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Abstract—The log-structured filesystems typically used in cur-
rent solid-state drive’s (SSD) exhibit write amplification, whereby
multiple NAND writes are required for each host write. Write
amplification negatively affects the SSD endurance and write
throughput. This performance loss depends on the drive over-
provisioning and the garbage collection method. This paper
presents a novel probabilistic model to analytically quantify
the impact of over-provisioning on write amplification under a
uniformly-distributed random workload and a greedy garbage
collection policy. The analysis shows write amplification approx-
imately independent of NAND block size and number of blocks
in the SSD. The analysis is verified by full drive simulations.

I. INTRODUCTION
In recent years, flash memory has become an important

storage medium because it has many attractive features such
as small size, shock resistance, high reliability, low power
consumption, and lightweight. Flash memory is a non-volatile
solid state memory whose density and I/O performance have
improved to a level at which it can be used widely. Flash
memory is partitioned into blocks and each block has a fixed
number of pages, typically 64 pages of 4 KiB each [1]. Data
are written in a unit of one page, and the erase is performed
in a unit of one block. Reads are performed in units of pages.
In flash-based systems, out-of-place write [2], [3], [4] is

used: When a page or a fraction thereof needs to be rewritten,
the new data does not overwrite the memory location where
the data is currently stored. Instead, the new data is written to
another page and the old page is marked invalid. A mapping
scheme is needed to maintain a map of logical addresses of
data to physical locations on flash memory, and this map is
updated consequently. Over time, the SSD accumulates invalid
pages and the number of free pages decreases. To make space
for new incoming host data, invalid pages must be rewritten.
The limitation of the SSD is: in order to write new data to
replace invalid data in a page, the page must be free, which
requires erasing the entire block the page pertains to. Under
the current technology, a block could tolerate a limited number
of cycles before the block becomes unreliable. The number is
typically 100K cycles for single-level cells (SLC) and reduces
drastically for multi-level cells (MLC) flash to less than 10K.
As applications continually update data on flash memory (as
digital camera users store and later delete files to store new
ones), the need to limit the erase operations to a minimum
becomes critical.
As block(s) of flash memory need to be erased before

they are rewritten, the software layer of a flash memory
device contains a garbage-collection mechanism to translate
invalid pages to free pages. Reclamation or garbage collection
happens in multiple steps: First, one of the blocks is selected

for reclamation. Second, the valid pages of this block are
copied to a reserved free block. Third, the reclaimed block
is erased and becomes free. On-demand reclamation, which is
triggered when the free space has been completely exhausted,
is preferred in order to minimize relocating the valid pages
in the block being reclaimed and the consequent extra page
write operations. Whereas the reclaiming policy that selects
the blocks to garbage-collect is usually based only on the
amount of free space to be gained [3], the policy defined in
[5] also included the time elapsed since the last writing of the
block with data. The effectiveness of the garbage-collection
mechanism is influenced by the policy according to which
blocks are selected for reclamation. This paper considers the
so-called “greedy” policy, in which the block with the smallest
number of valid pages is selected for garbage collection. This
approach minimizes the number of valid pages that need to be
re-written in the course of garbage collection.
Additionally, in a NAND Flash, strong localities in user

write pattern can lead to repeated erasing of a certain small
portion of the drive, thus reducing drive lifetime. Cold data
comprises of files such as the operating system (OS), which
once stored is not deleted for a long time, whereas hot data
comprises of users work files such as log files which are
updated/deleted on a regular basis. Hence, blocks storing cold-
data tend to not have their program erase (PE) cycle count
increased at all, whereas blocks storing hot-data experience a
continuous increase in their PE cycle count. As hot data and
cold data differently wear flash memory, its overall lifespan
could be unexpectedly short under such workloads. Wear
leveling refers to system activities that prevent blocks from
being unevenly worn so as to lengthen the overall lifespan.
Therefore, in flash, write amplification corresponds to the

additional writes caused by garbage collection and by wear
leveling. Hence, the total number of user writes that can
be served depends on the total cycle budget available, write
amplification, and the eventual unconsumed cycle budget due
to wear-leveling inadequacy.
This paper derives a closed-form expression for write-

