228986188921356896632079812843658352387934489867583901110147140611989952726763342595041277710810686554699034534947586437161280184498334282594784963849853178915244126067496930045651768625496752781400506896557331694544231421650997902253891813395816913785608529527803144685519124666951116365204305909301335511598803430115662105534847166621954484523196788138588829914426979721815100177302617186594673572660887748800639567029076026236171763090313062837770788164182809175435221352991986459724337591208145094244763625748129544429282843147105930347296475893025635958799973063188362946449366999116441787789438052297435246419623826087339051255384324597252206677015533790533795233700326251573627194712477249515820189886107676712726585444855961394925358452057854021270974735571920124574192838187036624820831511753941649055096656329876925585090027756561948588914181249779219159044097424265148682151386980281831878533281666328195329655113274670875235729458316352691931696352889965779288227787423935319223474944349809945089640150363267799232237523926114978243461649856143148551622127764751762701741834912979892323093344174556103851709386816987289179776613627402045260964278211275862136593656987931294859341344761169134028354066597222551073192156880156837169959044056909552233565252784395043254032001464836401546373085379378133621316292962986863596886252548591817228784455961721451533205771399770836578904827011996027848419962467657989616781574186143245213426575020224184288667850966007995436791587916187437097633366926478726924633810319287660172754562635169552132514276762404742428258754268446688536794493037956158928359791062473527989435059221541556758231211845826630413144374546231768049354913782743864768241389718437218054785175374697542218933214078386838401297667147394541182763338029157424751973985101998133675623664409134577047577561129932349867320939255635856458568686028151633048855357663965238831755340808390476933230832219895536937759327675418883934292034193868301056810472423946426950082858666825977983418160373873953333833199399912059595959123064696462721166571691547181021499579706376742246878858245991496858049404601972648727603436203607202179089652375421264276155589602897645181505719824085753675014425227229412368333745664052934648437714391920

10.2 K-means clustering

K-means clustering does not produce a tree, but divides the genes or arrays
into a number of clusters. In contrast to hierarchical clustering, K-means
clustering is feasible even for very large datasets. Before the analysis user
has to specify how many clusters should be returned. Unfortunately, there are

112 DNA microarray data analysis using Bioconductor

no good rules of thumb for estimating the starting number of clusters before
the analysis. Therefore, the analysis proceeds by changing the number of
clusters, checking the results, and finally picking the solution that appears to
be reasonable. Optimality of the solution can be checked using the within
clusters sum of squares (within SS), and the idea is to minimize the within
SS, but not to overfit the data, in other words, not to use too many clusters.
Analysis will always return the same number of clusters as the user specified
before the analysis. The small caveat of K-means is that it might return a
different results, even if run with the same parameters and the same dataset.
Therefore, it has to be run several times for every number of clusters, just to
make sure that a near optimal solution using that number of clusters is found.

10.2.1 Performing the K-means clustering

Command kmeans() calculates a K-means clustering result. It takes four
arguments, x, name of the data object, centers, number of clusters to create,
iter.max, iteration maximum, and nstart which specifies how many times
the run should be performed using the same settings.

The analysis for the normalized dataset with 5 clusters is performed as
follows. The analysis is repeated 10 times. Note that kmeans() wants to get
a matrix, so we convert the data to a matrix with as.matrix().

> km<-kmeans(x=as.matrix(dat.m), centers=5, iter.max=100000,

+ nstart=10)

The within SS can be extracted from km. Here we extract the cluster-
specific within SS values, and take a sum of them:

> sum(km$withinss)

[1] 642.1721

Similarly, a numerical vector that specifies into which clusters the genes
go after the K-means clustering can be extracted. The cluster assignment for
the first gene of the data is the first in the cluster vector, also.

> km$cluster

The genes, say, in the first cluster can be easily extracted as a new dataset.
Only the rows for which the km$cluster is equal to 1 are extracted from the
normalized data. This is sometimes handy, if the cluster of genes warrants
some further analyses.

