
Producing Open Source Software

How to Run a Successful Free Software Project

Karl Fogel

Producing Open Source Software: How to Run a Successful Free
Software Project
by Karl Fogel
Copyright © 2005-2013 Karl Fogel, under a CreativeCommons Attribution-ShareAlike (3.0) license [http://
creativecommons.org/licenses/by/3.0/].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

i

Dedication
This book is dedicated to two dear friends without whom it would not have been possible: Karen Under-
hill and Jim Blandy.

ii

Table of Contents
Preface ... vi

Why Write This Book? ... vi
Who Should Read This Book? ... vi
Sources .. vii
Acknowledgments .. viii
Disclaimer ... ix

1. Introduction .. 1
History .. 3

The Rise of Proprietary Software and Free Software ... 4
"Free" Versus "Open Source" .. 7

The Situation Today .. 9
2. Getting Started .. 11

Starting From What You Have .. 12
Choose a Good Name .. 13
Have a Clear Mission Statement .. 15
State That the Project is Free .. 15
Features and Requirements List ... 16
Development Status ... 16
Downloads ... 17
Version Control and Bug Tracker Access .. 18
Communications Channels .. 19
Developer Guidelines ... 19
Documentation .. 20
Demos, Screenshots, Videos, and Example Output .. 22
Hosting .. 23

Choosing a License and Applying It ... 24
The "Do Anything" Licenses ... 24
The GPL .. 25
How to Apply a License to Your Software .. 25

Setting the Tone .. 26
Avoid Private Discussions ... 27
Nip Rudeness in the Bud .. 28
Practice Conspicuous Code Review .. 29
Be Open From Day One ... 30
When Opening a Formerly Closed Project, be Sensitive to the Magnitude of the
Change .. 32

Announcing .. 33
3. Technical Infrastructure .. 36

What a Project Needs ... 37
Web Site .. 38

Canned Hosting ... 39
Mailing Lists / Message Forums ... 41

Choosing the Right Forum Management Software ... 42
Version Control ... 50

Version Control Vocabulary .. 51
Choosing a Version Control System ... 54
Using the Version Control System .. 54
Tools for commit review .. 58

Bug Tracker ... 59
Interaction with Mailing Lists .. 61
Pre-Filtering the Bug Tracker .. 62

Producing Open Source Software

iii

IRC / Real-Time Chat Systems .. 63
Bots .. 64
Archiving IRC .. 65

RSS Feeds .. 66
Wikis ... 66
Social Networking Services ... 67

4. Social and Political Infrastructure ... 69
Benevolent Dictators .. 70

Who Can Be a Good Benevolent Dictator? .. 70
Consensus-based Democracy ... 71

Version Control Means You Can Relax ... 72
When Consensus Cannot Be Reached, Vote ... 72
When To Vote .. 73
Who Votes? .. 74
Polls Versus Votes .. 74
Vetoes ... 75

Writing It All Down .. 75
Joining or Creating a Non-Profit Organization .. 76

5. Money ... 77
Crowdfunding: Kickstarter, etc .. 78
Types of Corporate Involvement .. 78
Hire for the Long Term .. 79
Appear as Many, Not as One .. 80
Be Open About Your Motivations .. 81
Money Can't Buy You Love .. 82
Contracting ... 83

Review and Acceptance of Changes ... 85
Funding Non-Programming Activities ... 86

Quality Assurance (i.e., Professional Testing) ... 86
Legal Advice and Protection ... 87
Documentation and Usability ... 88
Providing Hosting/Bandwidth .. 88

Marketing ... 89
Remember That You Are Being Watched .. 89
Don't Bash Competing Open Source Products .. 90

Hiring Open Source Developers ... 90
Bounties ... 91

6. Communications .. 92
You Are What You Write ... 92

Structure and Formatting .. 93
Content .. 94
Tone .. 95
Recognizing Rudeness .. 96
Face .. 97

Avoiding Common Pitfalls .. 99
Don't Post Without a Purpose .. 99
Productive vs Unproductive Threads ... 100
The Softer the Topic, the Longer the Debate .. 101
Avoid Holy Wars .. 102
The "Noisy Minority" Effect .. 103

Difficult People ... 104
Handling Difficult People .. 104
Case study .. 105

Handling Growth ... 106

Producing Open Source Software

iv

Conspicuous Use of Archives .. 108
Codifying Tradition .. 110

No Conversations in the Bug Tracker .. 113
Publicity ... 114

Announcing Security Vulnerabilities ... 115
7. Packaging, Releasing, and Daily Development .. 121

Release Numbering .. 121
Release Number Components .. 122
The Simple Strategy ... 124
The Even/Odd Strategy ... 125

Release Branches ... 125
Mechanics of Release Branches .. 126

Stabilizing a Release .. 127
Dictatorship by Release Owner .. 128
Change Voting .. 128

Packaging ... 131
Format ... 131
Name and Layout .. 131
Compilation and Installation .. 133
Binary Packages .. 134

Testing and Releasing ... 135
Candidate Releases .. 136
Announcing Releases .. 136

Maintaining Multiple Release Lines .. 137
Security Releases ... 137

Releases and Daily Development .. 138
Planning Releases .. 139

8. Managing Volunteers .. 141
Getting the Most Out of Volunteers .. 141

Delegation .. 142
Praise and Criticism ... 144
Prevent Territoriality .. 145
The Automation Ratio .. 146
Treat Every User as a Potential Volunteer .. 148
Meeting In Person (Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats) 150

Share Management Tasks as Well as Technical Tasks .. 151
Patch Manager .. 151
Translation Manager ... 152
Documentation Manager ... 153
Issue Manager ... 154
FAQ Manager ... 155

Transitions .. 156
Committers ... 158

Choosing Committers ... 158
Revoking Commit Access ... 159
Partial Commit Access ... 159
Dormant Committers .. 160
Avoid Mystery .. 160

Credit .. 161
Forks ... 162

Handling a Fork .. 163
Initiating a Fork .. 164

9. Governments and Open Source ... 166
Being Open Source From Day One is Especially Important for Government Projects 167

Producing Open Source Software

v

Review Your RFI, RFP and Contract Language .. 167
Get the Lawyers Involved Very Early or Very Late ... 167
Dispel Myths Within Your Organization .. 167
Foster Pools of Expertise in Multiple Places ... 167
Decouple Publicity Events from Project Progress .. 168
Establish Contact Early with Relevant External Communities .. 168
Have a Plan to Handle Negative Reactions ... 168

The Open Government / Open Data Community .. 168
10. Licenses, Copyrights, and Patents .. 169

Terminology ... 169
Aspects of Licenses .. 172
The GPL and License Compatibility ... 173
Choosing a License .. 174

The MIT / X Window System License .. 174
The GNU General Public License ... 174
What About The BSD License? ... 176

Contributor Agreements .. 177
Doing Nothing .. 177
Contributor License Agreements ... 177
Transfer of Copyright ... 178

Dual Licensing Schemes ... 179
Patents ... 180
Further Resources .. 182

A. Canned Hosting Sites ... 183
B. Free Version Control Systems .. 185
C. Free Bug Trackers ... 190
D. Why Should I Care What Color the Bikeshed Is? .. 193
E. Example Instructions for Reporting Bugs ... 198
F. Copyright ... 200

vi

Preface
Why Write This Book?

At parties, people no longer give me a blank stare when I tell them I write free software. "Oh, yes, open
source—like Linux?" they say. I nod eagerly in agreement. "Yes, exactly! That's what I do." It's nice not
to be completely fringe anymore. In the past, the next question was usually fairly predictable: "How do
you make money doing that?" To answer, I'd summarize the economics of open source: that there are or-
ganizations in whose interest it is to have certain software exist, but that they don't need to sell copies,
they just want to make sure the software is available and maintained, as a tool instead of as a commodi-
ty.

The next question is not always about money, though. The business case for open source software1 is no
longer so mysterious, and even non-programmers already understand—or at least are not surprised—that
there are people employed at it full time. Instead, the next question is often "Oh, how does that work?"

I didn't have a satisfactory answer ready, and the harder I tried to come up with one, the more I realized
how complex a topic it really is. Running a free software project is not exactly like running a business
(imagine having to constantly negotiate the nature of your product with a group of volunteers, most of
whom you've never met!). Nor, for various reasons, is it exactly like running a traditional non-profit or-
ganization, nor a government. It has similarities to all these things, but I have slowly come to the conclu-
sion that free software is sui generis. There are many things with which it can be usefully compared, but
none with which it can be equated. Indeed, even the assumption that free software projects can be "run"
is a stretch. A free software project can be started, and it can be influenced by interested parties, often
quite strongly. But its assets cannot be made the property of any single owner, and as long as there are
people somewhere—anywhere—interested in continuing it, it cannot be unilaterally shut down. Every-
one has infinite power; everyone has no power. It's an interesting dynamic.

That is why I wanted to write this book in the first place, and seven years later, wanted to update it. Free
software projects have evolved a distinct culture, an ethos in which the liberty to make the software do
anything one wants is a central tenet. Yet the result of this liberty is not a scattering of individuals each
going their own separate way with the code, but enthusiastic collaboration. Indeed, competence at co-
operation itself is one of the most highly valued skills in free software. To manage these projects is to
engage in a kind of hypertrophied cooperation, where one's ability not only to work with others but to
come up with new ways of working together can result in tangible benefits to the software. This book
attempts to describe the techniques by which this may be done. It is by no means complete, but it is at
least a beginning.

Good free software is a worthy goal in itself, and I hope that readers who come looking for ways to
achieve it will be satisfied with what they find here. But beyond that I also hope to convey something of
the sheer pleasure to be had from working with a motivated team of open source developers, and from
interacting with users in the wonderfully direct way that open source encourages. Participating in a suc-
cessful free software project is a deep pleasure, and ultimately that's what keeps the whole system going.

Who Should Read This Book?
This book is meant for software developers and managers who are considering starting an open source
project, or who have started one and are wondering what to do now. It should also be helpful for people
who just want to participate in an open source project but have never done so before.

1The terms "open source software" and "free software" are essentially synonymous in this context; they are discussed more in the section called
“"Free" Versus "Open Source"” in Chapter 1, Introduction.

Preface

vii

The reader need not be a programmer, but should know basic software engineering concepts such as
source code, compilers, and patches.

Prior experience with open source software, as either a user or a developer, is not necessary. Those who
have worked in free software projects before will probably find at least some parts of the book a bit ob-
vious, and may want to skip those sections. Because there's such a potentially wide range of audience
experience, I've made an effort to label sections clearly, and to say when something can be skipped by
those already familiar with the material.

Sources
Much of the raw material for the first edition of this book came from five years of working with the
Subversion project (subversion.tigris.org [http://subversion.tigris.org/]). Subversion is an open source
version control system, written from scratch, and intended to replace CVS as the de facto version con-
trol system of choice in the open source community. The project was started by my employer, Collab-
Net (collab.net [http://www.collab.net/]), in early 2000, and thank goodness CollabNet understood right
from the start how to run it as a truly collaborative, distributed effort. We got a lot of volunteer develop-
er buy-in early on; today there are 50-some developers on the project, of whom only a few are Collab-
Net employees.

Subversion is in many ways a classic example of an open source project, and I ended up drawing on it
more heavily than I originally expected. This was partly a matter of convenience: whenever I needed an
example of a particular phenomenon, I could usually call one up from Subversion right off the top of
my head. But it was also a matter of verification. Although I am involved in other free software projects
to varying degrees, and talk to friends and acquaintances involved in many more, one quickly realizes
when writing for print that all assertions need to be fact-checked. I didn't want to make statements about
events in other projects based only on what I could read in their public mailing list archives. If someone
were to try that with Subversion, I knew, she'd be right about half the time and wrong the other half. So
when drawing inspiration or examples from a project with which I didn't have direct experience, I tried
to first talk to an informant there, someone I could trust to explain what was really going on.

While Subversion was my full time job from 2000-2006, I've been involved in free software for more
than twenty years, including the seven years since 2006 (when the first edition of this book was pub-
lished). Other projects and organizations that have influenced this book include:

• The GNU Emacs text editor project at the Free Software Foundation, in which I maintain a few small
packages.

• Concurrent Versions System (CVS), which I worked on intensely in 1994–1995 with Jim Blandy and
was involved with intermittently for a few years afterwards.

• The collection of open source projects known as the Apache Software Foundation, especially the
Apache Portable Runtime (APR) and Apache HTTP Server.

• The Launchpad.net project at Canonical, Ltd.

• Code for America and O'Reilly Media, which gave me an inside view on open source civic technolo-
gy development starting in 2010, and kindly kept me in the loop after I became a full-time consultant
in 2012.

• The many open source anti-surveillance and censorship-circumvention tools supported by the Open
Internet Tools Project.

• Checkbook NYC, the municipal financial transparency software released by the New York City Of-
fice of the Comptroller.

http://subversion.tigris.org/
http://subversion.tigris.org/
http://www.collab.net/
http://www.collab.net/

Preface

viii

• The Arches Project, an open source web application for managing archeological digs, created by the
Getty Conservation Institute and the World Monuments Fund.

• OpenOffice.org / LibreOffice.org, the Berkeley Database from Sleepycat, and MySQL Database; I
have not been involved with these projects personally, but have observed them and, in some cases,
talked to people there.

• GNU Debugger (GDB) (likewise).

• The Debian Project (likewise).

This is not a complete list, of course. Like most open source programmers, I also keep loose tabs on
many different projects of interest to me, just to have a sense of the general state of things. I won't name
all of them here, but they are mentioned in the text where appropriate.

Acknowledgments
This book took four times longer to write than I thought it would, and for much of that time felt rather
like a grand piano suspended above my head wherever I went. Without help from many people, I would
not have been able to complete it while staying sane.

Andy Oram, my editor at O'Reilly, was a writer's dream. Aside from knowing the field intimately (he
suggested many of the topics), he has the rare gift of knowing what one meant to say and helping one
find the right way to say it. It has been an honor to work with him. Thanks also to Chuck Toporek for
steering this proposal to Andy right away.

Brian Fitzpatrick reviewed almost all of the material as I wrote it, which not only made the book bet-
ter, but kept me writing when I wanted to be anywhere in the world but in front of the computer. Ben
Collins-Sussman and Mike Pilato also checked up on progress, and were always happy to discuss—
sometimes at length—whatever topic I was trying to cover that week. They also noticed when I slowed
down, and gently nagged when necessary. Thanks, guys.

Biella Coleman was writing her dissertation at the same time I was writing this book. She knows what it
means to sit down and write every day, and provided an inspiring example as well as a sympathetic ear.
She also has a fascinating anthropologist's-eye view of the free software movement, giving both ideas
and references that I was able use in the book. Alex Golub—another anthropologist with one foot in the
free software world, and also finishing his dissertation at the same time—was exceptionally supportive
early on, which helped a great deal.

Micah Anderson somehow never seemed too oppressed by his own writing gig, which was inspiring in
a sick, envy-generating sort of way, but he was ever ready with friendship, conversation, and (on at least
one occasion) technical support. Thanks, Micah!

Jon Trowbridge and Sander Striker gave both encouragement and concrete help—their broad experience
in free software provided material I couldn't have gotten any other way.

Thanks to Greg Stein not only for friendship and well-timed encouragement, but for showing the Sub-
version project how important regular code review is in building a programming community. Thanks
also to Brian Behlendorf, who tactfully drummed into our heads the importance of having discussions
publicly; I hope that principle is reflected throughout this book.

Thanks to Benjamin "Mako" Hill and Seth Schoen, for various conversations about free software and its
politics; to Zack Urlocker and Louis Suarez-Potts for taking time out of their busy schedules to be inter-
viewed; to Shane on the Slashcode list for allowing his post to be quoted; and to Haggen So for his enor-
mously helpful comparison of canned hosting sites.

Preface

ix

Thanks to Alla Dekhtyar, Polina, and Sonya for their unflagging and patient encouragement. I'm very
glad that I will no longer have to end (or rather, try unsuccessfully to end) our evenings early to go home
and work on "The Book."

Thanks to Jack Repenning for friendship, conversation, and a stubborn refusal to ever accept an easy
wrong analysis when a harder right one is available. I hope that some of his long experience with both
software development and the software industry rubbed off on this book.

CollabNet was exceptionally generous in allowing me a flexible schedule to write, and didn't complain
when it went on far longer than originally planned. I don't know all the intricacies of how management
arrives at such decisions, but I suspect Sandhya Klute, and later Mahesh Murthy, had something to do
with it—my thanks to them both.

The entire Subversion development team has been an inspiration for the past five years, and much of
what is in this book I learned from working with them. I won't thank them all by name here, because
there are too many, but I implore any reader who runs into a Subversion committer to immediately buy
that committer the drink of his choice—I certainly plan to.

Many times I ranted to Rachel Scollon about the state of the book; she was always willing to listen,
and somehow managed to make the problems seem smaller than before we talked. That helped a lot—
thanks.

Thanks (again) to Noel Taylor, who must surely have wondered why I wanted to write another book
given how much I complained the last time, but whose friendship and leadership of Golosá helped
keep music and good fellowship in my life even in the busiest times. Thanks also to Matthew Dean and
Dorothea Samtleben, friends and long-suffering musical partners, who were very understanding as my
excuses for not practicing piled up. Megan Jennings was constantly supportive, and genuinely interested
in the topic even though it was unfamiliar to her—a great tonic for an insecure writer. Thanks, pal!

I had four knowledgeable and diligent reviewers for this book: Yoav Shapira, Andrew Stellman, Da-
vanum Srinivas, and Ben Hyde. If I had been able to incorporate all of their excellent suggestions, this
would be a better book. As it was, time constraints forced me to pick and choose, but the improvements
were still significant. Any errors that remain are entirely my own.

My parents, Frances and Henry, were wonderfully supportive as always, and as this book is less techni-
cal than the previous one, I hope they'll find it somewhat more readable.

Finally, I would like to thank the dedicatees, Karen Underhill and Jim Blandy. Karen's friendship and
understanding have meant everything to me, not only during the writing of this book but for the last
seven years. I simply would not have finished without her help. Likewise for Jim, a true friend and a
hacker's hacker, who first taught me about free software, much as a bird might teach an airplane about
flying.