amplification as a function of flash system parameters. The
analysis assumes a simplistic model of the NAND-flash mem-
ory, in which, all the incoming host data is hot. The analysis
pertains to applications or usage scenarios that uniformly
update data on flash memory exclusively, e.g. digital camera
users store and later delete files to store new ones. In these
cases, the entire flash memory is evenly worn. This paper
assumes absence of cold-data and workloads of uniformly-
distributed random writes; hence, no wear-leveling is required.
Furthermore, a greedy garbage collection policy, which
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minimizes the number of additional writes, is considered.
Specifically, when garbage collecting to accommodate for a
new host write request, block(s) with the most ‘amount of
free space to be gained’ or equivalently ‘least number of
valid pages’ is selected. Such a policy will be optimal for
the usage scenario described in the previous paragraph [6].
The derivation studies the evolution of the distribution of valid
pages in blocks over time and shows that it converges to a
uniform distribution numerically. Thereby, the paper derives a
closed-form expression for write-amplification.
The rest of the paper is organized as follows. Section

2 reviews the relevant work in garbage collection. Section
3 introduces an analytical model based on a probabilistic
approach, which is followed with write-amplification analysis
for this model in Section 4. Based on this, the paper presents
essential analytical and simulation results to quantify write
amplification in Section 5. Finally, a discussion of results
concludes the paper.

II. PRIOR WORK

Due to the immense impact garbage collection and resulting
write amplification have on flash memory’s performance [7],
several works in literature have studied efficient garbage
collection policies. This section mentions a few of them, which
are of direct interest. Most current systems implement the
“greedy” garbage collection policy [6], in which the block
that has the largest number of invalid pages will be recycled.
For systems with a large number of blocks, implementing the
optimal greedy policy may become prohibitive because of the
potentially long searches needed to find the optimal block for
reclamation. Papers [6], [1], [8] have studied less expensive
sub-optimal selection algorithms, which are of practical inter-
est.
Since both garbage collection and wear leveling contribute

to writes in addition to those requested by the host, several
works have proposed combining garbage collection and wear
leveling. The one described by Chang et al. [9] avoids unneces-
sary reclamations in garbage collection and combines this with
wear leveling in the form of a periodical task that performs a
linear search for blocks with a small erase count to identify
blocks to be recycled. Agrawal et al. [10] describe another
combined algorithm called modified greedy garbage-collection
strategy. The algorithm generally selects the block with the
most invalid pages for garbage collection, while avoiding
a large spread in the remaining cycle budget among all
blocks and limiting the frequent movement of cold data. Ben-
Aroya et al. [11] performed a worst-case competitive analysis
with focus on endurance-based randomized algorithms. On a
different note, Jagmohan et al. [12] proposed using a multilevel
code, which allows rewriting without erase, to reduce write
amplification.
Although, many flash memory papers briefly mention per-

formance impacts from garbage collection and wear leveling,
derivation of a simple closed-form expression for write am-
plification in flash-based storage systems, and how it relates
to parameters, such as the over-provisioning factor, remains

largely unstudied in the literature. Bux models the garbage
collection process as a Markov chain to evaluate the perfor-
mance of a ‘select-a-random-block-for-reclamation’ garbage
collection policy, and finds that performance depends on the
total memory space, the fraction of the memory available
for storing user data, and the number of pages per block.
Rosenblum et al. [3] studied write amplification as a function
of disk utilization. Their analysis distinguishes between hot
and cold data and their write-cost comparison includes time
for seeks, rotational latency, and cleaning costs, which makes
analysis for this model fairly involved and a neat closed-
form expression becomes harder to derive. Analysis for write-
amplification was done in [1] for the case when both garbage-
collection and wear-leveling are in operation using a windowed
‘greedy’ garbage-collection policy, however, in this case, the
system dynamics are more involved; hence, once again, a
simple closed-form expression is hard to derive.

III. SYSTEM MODEL
The flash memory is organized in terms of blocks, with

each block containing a fixed number Np of pages, typically
Np = 64. A flash driver is used to translate any given logical
block addresses (LBAs) to physical block addresses (PBAs),
where each LBA represents a storage unit corresponding to a
page. When a page addressed by an LBA is rewritten, a free
flash memory physical page will be allocated to store the new
data, and the controller updates the LBA-PBA map: the LBA
is mapped to the new PBA and the old PBA is marked as
invalid data page. Garbage collection is used to reclaim space
that stores invalid data, whenever there are no sufficient free
pages.