> dat.c<-dat.m[km$cluster==1,]

10 Clustering and visualization 113

10.2.2 How to find the optimal number of clusters?

The optimal number of clusters is a slightly subjective matter. Within SS
can be used for measuring the goodness of fit for the clustering, but simply
searching for the minimum is not an viable option, since within SS will reach
it’s minimum when the number of clusters is equal to the number of genes or
arrays, depending what we are clustering. Therefore, the K-means analysis is
carried out using different numbers of clusters in each run. Then the number
of clusters is plotted against within SS, and a point where the steep decent of
the within SS starts to level off is the optimal number of clusters.

The whole analysis can be carried out by hand, but we present a small
loop that performs the calculation automatically. The run is terminated when
the within SS changes less than 1% when one more cluster is added to the
analysis.

> # Test a maximum of 100 clusters

> kmax<-c(100)

> # If there are less than 100 genes or arrays

> # make the max. no. of cluster equal to the

> # number of genes or arrays

> if(nrow(dat2)<100) {

> kmax<-nrow(dat2)

> }

> # Create an empty vector for storing the

> # within SS values

> km<-rep(NA, (kmax-1))

> # Minimum number of cluster is 2

> i<-c(2)

> # Test all numbers of clusters between 2

> # max. 100 using the while -loop

> while(i<kmax) {

> km[i]<-sum(kmeans(dat2, i, iter.max=20000,

+ nstart=10)$withinss)

> # Terminate the run if the change in within SS is

> # less than 1%

> if(i>=3 & km[i-1]/km[i]<=1.01) {

> i<-kmax

> } else {

> i<-i+1

> }

> }

> # Plot the number of K against the within SS

> plot(2:kmax, km, xlab="K", ylab="sum(withinss)", type="b",

+ pch="+", main="Terminated when change less than 1%")

114 DNA microarray data analysis using Bioconductor

The resulting image should look something like the one below:

+

+

+

+

+

+

+

+

+

+

+
+

++
+

+
++

++

0 20 40 60 80 100

40
0

50
0

60
0

70
0

80
0

Terminated when change less than 1%

K

su
m

(w
ith

in
ss

)

Reading from the image, the optimal number of clusters is about 20,
since then the line starts to level off.

The final step would be to rerun the K-means analysis using 20 as the
number of clusters. After getting the optimal result, the clustering can be
visualized.

10.2.3 Visualizing the K-means clustering

K-means clustering is usually visualized by drawing the gene expression pat-
tern across the arrays using a single line graph per cluster. The following
loop-structure draws several smaller images inside a larger image. Every sin-
gle subplot represent a cluster from the K-means clustering. First the plotting
area (the larger image) is split into a number of subplots. Here we first take
a square root of the number of clusters and create as many subplot rows and
columns. The individual clusters are plotted from left to bottom of the plot-
ting area. Command matplot() does the actual plotting. Every single gene
is represented by one line in the plot. Often genes mask each others lines,
but the idea is to get a general view of the pattern in the data, and it does
not usually hinder this purpose. Object km holds the result from the K-means
analysis performed by the command kmeans().

10 Clustering and visualization 115

> max.dat.m<-max(dat.m)

> min.dat.m<-min(dat.m)

> par(mfrow=c(ceiling(sqrt(k)), ceiling(sqrt(k))))

> for(i in 1:k) {

> matplot(t(dat.m[km$cluster==i,]), type="l",

+ main=paste("cluster:", i), ylab="log expression",

+ col=1, lty=1, ylim=c(min.dat.m, max.dat.m))

> }

The resulting image should resemble this:

1.0 2.0 3.0 4.0

4
12

cluster: 1

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 2

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 3

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 4

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 5

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 6

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 7

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 8

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 9

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 10

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 11

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 12

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 13

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 14
lo

g
ex

pr
es

si
on

1.0 2.0 3.0 4.0

4
12

cluster: 15

lo
g

ex
pr

es
si

on
1.0 2.0 3.0 4.0

4
12

cluster: 16

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 17

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 18

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 19

lo
g

ex
pr

es
si

on

1.0 2.0 3.0 4.0

4
12

cluster: 20

lo
g

ex
pr

es
si

on

Now that the expression pattern has been visualized, genes from an in-
teresting cluster can be extracted as already explained in more details above.