Disclaimer
The thoughts and opinions expressed in this book are my own. They do not necessarily represent the
views of my clients, past employers, the New America Foundation, or the open source projects dis-
cussed here. They do, however, represent the views of Jim Blandy. Seriously: he agrees with everything
in this book. Ask him.

1

Chapter 1. Introduction
Most free software projects fail.

We tend not to hear very much about the failures. Only successful projects attract attention, and there
are so many free software projects in total1 that even though only a small percentage succeed, the re-
sult is still a lot of visible projects. We also don't hear about the failures because failure is not an event.
There is no single moment when a project ceases to be viable; people just sort of drift away and stop
working on it. There may be a moment when a final change is made to the project, but those who made
it usually didn't know at the time that it was the last one. There is not even a clear definition of when a
project is expired. Is it when it hasn't been actively worked on for six months? When its user base stops
growing, without having exceeded the developer base? What if the developers of one project abandon
it because they realized they were duplicating the work of another—and what if they join that other
project, then expand it to include much of their earlier effort? Did the first project end, or just change
homes?

Because of such complexities, it's impossible to put a precise number on the failure rate. But anecdotal
evidence from two decades in open source, some casting around on multi-project hosting sites (see the
section called “Canned Hosting” in Chapter 3, Technical Infrastructure for more about them), and a lit-
tle Googling all point to the same conclusion: the rate is extremely high, probably on the order of 90–
95%. The number climbs higher if you include surviving but dysfunctional projects: those which are
producing running code, but which are not pleasant places to be, or are not making progress as quickly
or as dependably as they could.

This book is about avoiding failure. It examines not only how to do things right, but how to do them
wrong, so you can recognize and correct problems early. My hope is that after reading it, you will have
a repertory of techniques not just for avoiding common pitfalls of open source development, but also for
dealing with the growth and maintenance of a successful project. Success is not a zero-sum game, and
this book is not about winning or getting ahead of the competition. Indeed, an important part of running
an open source project is working smoothly with other, related projects. In the long run, every successful
project contributes to the well-being of the overall, worldwide body of free software.

It would be tempting to say that free software projects fail for the same sorts of reasons proprietary soft-
ware projects do. Certainly, free software has no monopoly on unrealistic requirements, vague specifi-
cations, poor resource management, insufficient design phases, or any of the other hobgoblins already
well known to the software industry. There is a huge body of writing on these topics, and I will try not to
duplicate it in this book. Instead, I will attempt to describe the problems peculiar to free software. When
a free software project runs aground, it is often because the developers (or the managers) did not appre-
ciate the unique problems of open source software development, even though they might be quite well-
prepared for the better-known difficulties of closed-source development.

One of the most common mistakes is unrealistic expectations about the benefits of open source itself.
An open license does not guarantee that hordes of active developers will suddenly volunteer their time
to your project, nor does open-sourcing a troubled project automatically cure its ills. In fact, quite the
opposite: opening up a project can add whole new sets of complexities, and cost more in the short term
than simply keeping it in-house. Opening up means arranging the code to be comprehensible to com-
plete strangers, setting up development documentation and email lists, and often writing documentation
for the first time. All this is a lot of work. And of course, if any interested developers do show up, there
is the added burden of answering their questions for a while before seeing any benefit from their pres-
ence. As developer Jamie Zawinski said about the troubled early days of the Mozilla project:

1I tried to estimate the number, by looking at just the number of projects registered at the most popular hosting sites, and the closest I could calcu-
late to an answer was somewhere between one hundred thousand and two hundred thousand. That would still be far lower the total number of free
software projects on the Internet, of course, as it only counts the ones that chose to use one of the major hosting sites.

Introduction

2

Open source does work, but it is most definitely not a panacea. If there's a cautionary
tale here, it is that you can't take a dying project, sprinkle it with the magic pixie dust
of "open source," and have everything magically work out. Software is hard. The is-
sues aren't that simple.

(from jwz.org/gruntle/nomo.html [http://www.jwz.org/gruntle/nomo.html])

A related mistake is that of skimping on presentation and packaging, figuring that these can always be
done later, when the project is well under way. Presentation and packaging comprise a wide range of
tasks, all revolving around the theme of reducing the barrier to entry. Making the project inviting to the
uninitiated means writing user and developer documentation, setting up docs that are informative to
newcomers, automating as much of the software's compilation and installation as possible, etc.

Many programmers unfortunately treat this kind of work as being of secondary importance to the code
itself. There are a couple of reasons for this. First, it can feel like busywork, because its benefits are
most visible to those least familiar with the project — and vice versa: after all, the people who devel-
op the code don't really need the packaging. They already know how to install, administer, and use the
software, because they wrote it. Second, the skills required to do presentation and packaging well are of-
ten completely different from those required to write code. People tend to focus on what they're good
at, even if it might serve the project better to spend a little time on something that suits them less. Chap-
ter 2, Getting Started discusses presentation and packaging in detail, and explains why it's crucial that
they be a priority from the very start of the project.

Next comes the fallacy that little or no project management is required in open source, or conversely,
that the same management practices used for in-house development will work equally well on an open
source project. Management in an open source project isn't always very visible, but in the successful
projects, it's usually happening behind the scenes in some form or another. A small thought experiment
suffices to show why. An open source project consists of a random collection of programmers—already
a notoriously independent-minded species—who have most likely never met each other, and who may
each have different personal goals in working on the project. The thought experiment is simply to imag-
ine what would happen to such a group without management. Barring miracles, it would collapse or
drift apart very quickly. Things won't simply run themselves, much as we might wish otherwise. But
the management, though it may be quite active, is often informal, subtle, and low-key. The only thing
keeping a development group together is their shared belief that they can do more in concert than indi-
vidually. Thus the goal of management is mostly to ensure that they continue to believe this, by setting
standards for communications, by making sure useful developers don't get marginalized due to person-
al idiosyncracies, and in general by making the project a place developers want to keep coming back to.
Specific techniques for doing this are discussed throughout the rest of this book.

Finally, there is a general category of problems that may be called "failures of cultural navigation."
Twenty years ago, even ten, it would have been premature to talk about a global culture of free software,
but not anymore. A recognizable culture has slowly emerged, and while it is certainly not monolithic—
it is at least as prone to internal dissent and factionalism as any geographically bound culture—it does
have a basically consistent core. Most successful open source projects exhibit some or all of the charac-
teristics of this core. They reward certain types of behaviors, and punish others; they create an atmos-
phere that encourages unplanned participation, sometimes at the expense of central coordination; they
have concepts of rudeness and politeness that can differ substantially from those prevalent elsewhere.
Most importantly, longtime participants have generally internalized these standards, so that they share a
rough consensus about expected conduct. Unsuccessful projects usually deviate in significant ways from
this core, albeit unintentionally, and often do not have a consensus about what constitutes reasonable de-
fault behavior. This means that when problems arise, the situation can quickly deteriorate, as the partici-
pants lack an already established stock of cultural reflexes to fall back on for resolving differences.

That last category, failures of cultural navigation, includes an interesting phenomenon: certain types
of organizations are structurally less compatible with open source development than others. One of the

http://www.jwz.org/gruntle/nomo.html
http://www.jwz.org/gruntle/nomo.html

Introduction

3

great surprises for me in preparing the second edition of this book was realizing that, on the whole, my
experiences indicated that governments are less naturally suited to participating in free software projects
than private-sector, for-profit corporations, with non-profits somewhere in between the two. There are
many reasons for this (see Chapter 9, Governments and Open Source), and the problems are certainly
surmountable, but it's worth noting that when an existing organization — particularly a hierarchical one,
and particularly a hierarchical, risk-averse, and publicity-sensitive one — starts or joins an open source
project, some adjustments will usually be needed.

This book is a practical guide, not an anthropological study or a history. However, a working knowledge
of the origins of today's free software culture is an essential foundation for any practical advice. A per-
son who understands the culture can travel far and wide in the open source world, encountering many
local variations in custom and dialect, yet still be able to participate comfortably and effectively every-
where. In contrast, a person who does not understand the culture will find the process of organizing or
participating in a project difficult and full of surprises. Since the number of people developing free soft-
ware is still growing by leaps and bounds, there are many people in that latter category—this is largely
a culture of recent immigrants, and will continue to be so for some time. If you think you might be one
of them, the next section provides background for discussions you'll encounter later, both in this book
and on the Internet. (On the other hand, if you've been working with open source for a while, you may
already know a lot of its history, so feel free to skip the next section.)

History
Software sharing has been around as long as software itself. In the early days of computers, manufactur-
ers felt that competitive advantages were to be had mainly in hardware innovation, and therefore didn't
pay much attention to software as a business asset. Many of the customers for these early machines were
scientists or technicians, who were able to modify and extend the software shipped with the machine
themselves. Customers sometimes distributed their patches back not only to the manufacturer, but to
other owners of similar machines. The manufacturers often tolerated and even encouraged this: in their
eyes, improvements to the software, from whatever source, just made the hardware more attractive to
other potential customers.

Although this early period resembled today's free software culture in many ways, it differed in two cru-
cial respects. First, there was as yet little standardization of hardware—it was a time of flourishing in-
novation in computer design, but the diversity of computing architectures meant that everything was
incompatible with everything else. Software written for one machine would generally not work on an-
other; programmers tended to acquire expertise in a particular architecture or family of architectures
(whereas today they would be more likely to acquire expertise in a programming language or family of
languages, confident that their expertise will be transferable to whatever computing hardware they hap-
pen to find themselves working with). Because a person's expertise tended to be specific to one kind of
computer, their accumulation of expertise had the effect of making that particular architecture comput-
er more attractive to them and their colleagues. It was therefore in the manufacturer's interests for ma-
chine-specific code and knowledge to spread as widely as possible.

Second, there was no widespread Internet. Though there were fewer legal restrictions on sharing than
there are today, the technical restrictions were greater: the means of getting data from place to place
were inconvenient and cumbersome, relatively speaking. There were some small, local networks, good
for sharing information among employees at the same lab or company. But there remained barriers to
overcome if one wanted to share with the world. These barriers were overcome in many cases. Some-
times different groups made contact with each other independently, sending disks or tapes through land
mail, and sometimes the manufacturers themselves served as central clearing houses for patches. It al-
so helped that many of the early computer developers worked at universities, where publishing one's
knowledge was expected. But the physical realities of data transmission meant there was always an im-
pedance to sharing, an impedance proportional to the distance (real or organizational) that the software
had to travel. Widespread, frictionless sharing, as we know it today, was not possible.

Introduction

4

The Rise of Proprietary Software and Free Software

As the industry matured, several interrelated changes occurred simultaneously. The wild diversity of
hardware designs gradually gave way to a few clear winners—winners through superior technology, su-
perior marketing, or some combination of the two. At the same time, and not entirely coincidentally, the
development of so-called "high level" programming languages meant that one could write a program
once, in one language, and have it automatically translated ("compiled") to run on different kinds of
computers. The implications of this were not lost on the hardware manufacturers: a customer could now
undertake a major software engineering effort without necessarily locking themselves into one particular
computer architecture. When this was combined with the gradual narrowing of performance differences
between various computers, as the less efficient designs were weeded out, a manufacturer that treated
its hardware as its only asset could look forward to a future of declining profit margins. Raw computing
power was becoming a fungible good, while software was becoming the differentiator. Selling software,
or at least treating it as an integral part of hardware sales, began to look like a good strategy.

This meant that manufacturers had to start enforcing the copyrights on their code more strictly. If users
simply continued to share and modify code freely among themselves, they might independently reimple-
ment some of the improvements now being sold as "added value" by the supplier. Worse, shared code
could get into the hands of competitors. The irony is that all this was happening around the time the In-
ternet was getting off the ground. So just when truly unobstructed software sharing was finally becom-
ing technically possible, changes in the computer business made it economically undesirable, at least
from the point of view of any single company. The suppliers clamped down, either denying users access
to the code that ran their machines, or insisting on non-disclosure agreements that made effective shar-
ing impossible.

Conscious resistance

As the world of unrestricted code swapping slowly faded away, a counterreaction crystallized in the
mind of at least one programmer. Richard Stallman worked in the Artificial Intelligence Lab at the
Massachusetts Institute of Technology in the 1970s and early '80s, during what turned out to be a gold-
en age and a golden location for code sharing. The AI Lab had a strong "hacker ethic",2 and people were
not only encouraged but expected to share whatever improvements they made to the system. As Stall-
man wrote later:

We did not call our software "free software", because that term did not yet exist; but
that is what it was. Whenever people from another university or a company wanted
to port and use a program, we gladly let them. If you saw someone using an unfamil-
iar and interesting program, you could always ask to see the source code, so that you
could read it, change it, or cannibalize parts of it to make a new program.

(from gnu.org/gnu/thegnuproject.html [http://www.gnu.org/gnu/
thegnuproject.html])

This Edenic community collapsed around Stallman shortly after 1980, when the changes that had been
happening in the rest of the industry finally caught up with the AI Lab. A startup company hired away
many of the Lab's programmers to work on an operating system similar to what they had been working
on at the Lab, only now under an exclusive license. At the same time, the AI Lab acquired new equip-
ment that came with a proprietary operating system.

Stallman saw the larger pattern in what was happening:

2Stallman uses the word "hacker" in the sense of "someone who loves to program and enjoys being clever about it," not the somewhat newer
meaning of "someone who breaks into computers."

http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/gnu/thegnuproject.html

Introduction

5

The modern computers of the era, such as the VAX or the 68020, had their own oper-
ating systems, but none of them were free software: you had to sign a nondisclosure
agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help your
neighbor. A cooperating community was forbidden. The rule made by the owners of
proprietary software was, "If you share with your neighbor, you are a pirate. If you
want any changes, beg us to make them."

By some quirk of personality, he decided to resist the trend. Instead of continuing to work at the now-
decimated AI Lab, or taking a job writing code at one of the new companies, where the results of his
work would be kept locked in a box, he resigned from the Lab and started the GNU Project and the Free
Software Foundation (FSF). The goal of GNU3 was to develop a completely free and open computer op-
erating system and body of application software, in which users would never be prevented from hacking
or from sharing their modifications. He was, in essence, setting out to recreate what had been destroyed
at the AI Lab, but on a world-wide scale and without the vulnerabilities that had made the AI Lab's cul-
ture susceptible to disintegration.

In addition to working on the new operating system, Stallman devised a copyright license whose terms
guaranteed that his code would be perpetually free. The GNU General Public License (GPL) is a clever
piece of legal judo: it says that the code may be copied and modified without restriction, and that both
copies and derivative works (i.e., modified versions) must be distributed under the same license as the
original, with no additional restrictions. In effect, it uses copyright law to achieve an effect opposite to
that of traditional copyright: instead of limiting the software's distribution, it prevents anyone, even the
author, from limiting distribution. For Stallman, this was better than simply putting his code into the
public domain. If it were in the public domain, any particular copy of it could be incorporated into a pro-
prietary program (as also sometimes happens to code under permissive open source copyright licenses
4). While such incorporation wouldn't in any way diminish the original code's continued availability, it
would have meant that Stallman's efforts could benefit the enemy—proprietary software. The GPL can
be thought of as a form of protectionism for free software, because it prevents non-free software from
taking full advantage of GPLed code. The GPL and its relationship to other free software licenses are
discussed in detail in Chapter 10, Licenses, Copyrights, and Patents.

With the help of many programmers, some of whom shared Stallman's ideology and some of whom sim-
ply wanted to see a lot of free code available, the GNU Project began releasing free replacements for
many of the most critical components of an operating system. Because of the now-widespread standard-
ization in computer hardware and software, it was possible to use the GNU replacements on otherwise
non-free systems, and many people did. The GNU text editor (Emacs) and C compiler (GCC) were par-
ticularly successful, gaining large and loyal followings not on ideological grounds, but simply on their
technical merits. By about 1990, GNU had produced most of a free operating system, except for the ker-
nel—the part that the machine actually boots up, and that is responsible for managing memory, disk, and
other system resources.

Unfortunately, the GNU project had chosen a kernel design that turned out to be harder to implement
than expected. The ensuing delay prevented the Free Software Foundation from making the first re-
lease of an entirely free operating system. The final piece was put into place instead by Linus Torvalds,
a Finnish computer science student who, with the help of volunteers around the world, had complet-
ed a free kernel using a more conservative design. He named it Linux, and when it was combined with
the existing GNU programs and other free software (especially the X Windows System), the result was

3It stands for "GNU's Not Unix", and the "GNU" in that expansion stands for an infinitely long footnote.
4See the section called “Terminology” for more about "permissive" licensing versus GPL-style "copyleft" licensing. The opensource.org FAQ is
also a good resource on this—seeopensource.org/faq#copyleft [http://opensource.org/faq#copyleft].

http://opensource.org/faq#copyleft
http://opensource.org/faq#copyleft

Introduction

6

a completely free operating system. For the first time, you could boot up your computer and do work
without using any proprietary software.5

Much of the software on this new operating system was not produced by the GNU project. In fact, GNU
wasn't even the only group working on producing a free operating system (for example, the code that
eventually became NetBSD and FreeBSD was already under development by this time). The importance
of the Free Software Foundation was not only in the code they wrote, but in their political rhetoric. By
talking about free software as a cause instead of a convenience, they made it difficult for programmers
not to have a political consciousness about it. Even those who disagreed with the FSF had to engage
the issue, if only to stake out a different position. The FSF's effectiveness as propagandists lay in tying
their code to a message, by means of the GPL and other texts. As their code spread widely, that message
spread as well.

Accidental resistance

There were many other things going on in the nascent free software scene, however, and not all were as
explictly ideological as Stallman's GNU Project. One of the most important was the Berkeley Software
Distribution (BSD), a gradual re-implementation of the Unix operating system—which up until the late
1970's had been a loosely proprietary research project at AT&T—by programmers at the University of
California at Berkeley. The BSD group did not make any overt political statements about the need for
programmers to band together and share with one another, but they practiced the idea with flair and en-
thusiasm, by coordinating a massive distributed development effort in which the Unix command-line
utilities and code libraries, and eventually the operating system kernel itself, were rewritten from scratch
mostly by volunteers. The BSD project became a prime example of non-ideological free software devel-
opment, and also served as a training ground for many developers who would go on to remain active in
the open source world.