A. Write-Amplification and Over-Provisioning
There is no garbage collection needed for a sequential write

workload as an entire Flash block is made invalid during the
write process, and it can be erased and reclaimed without any
data movement. For write requests that come in random order
of LBA’s, after a while, the number of free pages in flash
memory becomes low. The garbage-collection mechanism then
identifies a candidate block for cleaning based on a given
policy. All valid pages in the candidate block are relocated into
a new block with free pages, and finally the candidate block
is erased so that Np pages become available for rewriting.
Consequently, this mechanism introduces additional read and
write operations, the extent of which depends on the specific
policy deployed, as well as on the system parameters. These
additional writes result in the multiplication of user writes,
a phenomenon referred to as “write amplification” defined
below:
Write Amplification: In a SSD, write amplification, W , due

to garbage collection is defined as the average of actual number
of page writes per user page write [1].
Suppose there are Nip invalid pages in a block selected

for garbage collection. The block has Nvp valid pages, where
Nip + Nvp = Np. These valid pages have to be written
to a different block, before the block selected for garbage
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collection can be erased. Hence, to (re)write Nip pages worth
of new user data, the number of physical pages that have to
be written is Nip + Nvp. Therefore, the write amplification is

W =
Nip + Nvp

Nip

= 1 +
Nvp

Nip

(1)

The term Nvp

Nip
corresponds to the extra write requests arising

from the relocation of valid pages. The garbage collection
policy should attempt to minimize write amplification. The
greedy reclaiming policy leads to the lowest contribution to
write amplification with independently, randomly, uniformly
distributed writes of hot data only [13].
The impact of garbage collection on write amplification

is influenced by the following factors: the level of over-
provisioning, the choice of reclaiming policy, and the types
of workloads. For convenience of analysis, the paper assumes
a pathological workload, i.e., the random write workload, for
which the ‘greedy’ garbage collection policy was shown to be
optimal [13]. Over-provisioning refers to a common practice
that the user address space can only take a fraction of the
raw Flash memory capacity. Because of out-of-place writes,
over-provisioning exists in practically all Flash SSDs. Over-
provisioning is defined as follows.
Over-Provisioning: Suppose an SSD with a raw storage

capacity of T blocks, of which, the user can only use a part,
say, U blocks, and where U ≤ T . Then the over-provisioning
factor, ρ , is defined as ρ = T−U

U
. So, for an SSD with

ρ = 0.25, there is 25% over-provisioning, only 80% of the
drive is available for user-data.
The over-provisioning or conversely the utilization is closely

tied to write amplification due to garbage collection. The larger
the utilization, the more likely a block selected to be reclaimed
has many valid pages that have to be relocated, and the worse
the write amplification.

B. Greedy Reclaiming Policy

This subsection describes the greedy garbage collection
policy under consideration, which is the optimal garbage
collection policy in the sense of minimizing write amplifi-
cation under the random write workload [13]. Incoming write
requests and relocation write requests are both serviced by
writing to free pages/blocks. Once a free block has been
filled up, it is removed from the free block pool and moves
to the end of the occupied block queue. Each time garbage
collection is triggered, a single occupied block is selected,
and all its valid data pages are read and written to another
location by issuing relocation write requests. Upon completion
of relocation, the selected block is erased and joins the free
block pool again. Denoting the number of free blocks by P

and the total number of physical Flash blocks by T , garbage
collection using the greedy reclaiming policy only starts once
T − P blocks are occupied, with P blocks reserved so that
garbage collection can operate in parallel. This pool of free
blocks is kept very small, because it eats into the over-
provisioning. This paper assumes that this pool is negligibly

small i.e. P � T and hence it can be neglected from analysis.
Henceforth, T − P ≈ T .
The greedy reclaiming policy, based on its description

above, would consume too many CPU cycles to select the
block with the least number of valid pages from all T blocks,
because each host write may decrease the number of valid
pages in already written blocks. As a result, this would
require to constantly update the number of valid pages in
all T blocks. This paper assumes that CPU cycles to do this
update are available. In practice, this list is updated only so
often, and therefore at any given point of time, the list may
not be ‘fully’ sorted. The impact of this delay in sorting is
studied via simulations and is skipped during analysis. It is
worth mentioning there though, that this delay, results in an
effective reduction in over-provisioning and hence a higher
write-amplification.