> dat.c<-dat.m[km$cluster==1,]

Part IV

Extras

11 Estimating the sample size 119

11 Estimating the sample
size

Sample size estimates have long been demanded for epidemiological studies.
To have any change to get published, the epidemiological study has to have
an estimate of the power of the study. This has not been the tradition of
microarray research, but should be encouraged. Good experimental design
is very much about good research practises. One might even state that bad
experimental design is bad science, especially since it often leads to loss of
money and effort and possibly human or animal suffering. For example, if we
make an experiment using laboratory animals, using too a small sample size
would probably lead into unconclusive findings, and in the worst case, the
whole experiment might need to be started over again from the scratch. The
animals sacrificed in the first, unconclusive experiment would have wasted
their lives in vain, and repeating the experiment would lead to more animal
suffering. The same applies to a too large sample size. Both cases are equally
unacceptable. Every self-aware and ethics-keen researcher should therefore
be familiar with methods of sample size extimation.

11.1 Current knowledge

To correctly estimate a sample size, estimates of expected effect size and
variability, and desired false positive and negative rates should be available.
Typically false positive rate of 0.05 (p-value) and false negative rate of 0.8
(power) are used. Estimates of expected effect size and variability can be
guessed, or better still, estimated from previous studies. As a rule of thumb,
if the estimated difference in gene expression between the groups (effect size)
is large, smaller groups will suffice. If the difference is small, larger groups
are needed to detect it. In other words, if even small changes need to be
detected, it is necessary to use a larger sample size than if it is enough to
detect only the larger changes.

Traditional methods are not very easy to generalize to cover DNA mi-

120 DNA microarray data analysis using Bioconductor

croarray experiments, although methods have been modified to better suit
microarray research. For example, Yang et al. (2003) estimate that assuming
the false discovery rate of 0.05, and power of 0.80, effect size of 2.0, and the
number of selected genes of 50, the sample size that is needed is more than
10 but less than 30 per group. The number of genes that come up significant
using the same amount of replicates and the same false discovery rate and
power are highly dependent on the experiment (Pavlidis et al., 2003). The
same phenomenan is noted by Han et al. (2004). It might therefore be better
to base the sample size estimation on earlier studies using a similar biologi-
cal material on the same chip type. Since much data is freely available in the
microarray databases, this should not be overly complicated to perform.

11.2 How to estimate the sample size?

One possibility to conduct a sample size estimation is offered in package
ssize from the Bioconductor project. The method is applicable for compar-
ison of two groups using t-test. The following example demonstrates the
use of the method. Public dataset GSE2787 from the GEO database was re-
trieved, and the sample size to detect at least a two-fold expression change
between the two groups at power 0.8 and significance level 0.05 was deter-
mined.

The following R code accomplishes the sample size estimation.
> library(genefilter)

> library(ssize)

> # Calculates the row-wise standard deviations

> sds<-rowSds(dat2.m)

> # Calculates sample size estimates for all genes

> size<-ssize(sd=sds, delta=log2(2), sig.level=0.05, power=0.8)

> # Creates a plot of the results

> ssize.plot(size, xlim=c(0,20), main=paste("Sample size to

+ detect 2-fold change", sep=""))

The results are shown in the figure below.

11 Estimating the sample size 121

0 5 10 15 20

Sample size to detect 2−fold change

Sample Size (per group)

P
ro

po
rt

io
n

of
 G

en
es

 N
ee

di
ng

 S
am

pl
e

S
iz

e
<

=
 n

 0
%

=
0

 4
5%

=
10

00
0

 9
0%

=
20

00
0

4
0.067%=15

5

3.1%=695

6

13%=3007

8

44%=9728

10

64%=14187

20

91%=20198

In order to detect 91% of the genes as differentially expressed, assum-
ing that they have at least two-fold change, the sample size should be 20.
The graph starts to level of after 10 replicates per group, and adding more
replicates would probably mean an excess of replication. Therefore, for this
dataset, 10 replicates per group could be a good tradeoff between the cost of
the experiment and statistical power.