Another crucible of cooperative development was the X Window System, a free, network-transparent
graphical computing environment, developed at MIT in the mid-1980's in partnership with hardware
vendors who had a common interest in being able to offer their customers a windowing system. Far from
opposing proprietary software, the X license deliberately allowed proprietary extensions on top of the
free core—each member of the consortium wanted the chance to enhance the default X distribution, and
thereby gain a competitive advantage over the other members. X Windows6 itself was free software,
but mainly as a way to level the playing field between competing business interests and increase stan-
dardization, not out of some desire to end the dominance of proprietary software. Yet another example,
predating the GNU project by a few years, was TeX, Donald Knuth's free, publishing-quality typeset-
ting system. He released it under terms that allowed anyone to modify and distribute the code, but not
to call the result "TeX" unless it passed a very strict set of compatibility tests (this is an example of the
"trademark-protecting" class of free licenses, discussed more in Chapter 10, Licenses, Copyrights, and
Patents). Knuth wasn't taking a stand one way or the other on the question of free-versus-proprietary
software; he just needed a better typesetting system in order to complete his real goal—a book on com-
puter programming—and saw no reason not to release his system to the world when done.

Without listing every project and every license, it's safe to say that by the late 1980's, there was a lot of
free software available under a wide variety of licenses. The diversity of licenses reflected a correspond-
ing diversity of motivations. Even some of the programmers who chose the GNU GPL were much less
ideologically driven than the GNU project itself was. Although they enjoyed working on free software,
many developers did not consider proprietary software a social evil. There were people who felt a moral
impulse to rid the world of "software hoarding" (Stallman's term for non-free software), but others were
motivated more by technical excitement, or by the pleasure of working with like-minded collaborators,

5Technically, Linux was not the first. A free operating system for IBM-compatible computers, called 386BSD, had come out shortly before Lin-
ux. However, it was a lot harder to get 386BSD up and running. Linux made such a splash not only because it was free, but because it actually
had a high chance of successfully booting your computer after you installed it.
6They prefer it to be called the "X Window System", but in practice, people usually call it "X Windows", because three words is just too cumber-
some.

Introduction

7

or even by a simple human desire for glory. Yet by and large these disparate motivations did not interact
in destructive ways. This may be because software, unlike other creative forms like prose or the visual
arts, must pass semi-objective tests in order to be considered successful: it must run, and be reasonably
free of bugs. This gives all participants in a project a kind of automatic common ground, a reason and a
framework for working together without worrying too much about qualifications or motivations beyond
the technical.

Developers had another reason to stick together as well: it turned out that the free software world was
producing some very high-quality code. In some cases, it was demonstrably technically superior to
the nearest non-free alternative; in others, it was at least comparable, and of course it always cost less.
While only a few people might have been motivated to run free software on strictly philosophical
grounds, a great many people were happy to run it because it did a better job. And of those who used it,
some percentage were always willing to donate their time and skills to help maintain and improve the
software.

This tendency to produce good code was certainly not universal, but it was happening with increasing
frequency in free software projects around the world. Businesses that depended heavily on software
gradually began to take notice. Many of them discovered that they were already using free software
in day-to-day operations, and simply hadn't known it (upper management isn't always aware of every-
thing the IT department does). Corporations began to take a more active and public role in free software
projects, contributing time and equipment, and sometimes even directly funding the development of free
programs. Such investments could, in the best scenarios, repay themselves many times over. The spon-
sor only pays a small number of expert programmers to devote themselves to the project full time, but
reaps the benefits of everyone's contributions, including work from unpaid volunteers and from pro-
grammers being paid by other corporations.

"Free" Versus "Open Source"
As the corporate world gave more and more attention to free software, programmers were faced with
new issues of presentation. One was the word "free" itself. On first hearing the term "free software"
many people mistakenly think it means just "zero-cost software." It's true that all free software is ze-
ro-cost,7 but not all zero-cost software is free as in "freedom"—that is, the freedom to share and modi-
fy for any purpose. For example, during the battle of the browsers in the 1990s, both Netscape and Mi-
crosoft gave away their competing web browsers at no charge, in a scramble to gain market share. Nei-
ther browser was free in the "free software" sense. You couldn't get the source code, and even if you
could, you didn't have the right to modify or redistribute it.8 The only thing you could do was down-
load an executable and run it. The browsers were no more free than shrink-wrapped software bought in a
store; they merely had a lower price.

This confusion over the word "free" is due entirely to an unfortunate ambiguity in the English language.
Most other tongues distinguish low prices from liberty (the distinction between gratis and libre is im-
mediately clear to speakers of Romance languages, for example). But English's position as the de fac-
to bridge language of the Internet means that a problem with English is, to some degree, a problem for
everyone. The misunderstanding around the word "free" was so prevalent that free software program-
mers eventually evolved a standard formula in response: "It's free as in freedom—think free speech, not
free beer." Still, having to explain it over and over is tiring. Many programmers felt, with some justifica-
tion, that the ambiguous word "free" was hampering the public's understanding of this software.

But the problem went deeper than that. The word "free" carried with it an inescapable moral connota-
tion: if freedom was an end in itself, it didn't matter whether free software also happened to be better, or

7One may charge a fee for giving out copies of free software, but since one cannot stop the recipients from offering it at no charge afterwards, the
price is effectively driven to zero immediately.
8The source code to Netscape Navigator was eventually released under an open source license, in 1998, and became the foundation for the Mozil-
la web browser. See mozilla.org [http://www.mozilla.org/].

http://www.mozilla.org/
http://www.mozilla.org/

Introduction

8

more profitable for certain businesses in certain circumstances. Those were merely pleasant side effects
of a motive that was, at its root, neither technical nor mercantile, but moral. Furthermore, the "free as in
freedom" position forced a glaring inconsistency on corporations who wanted to support particular free
programs in one aspect of their business, but continue marketing proprietary software in others.

These dilemmas came to a community that was already poised for an identity crisis. The programmers
who actually write free software have never been of one mind about the overall goal, if any, of the free
software movement. Even to say that opinions run from one extreme to the other would be misleading,
in that it would falsely imply a linear range where there is instead a multidimensional scattering. How-
ever, two broad categories of belief can be distinguished, if we are willing to ignore subtleties for the
moment. One group takes Stallman's view, that the freedom to share and modify is the most important
thing, and that therefore if you stop talking about freedom, you've left out the core issue. Others feel that
the software itself is the most important argument in its favor, and are uncomfortable with proclaiming
proprietary software inherently bad. Some, but not all, free software programmers believe that the author
(or employer, in the case of paid work) should have the right to control the terms of distribution, and that
no moral judgement need be attached to the choice of particular terms. Others don't believe this.

For a long time, these differences did not need to be carefully examined or articulated, but free
software's burgeoning success in the business world made the issue unavoidable. In 1998, the term open-
 source was created as an alternative to "free", by a coalition of programmers who eventually became
The Open Source Initiative (OSI).9 The OSI felt not only that "free software" was potentially confusing,
but that the word "free" was just one symptom of a general problem: that the movement needed a mar-
keting program to pitch it to the corporate world, and that talk of morals and the social benefits of shar-
ing would never fly in corporate boardrooms. In their own words at the time:

The Open Source Initiative is a marketing program for free software. It's a pitch for
"free software" on solid pragmatic grounds rather than ideological tub-thumping. The
winning substance has not changed, the losing attitude and symbolism have. ...

The case that needs to be made to most techies isn't about the concept of open source,
but the name. Why not call it, as we traditionally have, free software?

One direct reason is that the term "free software" is easily misunderstood in ways that
lead to conflict. ...

But the real reason for the re-labeling is a marketing one. We're trying to pitch our
concept to the corporate world now. We have a winning product, but our position-
ing, in the past, has been awful. The term "free software" has been misunderstood by
business persons, who mistake the desire to share with anti-commercialism, or worse,
theft.

Mainstream corporate CEOs and CTOs will never buy "free software." But if we take
the very same tradition, the same people, and the same free-software licenses and
change the label to "open source" — that, they'll buy.

Some hackers find this hard to believe, but that's because they're techies who think in
concrete, substantial terms and don't understand how important image is when you're
selling something.

In marketing, appearance is reality. The appearance that we're willing to climb down
off the barricades and work with the corporate world counts for as much as the reality
of our behavior, our convictions, and our software.

(from opensource.org [http://www.opensource.org/]. Or rather, formerly from that
site — the OSI has apparently taken down the pages since then, although they can

9OSI's web home is opensource.org [http://www.opensource.org/].

http://www.opensource.org/
http://www.opensource.org/
http://www.opensource.org/
http://www.opensource.org/

Introduction

9

still be seen at web.archive.org/web/20021204155057/http://www.opensource.org/
advocacy/faq.php [http://web.archive.org/web/20021204155057/http://
www.opensource.org/advocacy/faq.php] and web.archive.org/web/20021204155022/
http://www.opensource.org/advocacy/case_for_hackers.php#marketing [http://
web.archive.org/web/20021204155022/http://www.opensource.org/advoca-
cy/case_for_hackers.php#marketing] [sic].)

The tips of many icebergs of controversy are visible in that text. It refers to "our convictions", but smart-
ly avoids spelling out exactly what those convictions are. For some, it might be the conviction that code
developed according to an open process will be better code; for others, it might be the conviction that all
information should be shared. There's the use of the word "theft" to refer (presumably) to illegal copy-
ing—a usage that many object to, on the grounds that it's not theft if the original possessor still has the
item afterwards. There's the tantalizing hint that the free software movement might be mistakenly ac-
cused of anti-commercialism, but it leaves carefully unexamined the question of whether such an accu-
sation would have any basis in fact.

None of which is to say that the OSI's web site is inconsistent or misleading. It's not. Rather, it is an ex-
ample of exactly what the OSI claims had been missing from the free software movement: good market-
ing, where "good" means "viable in the business world." The Open Source Initiative gave a lot of people
exactly what they had been looking for—a vocabulary for talking about free software as a development
methodology and business strategy, instead of as a moral crusade.

The appearance of the Open Source Initiative changed the landscape of free software. It formalized a di-
chotomy that had long been unnamed, and in doing so forced the movement to acknowledge that it had
internal politics as well as external. The effect today is that both sides have had to find common ground,
since most projects include programmers from both camps, as well as participants who don't fit any clear
category. This doesn't mean people never talk about moral motivations—lapses in the traditional "hack-
er ethic" are sometimes called out, for example. But it is rare for a free software / open source develop-
er to openly question the basic motivations of others in a project. The contribution trumps the contrib-
utor. If someone writes good code, you don't ask them whether they do it for moral reasons, or because
their employer paid them to, or because they're building up their résumé, or whatever. You evaluate the
contribution on technical grounds, and respond on technical grounds. Even explicitly political organiza-
tions like the Debian project, whose goal is to offer a 100% free (that is, "free as in freedom") comput-
ing environment, are fairly relaxed about integrating with non-free code and cooperating with program-
mers who don't share exactly the same goals.

The Situation Today
When running a free software project, you won't need to talk about such weighty philosophical matters
on a daily basis. Programmers will not insist that everyone else in the project agree with their views on
all things (those who do insist on this quickly find themselves unable to work in any project). But you
do need to be aware that the question of "free" versus "open source" exists, partly to avoid saying things
that might be inimical to some of the participants, and partly because understanding developers' motiva-
tions is the best way—in some sense, the only way—to manage a project.

Free software is a culture by choice. To operate successfully in it, you have to understand why people
choose to be in it in the first place. Coercive techniques don't work. If people are unhappy in one project,
they will just wander off to another one. Free software is remarkable even among volunteer communi-
ties for its lightness of investment. Most of the people involved have never actually met the other par-
ticipants face-to-face, and simply donate bits of time whenever they feel like it. The normal conduits by
which humans bond with each other and form lasting groups are narrowed down to a tiny channel: the
written word, carried over electronic wires. Because of this, it can take a long time for a cohesive and
dedicated group to form. Conversely, it's quite easy for a project to lose a potential volunteer in the first

http://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
http://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
http://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
http://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing

Introduction

10

five minutes of acquaintanceship. If a project doesn't make a good first impression, newcomers may wait
a long time before giving it a second chance.

The transience, or rather the potential transience, of relationships is perhaps the single most daunting
task facing a new project. What will persuade all these people to stick together long enough to produce
something useful? The answer to that question is complex enough to occupy the rest of this book, but if
it had to be expressed in one sentence, it would be this:

People should feel that their connection to a project, and influence over it, is directly
proportional to their contributions.

No class of developers, or potential developers, should ever feel discounted or discriminated against for
non-technical reasons10. Clearly, projects with corporate sponsorship and/or salaried developers need
to be especially careful in this regard, as Chapter 5, Money discusses in detail. Of course, this doesn't
mean that if there's no corporate sponsorship then you have nothing to worry about. Money is merely
one of many factors that can affect the success of a project. There are also questions of what language to
choose, what license, what development process, precisely what kind of infrastructure to set up, how to
publicize the project's inception effectively, and much more. Starting a project out on the right foot is the
topic of the next chapter.

10There can be cases where you discriminate against certain developers due to behavior which, though not related to their technical contribu-
tions, has the potential to harm the project. That's reasonable: their behavior is relevant because in the long run it will have a negative effect on
the project. The varieties of human culture being what they are, I can give no single, succint rule to cover all such cases, except to say that you
should try to be welcoming to all potential contributors and, if you must discriminate, do so only on the basis of actual behavior, not on the basis
of a contributor's group affiliation or group identity.

11

Chapter 2. Getting Started
The classic model of how free software projects get started was supplied by Eric Raymond, in a now-fa-
mous paper on open source processes entitled The Cathedral and the Bazaar. He wrote:

Every good work of software starts by scratching a developer's personal itch.

(from catb.org/~esr/writings/cathedral-bazaar/ [http://www.catb.org/~esr/writ-
ings/cathedral-bazaar/])

Note that Raymond wasn't saying that open source projects happen only when some individual gets an
itch. Rather, he was saying that good software results when the programmer has a personal interest in
seeing the problem solved; the relevance of this to free software was that a personal itch happened to be
the most frequent motivation for starting a free software project.

This is still how most free software projects are started, but less so now than in 1997, when Raymond
wrote those words. Today, we have the phenomenon of organizations—for-profit corporations, govern-
ments, non-profits, etc—starting large, centrally-conceived open source projects from scratch. The lone
programmer, banging out some code to solve a local problem and then realizing the result has wider ap-
plicability, is still the source of much new free software, but is not the only story.

Raymond's point is still insightful, however. The essential condition is that the producers of the software
have a direct interest in its success, usually because they use it themselves or work directly with people
who use it. If the software doesn't do what it's supposed to do, the person or organization producing it
will feel the dissatisfaction in their daily work. For example, the open source software developed by the
Kuali Foundation (kuali.org [http://www.kuali.org/]), used by educational institutions to manage their fi-
nances, research grants, HR systems, student information, etc, can hardly be said to scratch any individ-
ual programmer's personal itch. It scratches an institutional itch. But that itch arises directly from the ex-
periences of the institutions concerned, and therefore if the project fails to satisfy them, they will know.
This arrangement produces good software because the feedback loop flows in the right direction. The
program isn't being written to be sold to someone else so they can solve their problem. It's being written
to solve one's own problem, and then shared with everyone, much as though the problem were a disease
and the software were medicine whose distribution is meant to completely eradicate the epidemic.

This chapter is about how to introduce a new free software project to the world, but many of its rec-
ommendations would sound familiar to a health organization distributing medicine. The goals are very
similar: you want to make it clear what the medicine does, get it into the hands of the right people, and
make sure that those who receive it know how to use it. But with software, you also want to entice some
of the recipients into joining the ongoing research effort to improve the medicine.

Free software distribution is a twofold task. The software needs to acquire users, and to acquire develop-
ers. These two needs are not necessarily in conflict, but they do add some complexity to a project's ini-
tial presentation. Some information is useful for both audiences, some is useful only for one or the other.
Both kinds of information should subscribe to the principle of scaled presentation; that is, the degree of
detail presented at each stage should correspond to the amount of time and effort put in by the reader at
that stage. More effort should always result in more reward. When the two do not correlate tightly, peo-
ple may quickly lose faith and stop investing effort.

The corollary to this is that appearances matter. Programmers, in particular, often don't like to believe
this. Their love of substance over form is almost a point of professional pride. It's no accident that so
many programmers exhibit an antipathy for marketing and public relations work, nor that professional
graphic designers are often horrified at the designs programmers come up with on their own.

This is a pity, because there are situations where form is substance, and project presentation is one of
them. For example, the very first thing a visitor learns about a project is what its web site looks like.

http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.kuali.org/
http://www.kuali.org/

Getting Started

12

This information is absorbed before any of the actual content on the site is comprehended—before any
of the text has been read or links clicked on. However unjust it may be, people cannot stop themselves
from forming an immediate first impression. The site's appearance signals whether care was taken in or-
ganizing the project's presentation. Humans have extremely sensitive antennae for detecting the invest-
ment of care. Most of us can tell in one glance whether a web site was thrown together quickly or was
given serious thought. This is the first piece of information your project puts out, and the impression it
creates will carry over to the rest of the project by association.

Thus, while much of this chapter talks about the content your project should start out with, remember
that its look and feel matter too. Because the project web site has to work for two different types of vis-
itors—users and developers—special attention must be paid to clarity and directedness. Although this
is not the place for a general treatise on web design, one principle is important enough to deserve men-
tion, particularly when the site serves multiple (if overlapping) audiences: people should have a rough
idea where a link goes before clicking on it. For example, it should be obvious from looking at the links
to user documentation that they lead to user documentation, and not to, say, developer documentation.
Running a project is partly about supplying information, but it's also about supplying comfort. The mere
presence of certain standard offerings, in expected places, reassures users and developers who are de-
ciding whether they want to get involved. It says that this project has its act together, has anticipated the
questions people will ask, and has made an effort to answer them in a way that requires minimal exer-
tion on the part of the asker. By giving off this aura of preparedness, the project sends out a message:
"Your time will not be wasted if you get involved," which is exactly what people need to hear.

If you use a "canned hosting" site (see the section called “Hosting”), one advantage of that choice is that
those sites have a default layout that is similar from project to project, and is pretty well-suited to pre-
senting a project to the world. That layout can be customized, within certain boundaries, but the default
design prompts you to include the information visitors are most likely to be looking for.