IV. DERIVATION OF WRITE-AMPLIFICATION

The analysis assumes that each (re)write request has a
fixed request size of a single block, with the page addresses
distributed i.i.d. according to a uniform distribution specified
as Unif[0, UNp − 1]. Garbage collection is triggered when
there are no free pages available. Once the garbage collection
process kicks-off, at every instant the block with the most
number of invalid pages is selected and freed and the incoming
host rewrite request of one block is met. The LBA-PBA map is
updated accordingly. Due to the random uniform nature of host
writes, the distribution of valid pages in a block right before
the start of garbage-collection process, denoted by f (0)(v),
will be the binomial distribution and the mean number of valid
pages in a block will be 1

1+ρ
Np. Specifically:

f (0)(v) = Prob(Nvp = v) =

(
Np

v

)
pv (1− p)(Np−v) (2)

where 1
1+ρ

= p.
To analyze write amplification, the evolution of the distribu-

tion of valid pages f(v) in a block is studied. Since the greedy
garbage collection policy selects the block with the least
number of valid pages, the write amplification only depends on
the statistics of this block. Let x denote the minimum possible
number of valid pages in a block i.e. x = {min v : f(v) > 0}.
Through extensive simulations, it was seen that the distri-

bution of valid pages in a block f(v) converges to a steady
state distribution. Figure 1 plots the distribution of valid pages
for T = 1280, Np = 256 and ρ = 0.25, after 500 host
block writes, averaged over its 103 realizations. Also shown
in the figure 1 is the uniform distribution approximation to
the empirical histogram, with the same non-zero support. The
Uniform distribution approximation to the distribution of valid
pages given as Unif[x, Np], for some x, is seen to be a
reasonable fit.
With the above approximation, write amplification can be

derived as follows. Use of Eqn (1) gives

W =
Np

Np − x
(3)
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Fig. 1. Histogram of valid pages.

However, if in steady state f(v) becomes the uniform
distribution i.e. v ∼ Unif[x, Np],

E[v] =
Np + x

2
=

1

1 + ρ
Np = pNp (4)

Hence,

W =
Np

Np − (2pNp −Np)

W =
1

2

(
1 + ρ

ρ

)
(5)

which is seen to be independent of the number of pages
per block. As a sanity check for the derived expression,
when over-provisioning ρ is 0 (minimum value), W is infinity
(maximum value). Similarly, when ρ is 1 (maximum value),
W is 1 (minimum value). Hence, both these extreme values
are correct. Write amplification, in general, depends on the
number of pages in a block. For example, in the extreme
case, if Np = 1, then W = 1 regardless of over-provisioning
ρ. However, as shown via simulation results in the next
section, for reasonable values of Np (64 and higher), write-
amplification W is seen to be independent of Np, supporting
the result in this section.

V. MONTE-CARLO SIMULATIONS
This section performs Monte-Carlo simulations to com-

pare the derived analytical expression with actual write-
amplification values observed for the case under study.
Figure 2 shows write-amplification over time using Monte-

Carlo simulations for a fixed drive size U = 1024. The
write-amplification converges to a value 2.67 fairly quickly
regardless of the number of pages in a block. This value is
close to the theoretically derived approximate value of 2.5
when ρ = 0.25. Figure 3 shows write-amplification over time
using Monte-Carlo simulations for a fixed number of pages
per block Np = 256. Both the over-provisioning and drive size
U are varied. Figure 3 shows that write-amplification depends
only on ρ regardless of the value of drive size U . Furthermore,
the steady-state value of write-amplification from Monte-Carlo

simulations is seen to be 2.67, 3.18 and 3.96, which is fairly
close to the corresponding analytical approximation of 2.5, 3
and 3.83, when over-provisioning ρ is 25%, 20% and 15%
respectively.
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Fig. 2. Write-Amplification over time for 25% over-provisioning with fixed
T = 1024.
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Finally, figure 4 shows the effect of a delay in updating
the sorted list of number of valid pages in a block for the
whole drive. The delay is measured in terms of the number of
host block rewrite requests. Figure 4 shows that this delay
translates to an increase in the write-amplification value,
hence effectively reducing the over-provisioning. The system
designer can trade-off these two design parameters - over-
provisioning (decreases effective storage space) and delaying
the sort (reduces CPU cycles spent in book-keeping). An
expression for the fit of this curve as a function of number
of blocks U (in the figure denoted as NBlock) and delay D

is also provided.

VI. SUMMARY AND DISCUSSION
This paper studied write-amplification arising from garbage-

collection in a NAND Flash. A simple closed-form expression
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Fig. 4. Write-Amplification over time with delayed sort v/s the delay.

for write-amplification was derived and it was shown to de-
pend only on over-provisioning and shown to be independent
of drive size or number of pages in a block. Monte-Carlo
simulations verified the same. Extending this analysis in the
presence of cold-data and hence a wear-leveling algorithm
remains future work.
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