12 R at CSC 123

12 R at CSC

Jarno Tuimala

12.1 R is available in Murska

12.1.1 R versions

Several versions of R are available on CSC’s server murska.csc.fi. These
versions are all 64-bit version, and can be invoked with R combined with
the version number, for example, R272. The advantage of using the 64-bit
version of R is that it can utilize a maximum of 32 GBs of memory on Murska
server.

12.2 Available libraries

12.2.1 The default selection

The selection of R and Bioconductor packages contains mainly the packages
installed by default from CRAN and Bioconductor project. In addition, some
DNA microarray annotation packages are installed. The current selection of
packages can be checked directly from R using the command library().

12.2.2 Installing new packages

Libraries for some specific jobs might be missing. R system administrators at
CSC are Jarno Tuimala and Esa Lammi, and if any specific needs for libraries
arise, they might be contacted.

Another possibility for installing missing libraries is to put them in the
user’s home directory on Murska. This is probably the fastest way to get new
packages ready for use. Packages can be downloaded and installed in R using
the command install.

packages(). For example, downloading a package arules from CRAN and
installing it into user’s home directory can be done as follows:

124 DNA microarray data analysis using Bioconductor

> install.packages("ape", lib="/home/csc/jtuimala",

+ repos="http://cran.r-project.org")

Installing packages from Bioconductor site can be accomplished similarly
as:

> install.packages("rama", lib="/home/csc/jtuimala",

+ repos="http://www.bioconductor.org")

The first argument in the install.packages() call is the name of the li-
brary. The next argument is the destination directory. The correct directory
can be found out using the UNIX command pwd(). The last argument is the
Internet address to the correct repository.

Sometimes you need to first download the package from the repository
and then copy it to Murska for installation. For instance, this is the case with
some alternative CDF environments for Affymetrix chips and some other
specialized packages that are not available from the common CRAN or Bio-
conductor repositories. Packages can be copied to Corona using a secure
FTP connection. Let’s assume that package arules needs to be installed. The
installation command in R is:

> install.packages("arules_0.5-0.tar.gz",

+ lib="/home/csc/jtuimala", repos=NULL)

Note that in contrast to previous installation commands, if you have down-
loaded the package by hand, you need to give its name in the installation
command.

Some of the packages might not install without tweaking. In such cases
system administrators might be contacted for help.

After package has been installed to the home directory, an R profile
needs to be created. This is a simple text file with a single line giving the
path where R should search for the installed packages. This file can be cre-
ated in UNIX (quit R first) with a text editor. Open pico-editor (command
pico .Rprofile) and type in just one line:

.libPaths("/home/csc/jtuimala")

The path inside the brackets should be identical to the path used in the
install.packages() command. Save the file in your home directory (Ctrl
+ X in picoeditor).

After creating the .Rprofile file R should be able to find the libraries from
your home directory.

12.3 Scripting on CSC server Murska

R jobs that take a maximum of one hour can be run interactively on Murska,
although it is not a recommended practise. After an hour, the job is automati-

12 R at CSC 125

cally cancelled, and the user is logged out. Longer jobs need to be submitted
to a batch job queue. For that purpose you’ll need a batch job file. A batch
job file can be created using, for example, the pico editor on Murska. Let’s
create a simple batch job file called R-batch. It contains the following lines
of code:

#!/bin/csh

#BSUB -L /bin/csh

#BSUB -e mrb1M_err_%J

#BSUB -o mrb1M_out_%J

#BSUB -N

#BSUB -M 4194304

#BSUB -W 168:00

#BSUB -n 1

cd $WRKDIR

R272 --no-save <<EOF

sink("R-batch.out")

print("Hello World")

sum(1:10)

sink()

EOF

The first eight lines starting with #-signs are used for reserving resourses
from the server. For example, lines #$ -l h_rt=2:00:00 and #$ -l h_vmem=2G

reserve two hours of CPU time and 2 GBs of memory for the job. These can
be changed to some other values, if your job takes a longer time or requires
more memory. Typically, RMA or GC-RMA normalization for a few dozen
or more Affymetrix microarrays requires much more memory. The maxi-
mum values for the CPU time and memory are 504 hours and 32 GBs. Using
these values, even large Affymetric datasets can be preprocessed.