But First, Look Around
Before starting an open source project, there is one important caveat:

Always look around to see if there's an existing project that does what you want. The chances are pret-
ty good that whatever problem you want solved now, someone else wanted solved before you. If they
did solve it, and released their code under a free license, then there's no reason for you to reinvent the
wheel today. There are exceptions, of course: if you want to start a project as an educational experience,
pre-existing code won't help; or maybe the project you have in mind is so specialized that you know
there is zero chance anyone else has done it. But generally, there's no point not looking, and the pay-
off can be huge. If the usual Internet search engines don't turn up anything, try searching directly on
github.com [http://github.com/], on ohloh.net [http://ohloh.net/], freecode.com [http://freecode.com/], on
sourceforge.net [http://www.sourceforge.net/], and in the Free Software Foundation's directory of free
software at directory.fsf.org [http://directory.fsf.org/].

Even if you don't find exactly what you were looking for, you might find something so close that it
makes more sense to join that project and add functionality than to start from scratch yourself.

Starting From What You Have
You've looked around, found that nothing out there really fits your needs, and decided to start a new
project.

What now?

The hardest part about launching a free software project is transforming a private vision into a public
one. You or your organization may know perfectly well what you want, but expressing that goal com-

http://github.com/
http://github.com/
http://ohloh.net/
http://ohloh.net/
http://freecode.com/
http://freecode.com/
http://www.sourceforge.net/
http://www.sourceforge.net/
http://directory.fsf.org/
http://directory.fsf.org/

Getting Started

13

prehensibly to the world is a fair amount of work. It is essential, however, that you take the time to do it.
You and the other founders must decide what the project is really about—that is, decide its limitations,
what it won't do as well as what it will—and write up a mission statement. This part is usually not too
hard, though it can sometimes reveal unspoken assumptions and even disagreements about the nature
of the project, which is fine: better to resolve those now than later. The next step is to package up the
project for public consumption, and this is, basically, pure drudgery.

What makes it so laborious is that it consists mainly of organizing and documenting things everyone al-
ready knows—"everyone", that is, who's been involved in the project so far. Thus, for the people do-
ing the work, there is no immediate benefit. They do not need a README file giving an overview of
the project, nor a design document. They do not need a carefully arranged code tree conforming to the
informal but widespread standards of software source distributions. Whatever way the source code is
arranged is fine for them, because they're already accustomed to it anyway, and if the code runs at all,
they know how to use it. It doesn't even matter, for them, if the fundamental architectural assumptions of
the project remain undocumented; they're already familiar with that too.

Newcomers, on the other hand, need all these things. Fortunately, they don't need them all at once. It's
not necessary for you to provide every possible resource before taking a project public. In a perfect
world, perhaps, every new open source project would start out life with a thorough design document, a
complete user manual (with special markings for features planned but not yet implemented), beautifully
and portably packaged code, capable of running on any computing platform, and so on. In reality, taking
care of all these loose ends would be prohibitively time-consuming, and anyway, it's work that one can
reasonably hope others will help with once the project is under way.

What is necessary, however, is that enough investment be put into presentation that newcomers can get
past the initial obstacle of unfamiliarity. Think of it as the first step in a bootstrapping process, to bring
the project to a kind of minimum activation energy. I've heard this threshold called the hacktivation en-
ergy: the amount of energy a newcomer must put in before she starts getting something back. The lower
a project's hacktivation energy, the better. Your first task is bring the hacktivation energy down to a lev-
el that encourages people to get involved.

Each of the following subsections describes one important aspect of starting a new project. They are
presented roughly in the order that a new visitor would encounter them, though of course the order in
which you actually implement them might be different. You can treat them as a checklist. When starting
a project, just go down the list and make sure you've got each item covered, or at least that you're com-
fortable with the potential consequences if you've left one out.

Choose a Good Name
Put yourself in the shoes of someone who's just heard about your project, perhaps by having stumbled
across it while searching for software to solve some problem. The first thing they'll encounter is the
project's name.

A good name will not automatically make your project successful, and a bad name will not doom it—
well, a really bad name probably could do that, but we start from the assumption that no one here is ac-
tively trying to make their project fail. However, a bad name can slow down adoption of the project, ei-
ther because people don't take it seriously, or because they simply have trouble remembering it.

A good name:

• Gives some idea what the project does, or at least is related in an obvious way, such that if one knows
the name and knows what the project does, the name will come quickly to mind thereafter.

• Is easy to remember. Here, there is no getting around the fact that English has become the default lan-
guage of the Internet: "easy to remember" usually means "easy for someone who can read English to
remember." Names that are puns dependent on native-speaker pronounciation, for example, will be

Getting Started

14

opaque to the many non-native English readers out there. If the pun is particularly compelling and
memorable, it may still be worth it; just keep in mind that many people seeing the name will not hear
it in their head the way a native speaker would.

• Is not the same as some other project's name, and does not infringe on any trademarks. This is just
good manners, as well as good legal sense. You don't want to create identity confusion. It's hard
enough to keep track of everything that's available on the Net already, without different things having
the same name.

The resources mentioned earlier in the section called “But First, Look Around” are useful in discover-
ing whether another project already has the name you're thinking of. For the U.S., trademark searches
are available at uspto.gov [http://www.uspto.gov/].

• If possible, is available as a domain name in the .com, .net, and .org top-level domains. You
should pick one, probably .org, to advertise as the official home site for the project; the other two
should forward there and are simply to prevent third parties from creating identity confusion around
the project's name. Even if you intend to host the project at some other site (see the section called
“Hosting”), you can still register project-specific domains and forward them to the hosting site. It
helps users a lot to have a simple URL to remember.

• If possible, is available as a username on Twitter [https://twitter.com/] and other microblog sites. See
the section called “Own the name in the important namespaces” for more on this and its relationship
to the domain name.

Own the name in the important namespaces

For large projects, it is a good idea to own the project's name as many of the relevant namespaces on the
Internet as you can. By namespaces, I mean not just the domain name system, but also online services in
which account names (usernames) are the publicly visible handle by which people refer to the project. If
you have the same name in all the places where people would look for you, you make it easier for peo-
ple to sustain a mild interest in the project until they're ready to become more involved.

For example, the Gnome free desktop project has the gnome.org [http://gnome.org/] domain name1, the
@gnome [https://twitter.com/gnome] Twitter handle, the gnome [https://identi.ca/gnome] username at
Identi.ca2, the gnome [https://github.com/gnome] username at GitHub.com3, and on the freenode IRC
network (see the section called “IRC / Real-Time Chat Systems”) they have the channel #gnome, al-
though they also maintain their own IRC servers (where they control the channel namespace anyway, of
course).

All this makes the Gnome project splendidly easy to find: it's usually right where a potential contribu-
tor would expect it to be. Of course, Gnome is a large and complex project with thousands of contrib-
utors and many subdivisions; the advantage to Gnome of being easy to find is greater than it would be
for a newer project, since by now there are so many ways to get involved in Gnome. But it will certain-
ly never harm your project to own its name in as many of the relevant namespaces as it can, and it can
sometimes help. So when you start a project, think about what its online handle should be and register
that handle with the online services you think you're likely to care about. The ones mentioned above are

1They didn't manage to get gnome.com or gnome.net, but that's okay — if you only have one, and it's .org, it's fine. That's usually the first one
people look for when they're seeking the open source project of that name. If they couldn't get "gnome.org" itself, a typical solution would be to
get "gnomeproject.org" instead, and many projects solve the problem that way.
2 Identi.ca [https://identi.ca/] is a microblog / social networking that a number of free software developers use; its code is open source and made
available at pump.io [http://pump.io/]. For developer-oriented projects, I recommend at least doing all status microposts — colloquially referred
to as "tweets" — on both Identi.ca and Twitter. While the total number of people on Identi.ca is far smaller than on Twitter, the percentage of
them that are likely to be interested in news about an open source project is far higher, at least as of this writing in 2013 and for some years pre-
ceding that.
3While the master copy of Gnome's source code is at git.gnome.org [http://git.gnome.org/], they maintain a mirror at GitHub, since so many de-
velopers are already familiar with GitHub

http://www.uspto.gov/
http://www.uspto.gov/
https://twitter.com/
https://twitter.com/
http://gnome.org/
http://gnome.org/
https://twitter.com/gnome
https://twitter.com/gnome
https://identi.ca/gnome
https://identi.ca/gnome
https://github.com/gnome
https://github.com/gnome
https://identi.ca/
https://identi.ca/
http://pump.io/
http://pump.io/
http://git.gnome.org/
http://git.gnome.org/

Getting Started

15

probably a good initial list, but you may know others that are relevant for the particular subject area of
your project.

Have a Clear Mission Statement
Once they've found the project's home site, the next thing people will look for is a quick description or
mission statement, so they can decide (within 30 seconds) whether or not they're interested in learning
more. This should be prominently placed on the front page, preferably right under the project's name.

The description should be concrete, limiting, and above all, short. Here's an example of a good one,
from hadoop.apache.org [http://hadoop.apache.org/]:

The Apache™ Hadoop® project develops open-source software for reliable, scalable,
distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed
processing of large data sets across clusters of computers using simple programming
models. It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage. Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect and handle failures at the applica-
tion layer, so delivering a highly-available service on top of a cluster of computers,
each of which may be prone to failures.

In just four sentences, they've hit all the high points, largely by drawing on the reader's prior knowl-
edge. That's an important point: it's okay to assume a minimally informed reader with a baseline level of
preparedness. A reader who doesn't know what "clusters" and "high-availability" mean in this context
probably can't make much use of Hadoop anyway, so there's no point writing for a reader who knows
any less than that. The phrase "designed to detect and handle failures at the application layer" will stand
out to engineers who have experience with large-scale computing clusters—when they see those words,
they'll know that the people behind Hadoop understand that world, and will thus be more willing to give
Hadoop consideration.

Those who remain interested after reading the mission statement will next want to see more details, per-
haps some user or developer documentation, and eventually will want to download something. But be-
fore any of that, they'll need to be sure it's open source.

State That the Project is Free
The front page must make it unambiguously clear that the project is open source. This may seem obvi-
ous, but you would be surprised how many projects forget to do it. I have seen free software project web
sites where the front page not only did not say which particular free license the software was distributed
under, but did not even state outright that the software was free at all. Sometimes the crucial bit of infor-
mation was relegated to the Downloads page, or the Developers page, or some other place that required
one more mouse click to get to. In extreme cases, the license was not given anywhere on the web site at
all—the only way to find it was to download the software and look at a license file inside.

Please don't make this mistake. Such an omission can lose many potential developers and users. State
up front, right below the mission statement, that the project is "free software" or "open source software",
and give the exact license. A quick guide to choosing a license is given in the section called “Choosing a
License and Applying It” later in this chapter, and licensing issues are discussed in detail in Chapter 10,
Licenses, Copyrights, and Patents.

By this point, our hypothetical visitor has determined—probably in a minute or less—that she's interest-
ed in spending, say, at least five more minutes investigating this project. The next sections describe what
she should encounter in that five minutes.

http://hadoop.apache.org/
http://hadoop.apache.org/

Getting Started

16

Features and Requirements List
There should be a brief list of the features the software supports (if something isn't completed yet, you
can still list it, but put "planned" or "in progress" next to it), and the kind of computing environment re-
quired to run the software. Think of the features/requirements list as what you would give to someone
asking for a quick summary of the software. It is often just a logical expansion of the mission statement.
For example, the mission statement might say:

To create a full-text indexer and search engine with a rich API, for use by program-
mers in providing search services for large collections of text files.

The features and requirements list would give the details, clarifying the mission statement's scope:

Features:

• Searches plain text, HTML, and XML

• Word or phrase searching

• (planned) Fuzzy matching

• (planned) Incremental updating of indexes

• (planned) Indexing of remote web sites

Requirements:

• Python 2.2 or higher

• Enough disk space to hold the indexes (approximately 2x original data size)

With this information, readers can quickly get a feel for whether this software has any hope of working
for them, and they can consider getting involved as developers too.

Development Status
Visitors usually want to know how a project is doing. For new projects, they want to know the gap be-
tween the project's promise and current reality. For mature projects, they want to know how actively it is
maintained, how often it puts out new releases, how responsive it is likely to be to bug reports, etc.

There are a couple of different avenues for providing answers to these questions. One is to have a de-
velopment status page, listing the project's near-term goals and needs (for example, it might be look-
ing for developers with a particular kind of expertise). The page can also give a history of past releases,
with feature lists, so visitors can get an idea of how the project defines "progress", and how quickly it
makes progress according to that definition. Some projects structure their development status page as a
roadmap that includes the future: past events are shown on the dates they actually happened, future ones
on the approximate dates the project hopes they will happen.

The other way — not mutually exclusive with the first, and in fact probably best done in combination
with it — is to have various automatically-maintained counters and indicators embedded in the projects's
front page and/or its developer landing page, showing various pieces of information that, in the aggre-
gate, give a sense of the project's development status and progress. For example, an Announcements or
News panel showing recent news items, a Twitter or other microblog stream showing notices that match
the project's designated hashtags, a timeline of recent releases, a panel showing recent activity in the
bug tracker (bugs filed, bugs responded to), another showing mailing list or discussion forum activity,
etc. Each such indicator should be a gateway to further information of its type: for example, clicking on
the "recent bugs" panel should take one to the full bug tracker, or at least to an expanded view into bug
tracker activity.

Getting Started

17

Really, there are two slightly different meanings of "development status" being conflated here. One is
the formal sense: where does the project stand in relation to its stated goals, and how fast is it making
progress. The other is less formal but just as useful: how active is this project? Is stuff going on? Are
there people here, getting things done? Often that latter notion is what a visitor is most interested in.
Whether or not a project met its most recent milestone is sometimes not as interesting as the more funda-
mental question of whether it has an active community of developers around it.

The two notions of development status are, of course, related, and a well-presented project shows both
kinds. The information can be divided between the project's front page (show enough there to give an
overview of both types of development status) and a more developer-oriented page.

Example: Launchpad Status Indicators

One site that does a pretty good job of showing developer-oriented status indicators is
Launchpad.net. Launchpad.net is a bit unusual in that it is both a primary hosting platform for
some projects, and a secondary, packaging-oriented site for others (or rather, for those others it
is the primary site for the "project" of getting that particular program packaged for the Ubuntu
GNU/Linux operating system, which Launchpad was specifically designed to support). In either
case, a project's landing page on Launchpad shows a variety of automatically-maintained status
indicators that quickly give an idea of where the project stands. While simply imitating a Launch-
pad page is probably not a good idea — your own project should think carefully about what its
best development status indicators are — Launchpad project pages do provide some good exam-
ples of the possibilities. Start from the top of a project page there and scroll down: launchpad.net/
drizzle [https://launchpad.net/drizzle]. or launchpad.net/inkscape [https://launchpad.net/inkscape],
to pick two at random.

Development status should always reflect reality.

Don't be afraid of looking unready, and never give in to the temptation to inflate or hype the develop-
ment status. Everyone knows that software evolves by stages; there's no shame in saying "This is alpha
software with known bugs. It runs, and works at least some of the time, but use at your own risk." Such
language won't scare away the kinds of developers you need at that stage. As for users, one of the worst
things a project can do is attract users before the software is ready for them. A reputation for instability
or bugginess is very hard to shake, once acquired. Conservativism pays off in the long run; it's always
better for the software to be more stable than the user expected than less, and pleasant surprises produce
the best kind of word-of-mouth.

Alpha and Beta

The term alpha usually means a first release, with which users can get real work done and which
has all the intended functionality, but which also has known bugs. The main purpose of alpha
software is to generate feedback, so the developers know what to work on. The next stage, beta,
means the software has had all the serious bugs fixed, but has not yet been tested enough to cer-
tify for production release. The purpose of beta software is to either become the official release,
assuming no bugs are found, or provide detailed feedback to the developers so they can reach the
official release quickly. The difference between alpha and beta is very much a matter of judge-
ment.

Downloads
The software should be downloadable as source code in standard formats. When a project is first getting
started, binary (executable) packages are not necessary, unless the software has such complicated build

https://launchpad.net/drizzle
https://launchpad.net/drizzle
https://launchpad.net/drizzle
https://launchpad.net/inkscape
https://launchpad.net/inkscape

Getting Started

18

requirements or dependencies that merely getting it to run would be a lot of work for most people. (But
if this is the case, the project is going to have a hard time attracting developers anyway!)

The distribution mechanism should be as convenient, standard, and low-overhead as possible. If you
were trying to eradicate a disease, you wouldn't distribute the medicine in such a way that it requires a
non-standard syringe size to administer. Likewise, software should conform to standard build and in-
stallation methods; the more it deviates from the standards, the more potential users and developers will
give up and go away confused.

That sounds obvious, but many projects don't bother to standardize their installation procedures un-
til very late in the game, telling themselves they can do it any time: "We'll sort all that stuff out when
the code is closer to being ready." What they don't realize is that by putting off the boring work of fin-
ishing the build and installation procedures, they are actually making the code take longer to get ready
—because they discourage developers who might otherwise have contributed to the code, if only they
could build and test it. Most insidiously, the project won't even know it's losing all those developers,
because the process is an accumulation of non-events: someone visits a web site, downloads the soft-
ware, tries to build it, fails, gives up and goes away. Who will ever know it happened, except the person
themselves? No one working on the project will realize that someone's interest and good will have been
silently squandered.

Boring work with a high payoff should always be done early, and significantly lowering the project's
barrier to entry through good packaging brings a very high payoff.

When you release a downloadable package, give it a unique version number, so that people can compare
any two releases and know which supersedes the other. That way they can report bugs against a partic-
ular release (which helps respondents to figure out if the bug is already fixed or not). A detailed discus-
sion of version numbering can be found in the section called “Release Numbering”, and the details of
standardizing build and installation procedures are covered in the section called “Packaging”, both in
Chapter 7, Packaging, Releasing, and Daily Development.

Version Control and Bug Tracker Access
Downloading source packages is fine for those who just want to install and use the software, but it's not
enough for those who want to debug or add new features. Nightly source snapshots can help, but they're
still not fine-grained enough for a thriving development community. People need real-time access to the
latest sources, and a way to submit changes based on those sources.

The solution is to use a version control system — specifically, an online, publicly-accessible version
controlled repository, from which anyone can check out the project's materials and subsequently get up-
dates. A version control repository is a sign—to both users and developers—that this project is making
an effort to give people what they need to participate. As of this writing, many open source projects use
GitHub.com [https://github.com/], which offers unlimited free public version control hosting for open
source projects. While GitHub is not the only choice, nor even the only good choice, it's a reasonable
one for most projects4. Version control infrastructure is discussed in detail in the section called “Version
Control” in Chapter 3, Technical Infrastructure.

The same goes for the project's bug tracker. The importance of a bug tracking system lies not only in its
day-to-day usefulness to developers, but in what it signifies for project observers. For many people, an
accessible bug database is one of the strongest signs that a project should be taken seriously: the high-
er the number of bugs in the database, the better the project looks. This might seem counterintuitive, but
remember that the number of bug reports filed really depends on three things: the absolute number of ac-
tual software defects present in the code, the number of people using the software, and the convenience

4Although GitHub is based on Git, a popular open source version control system, the code that runs GitHub's web services is not itself open
source. Whether this matters for your project is a complex question, and is addressed in more depth in the section called “Canned Hosting” in
Chapter 3, Technical Infrastructure

https://github.com/
https://github.com/

Getting Started

19

with which those people can report new bugs. Of these three factors, the latter two are much more sig-
nificant than the first. Any software of sufficient size and complexity has an essentially arbitrary num-
ber of bugs waiting to be discovered. The real question is, how well will the project do at recording and
prioritizing those bugs? A project with a large and well-maintained bug database (meaning bugs are re-
sponded to promptly, duplicate bugs are unified, etc.) therefore makes a better impression than a project
with no bug database, or a nearly empty database.

Of course, if your project is just getting started, then the bug database will contain very few bugs, and
there's not much you can do about that. But if the status page emphasizes the project's youth, and if peo-
ple looking at the bug database can see that most filings have taken place recently, they can extrapolate
from that the project still has a healthy rate of filings, and they will not be unduly alarmed by the low
absolute number of bugs recorded.5

Note that bug trackers are often used to track not only software bugs, but enhancement requests, docu-
mentation changes, pending tasks, and more. The details of running a bug tracker are covered in the sec-
tion called “Bug Tracker” in Chapter 3, Technical Infrastructure, so I won't go into them here. The im-
portant thing from a presentation point of view is just to have a bug tracker, and to make sure that fact is
visible from the front page of the project.

Communications Channels
Visitors usually want to know how to reach the human beings involved with the project. Provide the ad-
dresses of mailing lists, chat rooms, IRC channels (Chapter 3, Technical Infrastructure), and any other
forums where others involved with the software can be reached. Make it clear that you and the other au-
thors of the project are subscribed to these mailing lists, so people see there's a way to give feedback that
will reach the developers. Your presence on the lists does not imply a committment to answer all ques-
tions or implement all feature requests. In the long run, probably only a fraction users will use the fo-
rums anyway, but the others will be comforted to know that they could if they ever needed to.

In the early stages of a project, there's no need to have separate user and developer forums. It's much
better to have everyone involved with the software talking together, in one "room." Among early
adopters, the distinction between developer and user is often fuzzy; to the extent that the distinction can
be made, the ratio of developers to users is usually much higher in the early days of the project than lat-
er on. While you can't assume that every early adopter is a programmer who wants to hack on the soft-
ware, you can assume that they are at least interested in following development discussions and in get-
ting a sense of the project's direction.

As this chapter is only about getting a project started, it's enough merely to say that these communica-
tions forums need to exist. Later, in the section called “Handling Growth” in Chapter 6, Communica-
tions, we'll examine where and how to set up such forums, the ways in which they might need mod-
eration or other management, and how to separate user forums from developer forums, when the time
comes, without creating an unbridgeable gulf.

Developer Guidelines
If someone is considering contributing to the project, she'll look for developer guidelines. Developer
guidelines are not so much technical as social: they explain how the developers interact with each other
and with the users, and ultimately how things get done.

This topic is covered in detail in the section called “Writing It All Down” in Chapter 4, Social and Polit-
ical Infrastructure, but the basic elements of developer guidelines are:

5For a more thorough argument that bug reports should be treated as good news, see rants.org/2010/01/10/bugs-users-and-tech-debt [http://
www.rants.org/2010/01/10/bugs-users-and-tech-debt/], an article I wrote in 2010 about how bug reports do not represent "technical debt [http://
en.wikipedia.org/wiki/Technical_debt]" but rather user engagement.

http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Technical_debt

Getting Started

20

• pointers to forums for interaction with other developers

• instructions on how to report bugs and submit patches

• some indication of how development is usually done and how decisions are made—is the project a
benevolent dictatorship, a democracy, or something else

No pejorative sense is intended by "dictatorship", by the way. It's perfectly okay to run a tyranny where
one particular developer has veto power over all changes. Many successful projects work this way. The
important thing is that the project come right out and say so. A tyranny pretending to be a democracy
will turn people off; a tyranny that says it's a tyranny will do fine as long as the tyrant is competent and
trusted. (See the section called “Forkability” in Chapter 4, Social and Political Infrastructure for why
dictatorship in open source projects doesn't have the same implications as dictatorship in other areas of
life.)

subversion.apache.org/docs/community-guide [http://subversion.apache.org/docs/communi-
ty-guide/] is an example of particularly thorough developer guidelines; the LibreOffice guidelines at
wiki.documentfoundation.org/Development [https://wiki.documentfoundation.org/Development] are al-
so a good example.

The separate issue of providing a programmer's introduction to the software is discussed in the section
called “Developer documentation” later in this chapter.

Documentation
Documentation is essential. There needs to be something for people to read, even if it's rudimentary
and incomplete. This falls squarely into the "drudgery" category referred to earlier, and is often the first
area where a new open source project falls down. Coming up with a mission statement and feature list,
choosing a license, summarizing development status—these are all relatively small tasks, which can be
definitively completed and usually need not be revisited once done. Documentation, on the other hand,
is never really finished, which may be one reason people sometimes delay starting it at all.

The most insidious thing is that documentation's utility to those writing it is the reverse of its utility to
those who will read it. The most important documentation for initial users is the basics: how to quick-
ly set up the software, an overview of how it works, perhaps some guides to doing common tasks. Yet
these are exactly the things the writers of the documentation know all too well—so well that it can be
difficult for them to see things from the reader's point of view, and to laboriously spell out the steps that
(to the writers) seem so obvious as to be unworthy of mention.

There's no magic solution to this problem. Someone just needs to sit down and write the stuff, and then,
most importantly, incorporate feedback from readers. Use a simple, easy-to-edit format such as HTML,
plain text, Markdown, ReStructuredText, or some variant of XML—something that's convenient for
lightweight, quick improvements on the spur of the moment6. This is not only to remove any overhead
that might impede the original writers from making incremental improvements, but also for those who
join the project later and want to work on the documentation.

One way to ensure basic initial documentation gets done is to limit its scope in advance. That way, writ-
ing it at least won't feel like an open-ended task. A good rule of thumb is that it should meet the follow-
ing minimal criteria:

• Tell the reader clearly how much technical expertise they're expected to have.

• Describe clearly and thoroughly how to set up the software, and somewhere near the beginning of the
documentation, tell the user how to run some sort of diagnostic test or simple command to confirm

6Don't worry too much about choosing the right format the first time. If you change your mind later, you can always do an automated conversion
using Pandoc [http://johnmacfarlane.net/pandoc/].

http://subversion.apache.org/docs/community-guide/
http://subversion.apache.org/docs/community-guide/
http://subversion.apache.org/docs/community-guide/
https://wiki.documentfoundation.org/Development
https://wiki.documentfoundation.org/Development
http://johnmacfarlane.net/pandoc/
http://johnmacfarlane.net/pandoc/

Getting Started

21

that they've set things up correctly. Startup documentation is in some ways more important than actual
usage documentation. The more effort someone has invested in installing and getting started with the
software, the more persistent she'll be in figuring out advanced functionality that's not well-document-
ed. When people abandon, they abandon early; therefore, it's the earliest stages, like installation, that
need the most support.

• Give one tutorial-style example of how to do a common task. Obviously, many examples for many
tasks would be even better, but if time is limited, pick one task and walk through it thoroughly. Once
someone sees that the software can be used for one thing, they'll start to explore what else it can do on
their own—and, if you're lucky, start filling in the documentation themselves. Which brings us to the
next point...

• Label the areas where the documentation is known to be incomplete. By showing the readers that
you are aware of its deficiencies, you align yourself with their point of view. Your empathy reassures
them that they don't face a struggle to convince the project of what's important. These labels needn't
represent promises to fill in the gaps by any particular date —it's equally legitimate to treat them as
open requests for volunteer help.

The last point is of wider importance, actually, and can be applied to the entire project, not just the doc-
umentation. An accurate accounting of known deficiencies is the norm in the open source world. You
don't have to exaggerate the project's shortcomings, just identify them scrupulously and dispassionately
when the context calls for it (whether in the documentation, in the bug tracking database, or on a mail-
ing list discussion). No one will treat this as defeatism on the part of the project, nor as a commitment to
solve the problems by a certain date, unless the project makes such a commitment explicitly. Since any-
one who uses the software will discover the deficiencies for themselves, it's much better for them to be
psychologically prepared—then the project will look like it has a solid knowledge of how it's doing.

Maintaining a FAQ

A FAQ ("Frequently Asked Questions" document) can be one of the best investments a project
makes in terms of educational payoff. FAQs are highly tuned to the questions users and develop-
ers actually ask—as opposed to the questions you might have expected them to ask—and there-
fore, a well-maintained FAQ tends to give those who consult it exactly what they're looking for.
The FAQ is often the first place users look when they encounter a problem, often even in prefer-
ence to the official manual, and it's probably the document in your project most likely to be linked
to from other sites.

Unfortunately, you cannot make the FAQ at the start of the project. Good FAQs are not written,
they are grown. They are by definition reactive documents, evolving over time in response to the
questions people ask about the software. Since it's impossible to correctly anticipate those ques-
tions, it is impossible to sit down and write a useful FAQ from scratch.

Therefore, don't waste your time trying to. You may, however, find it useful to set up a mostly
blank FAQ template with just a few questions and answers, so there will be an obvious place for
people to contribute questions and answers after the project is under way. At this stage, the most
important property is not completeness, but convenience: if the FAQ is easy to add to, people will
add to it. (Proper FAQ maintenance is a non-trivial and intriguing problem, and is discussed more
in the section called “FAQ Manager”in Chapter 8, Managing Volunteers. See also the section
called “Treat all resources like archives”Chapter 6, Communications.)

possv2 todo: But are FAQs still as important as they used to be? Search results often turn up
Stack Overflow results and discussion forum posts nowadays, for example. A good test of a FAQ
is whether it comes up high in search results for specific questions.

Getting Started

22

Availability of documentation

Documentation should be available from two places: online (directly from the web site), and in the
downloadable distribution of the software (see the section called “Packaging” in Chapter 7, Packaging,
Releasing, and Daily Development). It needs to be online, in browsable form, because people often read
documentation before downloading software for the first time, as a way of helping them decide whether
to download at all. But it should also accompany the software, on the principle that downloading should
supply (i.e., make locally accessible) everything one needs to use the package.

For online documentation, make sure that there is a link that brings up the entire documentation in one
HTML page (put a note like "monolithic" or "all-in-one" or "single large page" next to the link, so peo-
ple know that it might take a while to load). This is useful because people often want to search for a spe-
cific word or phrase across the entire documentation. Generally, they already know what they're look-
ing for; they just can't remember what section it's in. For such people, nothing is more frustrating than
encountering one HTML page for the table of contents, then a different page for the introduction, then
a different page for installation instructions, etc. When the pages are broken up like that, their browser's
search function is useless. The separate-page style is useful for those who already know what section
they need, or who want to read the entire documentation from front to back in sequence. But this is not
necessarily the most common way documentation is accessed. Often, someone who is basically familiar
with the software is coming back to search for a specific word or phrase, and to fail to provide them with
a single, searchable document would only make their lives harder.

Developer documentation

Developer documentation is written by programmers to help other programmers understand the code, so
they can repair and extend it. This is somewhat different from the developer guidelines discussed earli-
er, which are more social than technical. Developer guidelines tell programmers how to get along with
each other; developer documentation tells them how to get along with the code itself. The two are often
packaged together in one document for convenience (as with the subversion.apache.org/docs/commu-
nity-guide [http://subversion.apache.org/docs/community-guide/] example given earlier), but they don't
have to be.

Although developer documentation can be very helpful, there's no reason to delay a release to do it. As
long as the original authors are available (and willing) to answer questions about the code, that's enough
to start with. In fact, having to answer the same questions over and over is a common motivation for
writing documentation. But even before it's written, determined contributors will still manage to find
their way around the code. The force that drives people to spend time learning a code base is that the
code does something useful for them. If people have faith in that, they will take the time to figure things
out; if they don't have that faith, no amount of developer documentation will get or keep them.

So if you have time to write documentation for only one audience, write it for users. All user documen-
tation is, in effect, developer documentation as well; any programmer who's going to work on a piece
of software will need to be familiar with how to use it too. Later, when you see programmers asking the
same questions over and over, take the time to write up some separate documents just for them.

Some projects use wikis for their initial documentation, or even as their primary documentation. In my
experience, this works best if the wiki is actively maintained by a few people who agree on how the doc-
umentation is to be organized and what sort of "voice" it should have. See the section called “Wikis” in
Chapter 3, Technical Infrastructure for more.

Demos, Screenshots, Videos, and Example Output
If the project involves a graphical user interface, or if it produces graphical or otherwise distinctive out-
put, put some samples up on the project web site. In the case of interface, this means screenshots or, bet-

http://subversion.apache.org/docs/community-guide/
http://subversion.apache.org/docs/community-guide/
http://subversion.apache.org/docs/community-guide/

Getting Started

23

ter yet, a brief (4 minutes or fewer) video with subtitles or a narrator. For output, it might be screenshots
or just sample files to download. For web-based software, the gold standard is a demo site, of course, as-
suming the software is amenable to that.

The main thing is to cater to people's desire for instant gratification in the way they are most likely to
expect. A single screenshot or video can be more convincing than paragraphs of descriptive text and
mailing list chatter, because it is proof that the software works. The code may still be buggy, it may be
hard to install, it may be incompletely documented, but image-based evidence shows people that if one
puts in enough effort, one can get it to run.

Keep Videos Brief, and Say They're Brief

If you have a video demonstration of your project, keep the video under 4 minutes long, and make
sure people can see the duration before they click on it. This is in keeping with the "principle of
scaled presentation" mentioned earlier: you want to make the decision to watch the video an easy
one, by removing all the risk. Visitors are more likely to click on a link that says "Watch our 3
minute video" than on one that just says "Watch our video", because in the former case they know
what they're getting into before they click — and they'll watch it better, because they've mentally
prepared the necessary amount of commitment beforehand, and so won't tire mid-way through.

As to where the four-minute limit came from: it's a scientific fact, determined through many at-
tempts by the same experimental subject (who shall remain unnamed) to watch project videos.
The limit does not apply to tutorials or other instructional material, of course; it's just for introduc-
tory videos.

In case you don't already have preferred software for recording desktop interaction videos: I've
had good luck with gtk-recordmydesktop on Debian GNU/Linux, and then the OpenShot
video editor for post-capture editing.

There are many other things you could put on the project web site, if you have the time, or if for one rea-
son or another they are especially appropriate: a news page, a project history page, a related links page,
a site-search feature, a donations link, etc. None of these are necessities at startup time, but keep them in
mind for the future.

Hosting

Where on the Internet should you put the project's materials?

A web site, obviously — but the full answer is a little more complicated than that.

Many projects distinguish between their primary public user-facing web site — the one with the pret-
ty pictures and the "About" page and the gentle introductions and videos and guided tours and all that
stuff — and their developers' site, where everything's grungy and full of closely-spaced text in mono-
space fonts and impenetrable abbreviations.

Well, I exaggerate. A bit. In any case, in the early stages of your project it is not so important to distin-
guish between these two audiences. Most of the interested visitors you get will be developers, or at least
people who are comfortable trying out new code. Over time, you may find it makes sense to have a user-
facing site (of course, if your project is a code library, those "users" might be other programmers) and
a somewhat separate collaboration area for those interested in participating in development. The collab-
oration site would have the code repository, bug tracker, development wiki, links to development mail-
ing lists, etc. The two sites should link to each other, and in particular it's important that the user-facing

Getting Started

24

site make it clear that the project is open source and where the open source development activity can be
found.7

In the past, many projects set up the developer site and infrastructure themselves. Over the last decade
or so, however, most open source projects — and almost all the new ones — just use one of the "canned
hosting" sites that have sprung up to offer these services for free to open source projects. By far the most
popular such site, as of this writing in mid-2013, is GitHub.com [https://github.com/], and if you don't
have a strong preference about where to host, you should probably just choose GitHub; many develop-
ers are already familiar with it and have personal accounts there. the section called “Canned Hosting”
in Chapter 3, Technical Infrastructure has a more detailed discussion of the questions to consider when
choosing a canned hosting site, and an overview of the most popular ones.

Choosing a License and Applying It
This section is intended to be a very quick, very rough guide to choosing a license. Read Chapter 10, Li-
censes, Copyrights, and Patents to understand the detailed legal implications of the different licenses,
and how the license you choose can affect people's ability to mix your software with other software.

Synonyms: "free software license", "FSF-approved", "open source license", and
"OSI-approved"

The terms "free software license" and "open source license" are essentially synonymous, and I
treat them so throughout this book.

Technically, the former term refers to licenses confirmed by the Free Software Foundation as
offering the "four freedoms" necessary for free software (see gnu.org/philosophy/free-sw.html
[http://www.gnu.org/philosophy/free-sw.html]), while the latter term refers to licenses approved
by the Open Source Initiative as meeting the Open Source Definition (opensource.org/osd [http://
opensource.org/osd]). However, if you read the FSF's definition of free software, and the OSI's
definition of open source software, it becomes obvious that the two definitions delineate the same
freedoms — not surprisingly, as the section called “"Free" Versus "Open Source"” in Chapter 1,
Introduction explains. The inevitable, and in some sense deliberate, result is that the two organi-
zations have approved the same set of licenses.8

There are a great many free software licenses to choose from. Most of them we needn't consider here, as
they were written to satisfy the particular legal needs of some corporation or person, and wouldn't be ap-
propriate for your project. We will restrict ourselves to just the most commonly used licenses; in most
cases, you will want to choose one of them.