The middle line (cd $WRKDIR) changes directory to the working direc-
tory. All the datafiles and the batch job file we are preparing should be copied
into that folder. Otherwise the run will fail.

The last six lines start R, and save all output to a file called R-batch.out.
First, R prints "Hello world", and then calculates the sum of numbers between
1 and 10. After that R quits. All R specific commands are written between
<<EOF and EOF, one R command per line.

Batch job is submitted to run with the UNIX command bsub < R-batch.
Its state can be checked using the UNIX command bjobs.

After the job has finished, the results can be read from the file called
R-batch.out. It should appear as follows (UNIX command less R-batch.out):

[1] "Hello World"

[1] 55

	Preface
	Contents
	Introduction
	Installation of R and Bioconductor
	What are R and Bioconductor?
	Downloading R
	R installation instructions for Windows
	R installation instructions for UNIX and Linux
	Installation instructions for Bioconductor
	Installing extra packages on any system
	Installing extra packages from ZIP files

	Graphical user interfaces
	TinnR

	Introduction to R language
	Basics of R language and environment
	Starting and closing R
	Prompt
	Help!
	Commands
	Environment
	Packages
	Changing the working directory

	R is an expanded calculator
	Arithmetic
	Mathematical functions
	Logical arithmetic
	Number of decimals

	Data input and output
	Allocation
	Typing in the data
	Reading tabular data
	Writing tabular data
	Saving output to a file

	Calculations with vectors
	Arithmetic on vectors
	Mathematical operators for vectors

	Object types
	Vector
	Factor
	Matrix
	Data frame
	S3/S4 class

	Data manipulation
	Generating sequences of numbers
	Generating repeats
	Searching and replacing
	Merging tables
	Transposition
	Sorting and ordering
	Missing values

	Loops and conditional execution
	for-loop
	if
	if...else

	Graphics
	Plot, a general command
	Changing colors and symbols
	Histogram
	Boxplot
	Scatter plot
	Panel plots
	Other graphical settings
	Adding new objects to the plots
	Saving images

	More information

	Preprocessing
	Importing DNA microarray data
	Affymetrix data
	Reading CEL-files

	Agilent data
	Reading two-color data files
	Reading one-color data files

	Illumina data
	Reading BeadStudio v1 data
	Reading BeadStudio v3 data

	Normalizing DNA microarray data
	Normalizing Affymetrix data
	Normalizing Agilent data
	Two-color data
	One-color data

	Normalizing Illumina data
	Getting the raw data
	Saving the expression values

	Quality control
	Checking Affymetrix data
	Checking Agilent data
	Two-color data
	One-color data

	Checking Illumina data

	Filtering and differential expression
	Why filtering?
	Filtering tools
	Standard deviation filter
	Expression filter

	Filtering after statistical testing

	Analysis
	Statistical analyses
	Key concepts
	Model matrix for a two-group comparison
	Model matrix for a three-group comparison

	Analysis using a linear model
	Differential expression and p-values
	Extracting the genes from the original data

	Gene set enrichment analysis
	Gene set enrichment analysis for GO categories
	Gene set enrichment analysis for KEGG pathways
	Performing the gene set test
	KEGG pathways
	GO categories
	Extracting the genes from a particular pathway

	Annotating a genelist
	Generating the report

	Clustering and visualization
	Heatmap
	Constructing a heatmap

	K-means clustering
	Performing the K-means clustering
	How to find the optimal number of clusters?
	Visualizing the K-means clustering

	Extras
	Estimating the sample size
	Current knowledge
	How to estimate the sample size?

	R at CSC
	R is available in Murska
	R versions

	Available libraries
	The default selection
	Installing new packages

	Scripting on CSC server Murska