The "Do Anything" Licenses
29 August 2013: If you're reading this note, then you've encountered this subsection while it's under-
going substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for de-
tails. TODO: is MIT or BSD still really the best default, given the modern patent landscape? Would

7As of August 2013, a good example of a project with separate but cross-linked primary and developer sites is the Ozone Widget Framework:
compare their main user-facing site at ozoneplatform.org [http://www.ozoneplatform.org/] with their development area at github.com/ozoneplat-
form/owf [https://github.com/ozoneplatform/owf].
8There are actually some minor differences between the sets of approved licenses, but they are not significant for our purposes — or indeed for
most practical purposes. In some cases, one or the other organization has simply not gotten around to considering a given license, usually a li-
cense that is not widely-used anyway. And apparently (so I'm told) there historically was a license that at least one of the organizations, and pos-
sibly both, agreed fit one definition but not the other. Whenever I try to get the details on this, though, I seem to get a different answer as to what
that license was, except that the license named is always one that was not many people used anyway. So today, for any license you are likely to
be using, the terms "OSI-approved" and "FSF-approved" can be treated as implying each other.

https://github.com/
https://github.com/
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://opensource.org/osd
http://opensource.org/osd
http://opensource.org/osd
http://producingoss.com/v2.html
http://producingoss.com/v2.html
http://www.ozoneplatform.org/
http://www.ozoneplatform.org/
https://github.com/ozoneplatform/owf
https://github.com/ozoneplatform/owf
https://github.com/ozoneplatform/owf

Getting Started

25

Apache-2.0 be better — but then what about the FSF's claim of GPL-incompatibility? Need to get some
advice here.

If you're comfortable with your project's code potentially being used in proprietary programs, then use
an MIT/X-style license. It is the simplest of several minimal licenses that do little more than assert nom-
inal copyright (without actually restricting copying) and specify that the code comes with no warranty.
See the section called “The MIT / X Window System License” for details.

The GPL
If you don't want your code to be used in proprietary programs, use the GNU General Public License,
version 3 (gnu.org/licenses/gpl.html [http://www.gnu.org/licenses/gpl.html]). The GPL is probably the
most widely recognized free software license in the world today. This is in itself a big advantage, since
many potential users and contributors will already be familiar with it, and therefore won't have to spend
extra time to read and understand your license. See the section called “The GNU General Public Li-
cense” in Chapter 10, Licenses, Copyrights, and Patents for details.

If users interact with your code primarily over a network—that is, the software is usually part of
a hosted service, rather than being distributed as a binary—then consider using the GNU Affero
GPL instead. The AGPL is just the GPL with one extra clause establishing network accessibility
as a form of distribution for the purposes of the license. See The GNU Affero GPL: A Version of
the GNU GPL for Server-Side Code in Chapter 10, Licenses, Copyrights, and Patents for more.

How to Apply a License to Your Software
Once you've chosen a license, you'll need to apply it to the software.

The first thing to do is state the license clearly on the project's front page. You don't need to include
the actual text of the license there; just give its name and make it link to the full license text on another
page. That tells the public what license you intend the software to be released under—but it's not quite
sufficient for legal purposes. The other step is that the software itself should include the license.

The standard way to do this is to put the full license text in a file called COPYING (or LICENSE) in-
cluded with the source code, and then put a short notice in a comment at the top of each source file,
naming the copyright date, holder, and license, and saying where to find the full text of the license.

There are many variations on this pattern, so we'll look at just one example here. The GNU GPL says to
put a notice like this at the top of each source file:

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

Getting Started

26

It does not say specifically that the copy of the license you received along with the program is in the file
COPYING or LICENSE, but that's where it's usually put. (You could change the above notice to state
that directly, but there's no real need to.)

In general, the notice you put in each source file does not have to look exactly like the one above, as
long as it starts with the same notice of copyright holder and date9, states the name of the license, and
makes clear where to view the full license terms. It's always best to consult a lawyer, of course, if you
can afford one.

Setting the Tone
So far we've covered one-time tasks you do during project setup: picking a license, arranging the initial
web site, etc. But the most important aspects of starting a new project are dynamic. Choosing a mail-
ing list address is easy; ensuring that the list's conversations remain on-topic and productive is another
matter entirely. For example, if the project is being opened up after years of closed, in-house develop-
ment, its development processes will change, and you will have to prepare the existing developers for
that change.

The first steps are the hardest, because precedents and expectations for future conduct have not yet been
set. Stability in a project does not come from formal policies, but from a shared, hard-to-pin-down col-
lective wisdom that develops over time. There are often written rules as well, but they tend to be essen-
tially a distillation of the intangible, ever-evolving agreements that really guide the project. The written
policies do not define the project's culture so much as describe it, and even then only approximately.

There are a few reasons why things work out this way. Growth and high turnover are not as damaging
to the accumulation of social norms as one might think. As long as change does not happen too quickly,
there is time for new arrivals to learn how things are done, and after they learn, they will help reinforce
those ways themselves. Consider how children's songs survive for centuries. There are children today
singing roughly the same rhymes as children did hundreds of years ago, even though there are no chil-
dren alive now who were alive then. Younger children hear the songs sung by older ones, and when they
are older, they in turn will sing them in front of other younger ones. The children are not engaging in a
conscious program of transmission, of course, but the reason the songs survive is nonetheless that they
are transmitted regularly and repeatedly. The time scale of free software projects may not be measured
in centuries (we don't know yet), but the dynamics of transmission are much the same. The turnover rate
is faster, however, and must be compensated for by a more active and deliberate transmission effort.

This effort is aided by the fact that people generally show up expecting and looking for social norms.
That's just how humans are built. In any group unified by a common endeavor, people who join instinc-
tively search for behaviors that will mark them as part of the group. The goal of setting precedents early
is to make those "in-group" behaviors be ones that are useful to the project; once established, they will
be largely self-perpetuating.

Following are some examples of specific things you can do to set good precedents. They're not meant as
an exhaustive list, just as illustrations of the idea that setting a collaborative mood early helps a project
tremendously. Physically, every developer may be working alone in a room by themselves, but you can
do a lot to make them feel like they're all working together in the same room. The more they feel this
way, the more time they'll want to spend on the project. I chose these particular examples because they
came up in the Subversion project (subversion.apache.org [http://subversion.apache.org/]), which I par-
ticipated in and observed from its very beginning. But they're not unique to Subversion; situations like
these will come up in most open source projects, and should be seen as opportunities to start things off
on the right foot.

9The date should show the dates the file was modified, for copyright purposes. In other words, for a file modified in 2008, 2009, and 2013, you
would write "2008, 2009, 2013" — not "2008-2013", because the file wasn't modified in most of the years in that range.

http://subversion.apache.org/
http://subversion.apache.org/

Getting Started

27

Avoid Private Discussions
Even after you've taken the project public, you and the other founders will often find yourselves wanti-
ng to settle difficult questions by private communications among an inner circle. This is especially true
in the early days of the project, when there are so many important decisions to make, and, usually, few
volunteers qualified to make them. All the obvious disadvantages of public list discussions will loom
palpably in front of you: the delay inherent in email conversations, the need to leave sufficient time for
consensus to form, the hassle of dealing with naive volunteers who think they understand all the issues
but actually don't (every project has these; sometimes they're next year's star contributors, sometimes
they stay naive forever), the person who can't understand why you only want to solve problem X when
it's obviously a subset of larger problem Y, and so on. The temptation to make decisions behind closed
doors and present them as faits accomplis, or at least as the firm recommendations of a united and influ-
ential voting block, will be great indeed.

Don't do it.

As slow and cumbersome as public discussion can be, it's almost always preferable in the long run.
Making important decisions in private is like spraying contributor repellant on your project. No serious
contributor would stick around for long in an environment where a secret council makes all the big deci-
sions. Furthermore, public discussion has beneficial side effects that will last beyond whatever ephemer-
al technical question was at issue:

• The discussion will help train and educate new developers. You never know how many eyes are
watching the conversation; even if most people don't participate, many may be lurking silently, glean-
ing information about the software.

• The discussion will train you in the art of explaining technical issues to people who are not as famil-
iar with the software as you are. This is a skill that requires practice, and you can't get that practice by
talking to people who already know what you know.

• The discussion and its conclusions will be available in public archives forever after, enabling future
discussions to avoid retracing the same steps. See the section called “Conspicuous Use of Archives”
in Chapter 6, Communications.

Finally, there is the possibility that someone on the list may make a real contribution to the conversation,
by coming up with an idea you never anticipated. It's hard to say how likely this is; it just depends on the
complexity of the code and degree of specialization required. But if anecdotal evidence may be permit-
ted, I would hazard that this is more likely than you might intuitively expect. In the Subversion project,
we (the founders) believed we faced a deep and complex set of problems, which we had been thinking
about hard for several months, and we frankly doubted that anyone on the newly created mailing list was
likely to make a real contribution to the discussion. So we took the lazy route and started batting some
technical ideas back and forth in private emails, until an observer of the project10 caught wind of what
was happening and asked for the discussion to be moved to the public list. Rolling our eyes a bit, we
did—and were stunned by the number of insightful comments and suggestions that quickly resulted. In
many cases people offered ideas that had never even occurred to us. It turned out there were some very
smart people on that list; they'd just been waiting for the right bait. It's true that the ensuing discussions
took longer than they would have if we had kept the conversation private, but they were so much more
productive that it was well worth the extra time.

Without descending into hand-waving generalizations like "the group is always smarter than the
individual" (we've all met enough groups to know better), it must be acknowledged that there are certain
activities at which groups excel. Massive peer review is one of them; generating large numbers of ideas

10We haven't gotten to the section on crediting yet, but just to practice what I'll later preach: the observer's name was Brian Behlendorf, and he
was emphatic about the general importance of keeping all discussions public unless there was a specific need for privacy.

Getting Started

28

quickly is another. The quality of the ideas depends on the quality of the thinking that went into them,
of course, but you won't know what kinds of thinkers are out there until you stimulate them with a chal-
lenging problem.

Naturally, there are some discussions that must be had privately; throughout this book we'll see ex-
amples of those. But the guiding principle should always be: If there's no reason for it to be private, it
should be public.

Making this happen requires action. It's not enough merely to ensure that all your own posts go to the
public list. You also have to nudge other people's unnecessarily private conversations to the list too. If
someone tries to start a private discussion with you and there's no reason for it to be private, then it is in-
cumbent on you to open the appropriate meta-discussion immediately. Don't even comment on the orig-
inal topic until you've either successfully steered the conversation to a public place, or ascertained that
privacy really was needed. If you do this consistently, people will catch on pretty quickly and start to use
the public forums by default.

Nip Rudeness in the Bud
From the very start of your project's public existence, you should maintain a zero-tolerance policy to-
ward rude or insulting behavior in its forums. Zero-tolerance does not mean technical enforcement per
se. You don't have to remove people from the mailing list when they flame another subscriber, or take
away their commit access because they made derogatory comments. (In theory, you might eventually
have to resort to such actions, but only after all other avenues have failed—which, by definition, isn't the
case at the start of the project.) Zero-tolerance simply means never letting bad behavior slide by unno-
ticed. For example, when someone posts a technical comment mixed together with an ad hominem at-
tack on some other developer in the project, it is imperative that your response address the ad hominem
attack as a separate issue unto itself, separate from the technical content.

It is unfortunately very easy, and all too typical, for constructive discussions to lapse into destructive
flame wars. People will say things in email that they would never say face-to-face. The topics of discus-
sion only amplify this effect: in technical issues, people often feel there is a single right answer to most
questions, and that disagreement with that answer can only be explained by ignorance or stupidity. It's
a short distance from calling someone's technical proposal stupid to calling the person themselves stu-
pid. In fact, it's often hard to tell where technical debate leaves off and character attack begins, which is
one reason why drastic responses or punishments are not a good idea. Instead, when you think you see
it happening, make a post that stresses the importance of keeping the discussion friendly, without accus-
ing anyone of being deliberately poisonous. Such "Nice Police" posts do have an unfortunate tendency
to sound like a kindergarten teacher lecturing a class on good behavior:

First, let's please cut down on the (potentially) ad hominem comments; for example,
calling J's design for the security layer "naive and ignorant of the basic principles
of computer security." That may be true or it may not, but in either case it's no way
to have the discussion. J made his proposal in good faith. If it has deficiencies, point
them out, and we'll fix them or get a new design. I'm sure M meant no personal insult
to J, but the phrasing was unfortunate, and we try to keep things constructive around
here.

Now, on to the proposal. I think M was right in saying that...

As stilted as such responses sound, they have a noticeable effect. If you consistently call out bad behav-
ior, but don't demand an apology or acknowledgment from the offending party, then you leave people
free to cool down and show their better side by behaving more decorously next time—and they will.

One of the secrets of doing this successfully is to never make the meta-discussion the main topic. It
should always be an aside, a brief preface to the main portion of your response. Point out in passing that

Getting Started

29

"we don't do things that way around here," but then move on to the real content, so that you're giving
people something on-topic to respond to. If someone protests that they didn't deserve your rebuke, sim-
ply refuse to be drawn into an argument about it. Either don't respond (if you think they're just letting off
steam and don't require a response), or say you're sorry if you overreacted and that it's hard to detect nu-
ance in email, then get back to the main topic. Never, ever insist on an acknowledgment, whether public
or private, from someone that they behaved inappropriately. If they choose of their own volition to post
an apology, that's great, but demanding that they do so will only cause resentment.

The overall goal is to make good etiquette be seen as one of the "in-group" behaviors. This helps the
project, because developers can be driven away (even from projects they like and want to support) by
flame wars. You may not even know that they were driven away; someone might lurk on the mailing
list, see that it takes a thick skin to participate in the project, and decide against getting involved at all.
Keeping forums friendly is a long-term survival strategy, and it's easier to do when the project is still
small. Once it's part of the culture, you won't have to be the only person promoting it. It will be main-
tained by everyone.

Practice Conspicuous Code Review
One of the best ways to foster a productive development community is to get people looking at each oth-
ers' code — ideally, to get them looking at each others' code changes as those changes arrive. Commit
review (sometimes just called code review) is the practice of reviewing commits as they come in, look-
ing for bugs and possible improvements.

There are a couple of reasons to focus on reviewing changes, rather than on reviewing code that's been
around for a while. First, it just works better socially: when someone reviews your change, she is inter-
acting with work you did recently. That means if she comments on it right away, you will be maximal-
ly interested in hearing what she has to say; six months later, you might not feel as motivated to engage,
and in any case might not remember the change very well. Second, looking at what changes in a code-
base is a gateway to looking at the rest of the code anyway — reviewing a change often causes one to
look at the surrounding code, at the affected callers and callees elsewhere, at related module interfaces,
etc.11

Commit review thus serves several purposes simultaneously. It's the most obvious example of peer re-
view in the open source world, and directly helps to maintain software quality. Every bug that ships in
a piece of software got there by being committed and not detected; therefore, the more eyes watch com-
mits, the fewer bugs will ship. But commit review also serves an indirect purpose: it confirms to peo-
ple that what they do matters, because one obviously wouldn't take time to review a commit unless one
cared about its effect. People do their best work when they know that others will take the time to evalu-
ate it.

Reviews should be public. Even on occasions when I have been sitting in the same physical room with
another developer, and one of us has made a commit, we take care not to do the review verbally in the
room, but to send it to the appropriate online review forum instead. Everyone benefits from seeing the
review happen. People follow the commentary and sometimes find flaws in it; even when they don't, it
still reminds them that review is an expected, regular activity, like washing the dishes or mowing the
lawn.

Some technical infrastructure is required to do change-by-change review effectively. In particular, set-
ting up commit emails is extremely useful. The effect of commit emails is that every time someone com-
mits a change to the central repository, an email goes out showing the log message and diffs (unless the
diff is too large; see diff, in the section called “Version Control Vocabulary”). The review itself might

11None of this is an argument against top-to-bottom code review, of course, for example to do a security audit. But while that kind of review is
important too, it's more of a generic development best practice, and is not as specifically relevant to running an open source project as change-by-
change review is.

Getting Started

30

take place on a mailing list, or in a review tool such as Gerrit or the GitHub "pull request" interface. See
the section called “Commit emails” in Chapter 3, Technical Infrastructure for details.

Case study

In the Subversion project, we did not at first make a regular practice of code review. There was no guar-
antee that every commit would be reviewed, though one might sometimes look over a change if one
were particularly interested in that area of the code. Bugs slipped in that really could and should have
been caught. A developer named Greg Stein, who knew the value of code review from past work, decid-
ed that he was going to set an example by reviewing every line of every single commit that went into the
code repository. Each commit anyone made was soon followed by an email to the developer's list from
Greg, dissecting the commit, analyzing possible problems, and occasionally praising a clever bit of code.
Right away, he was catching bugs and non-optimal coding practices that would otherwise have slipped
by without ever being noticed. Pointedly, he never complained about being the only person reviewing
every commit, even though it took a fair amount of his time, but he did sing the praises of code review
whenever he had the chance. Pretty soon, other people, myself included, started reviewing commits reg-
ularly too.

What was our motivation? It wasn't that Greg had consciously shamed us into it. But he had proven that
reviewing code was a valuable way to spend time, and that one could contribute as much to the project
by reviewing others' changes as by writing new code. Once he demonstrated that, it became expect-
ed behavior, to the point where any commit that didn't get some reaction would cause the committer to
worry, and even ask on the list whether anyone had had a chance to review it yet. Later, Greg got a job
that didn't leave him as much time for Subversion, and had to stop doing regular reviews. But by then,
the habit was so ingrained for the rest of us as to seem that it had been going on since time immemorial.

Start doing reviews from very first commit. The sorts of problems that are easiest to catch by reviewing
diffs are security vulnerabilities, memory leaks, insufficient comments or API documentation, off-by-
one errors, caller/callee discipline mismatches, and other problems that require a minimum of surround-
ing context to spot. However, even larger-scale issues such as failure to abstract repeated patterns to a
single location become spottable after one has been doing reviews regularly, because the memory of past
diffs informs the review of present diffs.

Don't worry that you might not find anything to comment on, or that you don't know enough about
every area of the code. There will usually be something to say about almost every commit; even where
you don't find anything to question, you may find something to praise. The important thing is to make
it clear to every committer that what they do is seen and understood, that attention is being paid. Of
course, code review does not absolve programmers of the responsibility to review and test their changes
before committing; no one should depend on code review to catch things she ought to have caught on
her own.

Be Open From Day One
Start your project out in the open from the very first day. The longer a project is run in a closed source
manner, the harder it is to open source later.12

Being open source from the start doesn't mean your developers must immediately take on the extra re-
sponsibilities of community management. People often think that "open source" means "strangers dis-
tracting us with questions", but that's optional — it's something you might do down the road, if and
when it makes sense for your project. It's under your control. There are still major advantages to be had
by running the project out in open, publicly-visible forums from the beginning. Conversely, the longer
the project is run closed-source, the more difficult it will be to open up later.

12This section started out as a blog post, blog.civiccommons.org/2011/01/be-open-from-day-one [http://blog.civiccommons.org/2011/01/be-open-
from-day-one/], though it's been edited a lot for inclusion here.

http://blog.civiccommons.org/2011/01/be-open-from-day-one/
http://blog.civiccommons.org/2011/01/be-open-from-day-one/
http://blog.civiccommons.org/2011/01/be-open-from-day-one/

Getting Started

31

I think there's one underlying cause for this:

At each step in a project, programmers face a choice: to do that step in a manner compatible with a hy-
pothetical future open-sourcing, or do it in a manner incompatible with open-sourcing. And every time
they choose the latter, the project gets just a little bit harder to open source.

The crucial thing is, they can't help choosing the latter occasionally — all the pressures of development
propel them that way. It's very difficult to give a future event the same present-day weight as, say, fix-
ing the incoming bugs reported by the testers, or finishing that feature the customer just added to the
spec. Also, programmers struggling to stay on budget will inevitably cut corners here and there (in Ward
Cunningham's phrase, they will incur "technical debt [http://en.wikipedia.org/wiki/Technical_debt]"),
with the intention of cleaning it up later.

Thus, when it's time to open source, you'll suddenly find there are things like:

• Customer-specific configurations and passwords checked into the code repository;

• Sample data constructed from live (and confidential) information;

• Bug reports containing sensitive information that cannot be made public;

• Comments in the code expressing perhaps overly-honest reactions to the customer's latest urgent re-
quest;

• Archives of correspondence among the developer team, in which useful technical information is inter-
leaved with personal opinions not intended for strangers;

• Licensing issues due to dependency libraries whose terms might have been fine for internal deploy-
ment (or not even that), but aren't compatible with open source distribution;

• Documentation written in the wrong format (e.g., that proprietary internal wiki your department uses),
with no easy translation tool available to get it into formats appropriate for public distribution;

• Non-portable build dependencies that only become apparent when you try to move the software out of
your internal build environment;

• Modularity violations that everyone knows need cleaning up, but that there just hasn't been time to
take care of yet...

• (This list could go on.)

The problem isn't just the work of doing the cleanups; it's the extra decision-making they sometimes re-
quire. For example, if sensitive material was checked into the code repository in the past, your team now
faces a choice between cleaning it out of the historical revisions entirely, so you can open source the en-
tire (sanitized) history, or just cleaning up the latest revision and open-sourcing from that (sometimes
called a "top-skim"). Neither method is wrong or right — and that's the problem: now you've got one
more discussion to have and one more decision to make. In some projects, that decision gets made and
reversed several times before the final release. The thrashing itself is part of the cost.

Waiting Just Creates an Exposure Event

The other problem with opening up a developed code base is that it creates a needlessly large exposure
event. Whatever issues there may be in the code (modularity corner-cutting, security vulnerabilities,
etc), they are all exposed to public scrutiny at once — the open-sourcing event becomes an opportunity
for the technical blogosphere to pounce on the code and see what they can find.

Contrast that with the scenario where development was done in the open from the beginning: code
changes come in one at a time, so problems are handled as they come up (and are often caught sooner,

http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Technical_debt

Getting Started

32

since there are more eyeballs on the code). Because changes reach the public at a low, continuous rate
of exposure, no one blames your development team for the occasional corner-cutting or flawed code
checkin. Everyone's been there, after all; these tradeoffs are inevitable in real-world development. As
long as the technical debt is properly recorded in "FIXME" comments and bug reports, and any security
issues are addressed promptly, it's fine. Yet if those same issues were to appear suddenly all at once, un-
sympathetic observers may jump on the aggregate exposure in a way they never would have if the issues
had come up piecemeal in the normal course of development.

(These concerns apply even more strongly to government software projects; see the section called “Be-
ing Open Source From Day One is Especially Important for Government Projects” in Chapter 9, Gov-
ernments and Open Source.)

The good news is that these are all unforced errors. A project incurs little extra cost by avoiding them in
the simplest way possible: by running in the open from Day One.

"In the open" means the following things are publicly accessible, in standard formats, from the first day
of the project: the code repository, bug tracker, design documents, user documentation, wiki, and devel-
oper discussion forums. It also means the code and documentation are placed under an open source li-
cense, of course. It also means your team's day-to-day work takes place in the publicly visible area.

"In the open" does not have to mean: allowing strangers to check code into your repository (they're free
to copy it into their own repository, if they want, and work with it there); allowing anyone to file bug re-
ports in your tracker (you're free to choose your own QA process, and if allowing reports from strangers
doesn't help you, you don't have to do it); reading and responding to every bug report filed, even if you
do allow strangers to file; responding to every question people ask in the forums (even if you moderate
them through); reviewing every patch or suggestion posted, when doing so may cost valuable develop-
ment time; etc.

One way to think of it is that you're open sourcing your code, not your time. One of those resources is
infinitely replicable, the other is not. You'll have to determine the point at which engaging with out-
side users and developers makes sense for your project. In the long run it usually does, and most of this
book is about how to do it effectively. But it's still under your control. Developing in the open does not
change this, it just ensures that everything done in the project is, by definition, done in a way that's com-
patible with being open source.

When Opening a Formerly Closed Project, be Sensitive
to the Magnitude of the Change

As per the section called “Be Open From Day One”, it's best to avoid being in the situation of opening
up a closed project in the first place; just start the project in the open if you can. But if it's too late for
that, and you find yourself opening up an existing project that already has active developers accustomed
to working in a closed-source environment, make sure everyone understands that a big change is com-
ing—and make sure that you understand how it's going to feel from their point of view.

Try to imagine how the situation looks to them: formerly, all code and design decisions were made with
a group of other programmers who knew the software more or less equally well, who all received the
same pressures from the same management, and who all know each others' strengths and weaknesses.
Now you're asking them to expose their code to the scrutiny of random strangers, who will form judge-
ments based only on the code, with no awareness of what business pressures may have forced certain de-
cisions. These strangers will ask lots of questions, questions that jolt the existing developers into real-
izing that the documentation they slaved so hard over is still inadequate (this is inevitable). To top it all
off, the newcomers are unknown, faceless entities. If one of your developers already feels insecure about
his skills, imagine how that will be exacerbated when newcomers point out flaws in code he wrote, and
worse, do so in front of his colleagues. Unless you have a team of perfect coders, this is unavoidable—in

Getting Started

33

fact, it will probably happen to all of them at first. This is not because they're bad programmers; it's just
that any program above a certain size has bugs, and peer review will spot some of those bugs (see the
section called “Practice Conspicuous Code Review” earlier in this chapter). At the same time, the new-
comers themselves won't be subject to much peer review at first, since they can't contribute code until
they're more familiar with the project. To your developers, it may feel like all the criticism is incoming,
never outgoing. Thus, there is the danger of a siege mentality taking hold among the old hands.

The best way to prevent this is to warn everyone about what's coming, explain it, tell them that the ini-
tial discomfort is perfectly normal, and reassure them that it's going to get better. Some of these warn-
ings should take place privately, before the project is opened. But you may also find it helpful to remind
people on the public lists that this is a new way of development for the project, and that it will take some
time to adjust. The very best thing you can do is lead by example. If you don't see your developers an-
swering enough newbie questions, then just telling them to answer more isn't going to help. They may
not have a good sense of what warrants a response and what doesn't yet, or it could be that they don't
have a feel for how to prioritize coding work against the new burden of external communications. The
way to get them to participate is to participate yourself. Be on the public mailing lists, and make sure to
answer some questions there. When you don't have the expertise to field a question, then visibly hand
it off to a developer who does—and watch to make sure he follows up with an answer, or at least a re-
sponse. It will naturally be tempting for the longtime developers to lapse into private discussions, since
that's what they're used to. Make sure you're subscribed to the internal mailing lists on which this might
happen, so you can ask that such discussions be moved to the public lists right away.

There are other, longer-term concerns with opening up formerly closed projects. Chapter 5, Money ex-
plores techniques for mixing paid and unpaid developers successfully, and Chapter 10, Licenses, Copy-
rights, and Patents discusses the necessity of legal diligence when opening up a private code base that
may contain software written or "owned" by other parties.

Announcing
Once the project is presentable—not perfect, just presentable—you're ready to announce it to the world.

This is a simpler process than you might expect. There are two kinds of forums for making announce-
ments: generic forums that display a constant stream of new project announcements, and topic-specific
forums where your project would be appropriate news.

The most useful generic place is probably freecode.com [http://freecode.com/] — just click on the
Submit new project link in the top navigation bar. Freecode's list of recent new projects is embedded
on the front page of the popular Slashdot.org [http://slashdot.org/], which means someone interest-
ed is likely to notice it and help spread the news by word of mouth. (Note that Freecode was known
as Freshmeat.net until it was renamed in Oct 2011.) You might also want to register your project at
OhLoh.net [http://OhLoh.net/], which is the closest thing there is to an integrated global database
of free software projects and their contributors. (Some projects also successfully climb the word-of-
mouth / upvote tree to the point where they are featured on the front page of news.ycombinator.com
[http://news.ycombinator.com/], one of the subreddit forums related to reddit.com/r/technology [http://
www.reddit.com/r/technology/], or some similarly popular public page. While it's good news for your
project if you can get mentioned in a place like that, I hesitate to contribute to the marketing arms race
by suggesting any concrete steps to accomplish this. Use your judgement and try not to spam.)

The topic-specific forums are probably where you'll get the most interest. Think about mailing lists or
web frums where an announcement of your project would be on-topic and of interest — you might al-
ready be a member of some of them — and post there. Be careful to make exactly one post per forum,
and to direct people to your project's own discussion areas for follow-up discussion (when posting by
email, you can do this by setting the Reply-to header). Your announcement should be short and get
right to the point, and the Subject line should make it clear that it is an announcement of a new project:

http://freecode.com/
http://freecode.com/
http://slashdot.org/
http://slashdot.org/
http://OhLoh.net/
http://OhLoh.net/
http://news.ycombinator.com/
http://news.ycombinator.com/
http://www.reddit.com/r/technology/
http://www.reddit.com/r/technology/
http://www.reddit.com/r/technology/

Getting Started

34

To: discuss@some.forum.about.search.indexers
Subject: [ANN] Scanley, a new full-text indexer project.
Reply-to: dev@scanley.org

This is a one-time post to announce the creation of the Scanley
project, an open source full-text indexer and search engine with a
rich API, for use by programmers in providing search services for
large collections of text files. Scanley is now running code, is
under active development, and is looking for both developers and
testers.

Home page: http://www.scanley.org/

Features:
 - Searches plain text, HTML, and XML
 - Word or phrase searching
 - (planned) Fuzzy matching
 - (planned) Incremental updating of indexes
 - (planned) Indexing of remote web sites
 - (planned) Long-distance mind-reading

Requirements:
 - Python 3.2 or higher
 - SQLite 3.8.1 or higher

For more information, please come find us at scanley.org!

Thank you,
-J. Random

(See the section called “Publicity” in Chapter 6, Communications for advice on announcing subsequent
releases and other project events.)

There is an ongoing debate in the free software world about whether it is necessary to begin with run-
ning code, or whether a project can benefit from being announced even during the design/discussion
stage. I used to think starting with running code was crucial, that it was what separated successful
projects from toys, and that serious developers would only be attracted to software that already does
something concrete.

This turned out not to be the case. In the Subversion project, we started with a design document, a core
of interested and well-connected developers, a lot of fanfare, and no running code at all. To my complete
surprise, the project acquired active participants right from the beginning, and by the time we did have
something running, there were quite a few volunteer developers already deeply involved. Subversion is
not the only example; the Mozilla project was also launched without running code, and is now a success-
ful and popular web browser.

On the evidence of this and other examples, I have to back away from the assertion that running code is
absolutely necessary for launching a project. Running code is still the best foundation for success, and a
good rule of thumb would be to wait until you have it before announcing your project13. However, there

13Note that announcing your project can come long after you have open sourced the code. My advice to consider carefully the timing of your an-
nouncement should not be taken as advice to delay open sourcing the code — ideally, your project should be open source and publicly visible
from the very first moment of its existence, and this is entirely independent of when you announce it. See the section called “Be Open From Day
One” for more.

Getting Started

35

may be circumstances where announcing earlier makes sense. I do think that at least a well-developed
design document, or else some sort of code framework, is necessary—of course it may be revised based
on public feedback, but there has to be something concrete, something more tangible than just good in-
tentions, for people to sink their teeth into.

Whenever you announce, don't expect a horde of volunteers to join the project immediately afterward.
Usually, the result of announcing is that you get a few casual inquiries, a few more people join your
mailing lists, and aside from that, everything continues pretty much as before. But over time, you will
notice a gradual increase in participation from both new code contributors and users. Announcement
is merely the planting of a seed. It can take a long time for the news to spread. If the project consis-
tently rewards those who get involved, the news will spread, though, because people want to share
when they've found something good. If all goes well, the dynamics of exponential communications net-
works will slowly transform the project into a complex community, where you don't necessarily know
everyone's name and can no longer follow every single conversation. The next chapters are about work-
ing in that environment.

36

Chapter 3. Technical Infrastructure
Free software projects rely on technologies that support the selective capture and integration of infor-
mation. The more skilled you are at using these technologies, and at persuading others to use them, the
more successful your project will be.

This only becomes more true as the project grows. Good information management is what prevents open
source projects from collapsing under the weight of Brooks' Law1, which states that adding manpower
to a late software project makes it later. Fred Brooks observed that the complexity of communications
in a project increases as the square of the number of participants. When only a few people are involved,
everyone can easily talk to everyone else, but when hundreds of people are involved, it is no longer pos-
sible for each person to remain constantly aware of what everyone else is doing. If good free software
project management is about making everyone feel like they're all working together in the same room,
the obvious question is: what happens when everyone in a crowded room tries to talk at once?

This problem is not new. In non-metaphorical crowded rooms, the solution is parliamentary procedure:
formal guidelines for how to have real-time discussions in large groups, how to make sure important dis-
sents are not lost in floods of "me-too" comments, how to form subcommittees, how to recognize and
record when decisions are made, etc. An important part of parliamentary procedure is specifying how
the group interacts with its information management system. Some remarks are made "for the record",
others are not. The record itself is subject to direct manipulation, and is understood to be not a liter-
al transcript of what occurred, but a representation of what the group is willing to agree occurred. The
record is not monolithic, but takes different forms for different purposes. It comprises the minutes of in-
dividual meetings, the complete collection of all minutes of all meetings, summaries, agendas and their
annotations, committee reports, reports from correspondents not present, lists of action items, etc.

Because the Internet is not really a room, we don't have to worry about replicating those parts of parlia-
mentary procedure that keep some people quiet while others are speaking. But when it comes to infor-
mation management techniques, well-run open source projects are parliamentary procedure on steroids.
Since almost all communication in open source projects happens in writing, elaborate systems have
evolved for routing and labeling data appropriately, for minimizing repetitions so as to avoid spurious
divergences, for storing and retrieving data, for correcting bad or obsolete information, and for associat-
ing disparate bits of information with each other as new connections are observed. Active participants in
open source projects internalize many of these techniques, and will often perform complex manual tasks
to ensure that information is routed correctly. But the whole endeavor ultimately depends on sophisticat-
ed software support. As much as possible, the communications media themselves should do the routing,
labeling, and recording, and should make the information available to humans in the most convenient
way possible. In practice, of course, humans will still need to intervene at many points in the process,
and it's important that the software make such interventions convenient too. But in general, if the hu-
mans take care to label and route information accurately on its first entry into the system, then the soft-
ware should be configured to make as much use of that metadata as possible.

The advice in this chapter is intensely practical, based on experiences with specific software and usage
patterns. But the point is not just to teach a particular collection of techniques. It is also to demonstrate,
by means of many small examples, the overall attitude that will best encourage good information man-
agement in your project. This attitude will involve a combination of technical skills and people skills.
The technical skills are essential because information management software always requires configura-
tion, plus a certain amount of ongoing maintenance and tweaking as new needs arise (for example, see
the discussion of how to handle project growth in the section called “Pre-Filtering the Bug Tracker” lat-
er in this chapter). The people skills are necessary because the human community also requires mainte-

1From his book The Mythical Man Month, 1975. See en.wikipedia.org/wiki/The_Mythical_Man-Month [http://en.wikipedia.org/wi-
ki/The_Mythical_Man-Month], en.wikipedia.org/wiki/Brooks_Law [http://en.wikipedia.org/wiki/Brooks_Law], and en.wikipedia.org/wi-
ki/Fred_Brooks [http://en.wikipedia.org/wiki/Fred_Brooks].

http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://en.wikipedia.org/wiki/Brooks_Law
http://en.wikipedia.org/wiki/Brooks_Law
http://en.wikipedia.org/wiki/Fred_Brooks
http://en.wikipedia.org/wiki/Fred_Brooks
http://en.wikipedia.org/wiki/Fred_Brooks

Technical Infrastructure

37

nance: it's not always immediately obvious how to use these tools to full advantage, and in some cases
projects have conflicting conventions (for example, see the discussion of setting Reply-to headers on
outgoing mailing list posts, in the section called “Mailing Lists / Message Forums”). Everyone involved
with the project will need to be encouraged, at the right times and in the right ways, to do their part to
keep the project's information well organized. The more involved the contributor, the more complex and
specialized the techniques she can be expected to learn.

Information management has no cut-and-dried solution. There are too many variables. You may final-
ly get everything configured just the way you want it, and have most of the community participating,
but then project growth will make some of those practices unscalable. Or project growth may stabilize,
and the developer and user communities settle into a comfortable relationship with the technical in-
frastructure, but then someone will come along and invent a whole new information management ser-
vice, and pretty soon newcomers will be asking why your project doesn't use it—for example, this hap-
pened to a lot of free software projects that predate the invention of the wiki (see en.wikipedia.org/wi-
ki/Wiki [http://en.wikipedia.org/wiki/Wiki]), and more recently has been happening to projects whose
workflows were developed before the rise of GitHub PRs (see the section called “Pull requests”) as the
canonical way to package proposed contributions. Many infrastructure questions are matters of judge-
ment, involving tradeoffs between the convenience of those producing information and the convenience
of those consuming it, or between the time required to configure information management software and
the benefit it brings to the project.

Beware of the temptation to over-automate, that is, to automate things that really require human atten-
tion. Technical infrastructure is important, but what makes a free software project work is care—and in-
telligent expression of that care—by the humans involved. The technical infrastructure is mainly about
giving humans easy ways to apply care.

What a Project Needs
Most open source projects offer at least a minimum, standard set of tools for managing information:

Web site
Primarily a centralized, one-way conduit of information from the project out to the public. The web
site may also serve as an administrative interface for other project tools.

Mailing lists / Message forums
Usually the most active communications forum in the project, and the "medium of record."

Version control
Enables developers to manage code changes conveniently, including reverting and "change port-
ing". Enables everyone to watch what's happening to the code.

Bug tracking
Enables developers to keep track of what they're working on, coordinate with each other, and plan
releases. Enables everyone to query the status of bugs and record information (e.g., reproduction
recipes) about particular bugs. Can be used for tracking not only bugs, but also tasks, releases, new
features, etc.

Real-time chat
A place for quick, lightweight discussions and question/answer exchanges. Not always archived
completely.

Each tool in this set addresses a distinct need, but their functions are also interrelated, and the tools must
be made to work together. Below we will examine how they can do so, and more importantly, how to
get people to use them.

http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki

Technical Infrastructure

38

You may be able to avoid a lot of the headache of choosing and configuring many of these tools by us-
ing a canned hosting site: an online service that offers prepackaged, templatized web services with some
or all of the collaboration tools needed to run a free software project. See the section called “Canned
Hosting” later in this chapter for a discussion of the advantages and disadvantages of canned hosting.

Web Site
possv2 24 March 2013: If you're reading this note, then you've encountered this chapter while it's un-
dergoing substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for de-
tails.

For our purposes, the web site means web pages devoted to helping people participate in the project as
developers, documenters, etc. Note that this is different from the main user-facing web site. In many
projects, users have different needs and often (statistically speaking) a different mentality from the de-
velopers. The kinds of web pages most helpful to users are not necessarily the same as those helpful for
developers — don't try to make a "one size fits all" web site just to save some writing and maintenance
effort: you'll end up with a site that is not quite right for either audience.

The two types of sites should cross-link, of course, and in particular it's important that the user-oriented
site have, tucked a way in a corner somewhere, a clear link to the developers' site, since most new devel-
opers will start out at the user-facing pages and look for a path from there to the developers' area.

An example may make this clearer. As of this writing in November 2013, the office suite LibreOffice
has its main user-oriented web site at libreoffice.org [https://libreoffice.org/], as you'd expect. If you
were a user wanting to download and install LibreOffice, you'd start there, go straight to the "Download"
link, and so on. But if you were a developer looking to (say) fix a bug in LibreOffice, you might start at
libreoffice.org [https://libreoffice.org/], but you'd be looking for a link that says something like "Devel-
opers", or "Development", or "Get Involved" — in other words, you'd be looking for the gateway to the
development area.

In the case of LibreOffice, as with some other large projects, they actually have a couple of different
gateways. There's one link that says "Get Involved" [https://www.libreoffice.org/get-involved/], and
another that says "Developers" [https://www.libreoffice.org/developers/]. The "Get Involved" page is
aimed at the broadest possible range of potential contributors: developers, yes, but also documenters,
quality-assurance testers, marketing volunteers, web infrastructure volunteers, financial or in-kind
donors, interface designers, support forum volunteers, etc. This frees up the "Developers" page to tar-
get the rather narrower audience of programmers who want to get involved in improving the LibreOffice
code. The set of links and short descriptions provided on both pages is admirably clear and concise: you
can tell immediately from looking whether you're in the right place for what you want do, and if so what
the next thing to click on is. The "Development" page gives some information about where to find the
code, how to contact the other developers, how to file bugs, and things like that, but most importantly it
points to what most seasoned open source contributors would instantly recognize as the real gateway to
actively-maintained development information: the development wiki at wiki.documentfoundation.org/
Development [http://wiki.documentfoundation.org/Development].

This division into two contributor-facing gateways, one for all kinds of contributions and another for
coders specifically, is probably right for a large, multi-faceted project like LibreOffice. You'll have to
use your judgement as to whether that kind of subdivision is appropriate for your project; at least at
the beginning, it probably isn't. It's better to start with one unified contributor gateway, aimed at all
the types of contributors you expect, and if that page ever gets large enough or complex enough to feel
unwieldy — listen carefully for complaints about it, since you and other long-time participants will be
naturally desensitized to weaknesses in introductory pages! — then you can divide it up however seems
best.

http://producingoss.com/v2.html
http://producingoss.com/v2.html
https://libreoffice.org/
https://libreoffice.org/
https://libreoffice.org/
https://libreoffice.org/
https://www.libreoffice.org/get-involved/
https://www.libreoffice.org/get-involved/
https://www.libreoffice.org/developers/
https://www.libreoffice.org/developers/
http://wiki.documentfoundation.org/Development
http://wiki.documentfoundation.org/Development
http://wiki.documentfoundation.org/Development

Technical Infrastructure

39

From a technical point of view there is not much to say about setting up the project web site. Configur-
ing a web server and writing web pages are fairly simple tasks, and most of the important things to say
about layout and arrangement were covered in the previous chapter. The web site's main function is to
present a clear and welcoming overview of the project, and to bind together the other tools (the version
control system, bug tracker, etc.). If you don't have the expertise to set up a web server yourself, it's usu-
ally not hard to find someone who does and is willing to help out. Nonetheless, to save time and effort,
people often prefer to use one of the canned hosting sites.

Canned Hosting

A canned hosting site is an online service that offers some or all of the online collaboration tools need-
ed to run a free software project. At a minimal, a canned hosting site offers public version control repos-
itories and bug tracking; most also offer wiki space, many offer mailing list hosting too, and some offer
continuous integration testing and other services.

There are two main advantages to using a canned site. The first is server capacity and bandwidth: their
servers are beefy boxes sitting on really fat pipes. No matter how successful your project gets, you're not
going to run out of disk space or swamp the network connection. The second advantage is simplicity.
They have already chosen a bug tracker, a version control system, perhaps discussion forum software,
and everything else you need to run a project. They've configured the tools, arranged single-sign-on au-
thentication where appropriate, are taking care of backups for all the data stored in the tools, etc. You
don't need to make many decisions. All you have to do is fill in a registration form, press a button, and
suddenly you've got a project development web site.

These are pretty significant benefits. The disadvantage, of course, is that you must accept their choices
and configurations, even if something different would be better for your project. Usually canned sites
are adjustable within certain narrow parameters, but you will never get the fine-grained control you
would have if you set up the site yourself and had full administrative access to the server.

A perfect example of this is the handling of generated files. Certain project web pages may be generat-
ed files—for example, there are systems for keeping FAQ data in an easy-to-edit master format, from
which HTML, PDF, and other presentation formats can be generated. As explained in the section called
“Version everything” earlier in this chapter, you wouldn't want to version the generated formats, only
the master file. But when your web site is hosted on someone else's server, it may be difficult to set up a
custom hook to regenerate the online HTML version of the FAQ whenever the master file is changed.

If you choose a canned site, leave open the option of switching to a different site later, by using a custom
domain name as the project's development home address. You can forward that URL to the canned site,
or have a fully customized development home page at the main URL and link to the canned site for spe-
cific functionality. Just try to arrange things such that if you later decide to use a different hosting solu-
tion, the project's main address doesn't need to change.

And if you're not sure whether to use canned hosting, then you should probably use canned hosting.
These sites have integrated their services in myriad ways (just one example: if a commit mentions a bug
ticket number using a certain format, then people browsing that commit later will find that it automati-
cally links to that ticket), ways that would be laborious for you to reproduce, especially if it's your first
time running an open source project. The universe of possible configurations of collaboration tools is
vast and complex, but the same set of choices has faced everyone running an open source project and
there are some settled solutions now. Each of the canned hosting sites implements a reasonable subset of
that solution space, and unless you have reason to believe you can do better, your project will probably
run best just using one of those sites.

Technical Infrastructure

40

Choosing a canned hosting site
There are now so many sites providing free-of-charge canned hosting for projects released under open
source licenses that there is not space here to review the field.

So I'll make this easy: choose
<a>GitHub
. It's by far the most popular and appears set to stay that way, or even grow in dominance, for some
years to come. It has a good set of features and integrations. Many developers are already familiar with
GitHub and have an account there. It has an API [http://develop.github.com/] for interacting program-
matically with project resources, and while it does not currently offer mailing lists, there are plenty of
other places you can host those, such as Google Groups [http://groups.google.com/].

If you're not convinced by GitHub (for example because your project uses, say, Mer-
curial instead of Git), but you aren't sure where to host, take a look at Wikipedia's thor-
ough comparison of open source software hosting facilities [http://en.wikipedia.org/wi-
ki/Comparison_of_open_source_software_hosting_facilities]; it's the first place to look for up-to-date,
comprehensive information on open source project hosting options. Currently the two most popular
other hosting sites are Google Code Hosting [http://code.google.com/hosting/], SourceForge [http://
sourceforge.net/], but consult the Wikipedia page before making a decision.

Hosting on fully open source infrastructure
Although all the canned hosting sites use plenty of free software in their stack, most of them also wrote
their own proprietary software to glue it all together, which means the hosting environment is not easily
reproducible by others. For example, while Git itself is free software, GitHub is a hosted service running
partly with proprietary software — if you leave GitHub, you can't take it with you, at least not all of it.

Some projects prefer a canned hosting site that runs an entirely free software infrastructure and that
could, in theory, be reproduced independently were that ever to become necessary. Fortunately, there
are such sites, the most well-known being Gitorious [http://gitorious.org/], GNU Savannah [http://
savannah.gnu.org/], and GitLab [http://gitlab.com/] (as of this writing in early 2014). Furthermore, any
service that offers hosting of the Redmine [http://redmine.org/] or Trac [http://trac.edgewall.org] code
collaboration platforms effectively offers fully freedom-preserving project hosting, because those plat-
forms include most of the features needed to run an open source project; some companies offer that kind
of commercial platform hosting with a zero-cost or very cheap rate for open source projects.

Should you host your project on fully open source infrastructure? While it would be ideal to have access
to all the code that runs the site, my opinion is that the crucial thing is to have a way to export project
data, and to be able to interact with the data in automatable ways. A site that meets these criteria can
never truly lock you in, and will even be extensible, to some degree, through its programmatic interface.
While there is some value in having all the code that runs a hosting site available under open source
terms, in practice the demands of actually deploying that code in a production environment are prohib-
itive for most projects anyway. These sites need multiple servers, customized networks, and full-time
staffs to keep them running; merely having the code would not be sufficient to duplicate or "fork" the
service anyway. The main thing is just to make sure your data isn't trapped.

Of course, all the above applies only to the servers. Your project should never require participants to run
proprietary collaboration software on their own machines.

Anonymity and involvement
A problem that is not strictly limited to the canned sites, but is most often found there, is the abuse of
user login functionality. The functionality itself is simple enough: the site allows each visitor to register
herself with a username and password. From then on it keeps a profile for that user, and project adminis-
trators can assign the user certain permissions, for example, the right to commit to the repository.

http://develop.github.com/
http://develop.github.com/
http://groups.google.com/
http://groups.google.com/
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://code.google.com/hosting/
http://code.google.com/hosting/
http://sourceforge.net/
http://sourceforge.net/
http://sourceforge.net/
http://gitorious.org/
http://gitorious.org/
http://savannah.gnu.org/
http://savannah.gnu.org/
http://savannah.gnu.org/
http://gitlab.com/
http://gitlab.com/
http://redmine.org/
http://redmine.org/
http://trac.edgewall.org
http://trac.edgewall.org

Technical Infrastructure

41

This can be extremely useful, and in fact it's one of the prime advantages of canned hosting. The prob-
lem is that sometimes user login ends up being required for tasks that ought to be permitted to unreg-
istered visitors, specifically the ability to file issues in the bug tracker, and to comment on existing is-
sues. By requiring a logged-in username for such actions, the project raises the involvement bar for what
should be quick, convenient tasks. Of course, one wants to be able to contact someone who's entered da-
ta into the issue tracker, but having a field where she can enter her email address (if she wants to) is suf-
ficient. If a new user spots a bug and wants to report it, she'll only be annoyed at having to fill out an ac-
count creation form before she can enter the bug into the tracker. She may simply decide not to file the
bug at all.

The advantages of user management generally outweigh the disadvantages. But if you can choose which
actions can be done anonymously, make sure not only that all read-only actions are permitted to non-
logged-in visitors, but also some data entry actions, especially in the bug tracker and wiki pages (though
anti-spam techniques, such as captchas, may of course be necessary).

Mailing Lists / Message Forums
Discussion forums in which participants post and respond to messages are the bread and butter of
project communications. For a long time these were mainly email-based discussion lists, but the dis-
tinction between Web-based forums and mailing lists is, thankfully, slowly disappearing. Services like
Google Groups [https://groups.google.com/] (which is not itself open source) and Gmane.org [http://
Gmane.org/] (which is) have now established that cross-accessibility of message forums as mailing
lists and vice versa is the minimum bar to meet, and modern discussion management systems like
GroupServer and Sympa reflect this.

Because of this nearly-completed unification between email lists and web-based forums2, I will use
the terms message forum and mailing list more or less interchangeably. They refer to any kind of mes-
sage-based forum where posts are linked together in threads (topics), people can subscribe, archives of
past messages can be browsed, and the forum can be interacted with via email or via a web browser.

If a user is exposed to any channel besides a project's web pages, it is most likely to be one of the
project's message forums. But before she experiences the forum itself, she will experience the process of
finding the right forums. Your project should have a prominently-placed description of all the available
public forums, to give newcomers guidance in deciding which ones to browse or post to first. A typical
such description might say something like this:

 The mailing lists are the main day-to-day communication channels for
 the Scanley community. You don't have to be subscribed to post to a
 list, but if it's your first time posting (whether you're subscribed
 or not), your message may be held in a moderation queue until a
 human moderator has a chance to confirm that the message is not spam.
 We're sorry for this delay; blame the spammers who make it necessary.

 Scanley has the following lists:

 users {_AT_} scanley.org:
 Discussion about using Scanley or programming with the Scanley
 API, suggestions of possible improvements, etc. You can browse the
 users@ archives at <<<link to archive>>> or subscribe here:
 <<<link to subscribe>>>.

2Which was a long time coming — see rants.org/2008/03/06/thread_theory [http://www.rants.org/2008/03/06/thread_theory/] for more. And no,
I'm not too dignified to refer to my own blog post.

https://groups.google.com/
https://groups.google.com/
http://Gmane.org/
http://Gmane.org/
http://Gmane.org/
http://www.rants.org/2008/03/06/thread_theory/
http://www.rants.org/2008/03/06/thread_theory/

Technical Infrastructure

42

 dev {_AT_} scanley.org:
 Discussion about developing Scanley. Maintainers and contributors
 are subscribed to this list. You can browse the dev@ archives at
 <<<link to archive>>> or subscribe here: <<<link to subscribe>>>.

 (Sometimes threads cross over between users@ and dev@, and
 Scanley's developers will often participate in discussions on both
 lists. In general if you're unsure where a question or post
 should go, start it out on users@. If it should be a
 development discussion, someone will suggest moving it over to
 dev@.)

 announcements {_AT_} scanley.org:
 This is a low-traffic, subscribe-only list. The Scanley
 developers post announcements of new releases and occasional other
 news items of interest to the entire Scanley community here, but
 followup discussion takes place on users@ or dev@.
 <<<link to subscribe>>>.

 notifications {_AT_} scanley.org:
 All code commit messages, bug tracker issues, automated
 build/integration failures, etc, are sent to this list. Most
 developers should subscribe: <<<link to subscribe>>>.

 There is also a non-public list you may need to send to, although
 only developers are subscribed:

 security {_AT_} scanley.org:
 Where the Scanley project receives confidential reports of
 security vulnerabilities. Of course, the report will be made
 public eventually, but only after a fix is released; see our
 security procedures page for more [...]

Choosing the Right Forum Management Software
It's worth investing some time in choosing the right mailing list management system for your project.
Modern list management tools offer at least the following features:

Both email- and web-based access
Users should be able to subscribe to the forums by email, and read them on the web (where they are
organized into conversations or "threads", just as they would be in a mailreader).

Moderation features
To "moderate" is to check posts, especially first-time posts, to make sure they are not spam before
they go out to the entire list. Moderation necessarily involves human administrators, but software
can do a great deal to make it easier on the moderators. There is more said about moderation in the
section called “Spam Prevention” later in this chapter.

Rich administrative interface
There are many things administrators need to do besides spam moderation — for example, remov-
ing obsolete addresses, a task that can become urgent when a recipient's address starts sending "I am
no longer at this address" bounces back to the list in response to every list post (though some sys-
tems can even detect this and unsubscribe the person automatically). If your forum software doesn't

Technical Infrastructure

43

have decent administrative capabilities, you will quickly realize it, and should consider switching to
software that does.

Header manipulation
Some people have sophisticated filtering and replying rules set up in their mail readers, and rely on
the forum adding or manipulating certain standard headers. See the section called “Identification
and Header Management” later in this chapter for more on this.

Archiving
All posts to the managed lists are stored and made available on the web (see the section called
“Conspicuous Use of Archives” in Chapter 6, Communications for more on the importance of pub-
lic archives). Usually the archiver is a native part of the message forum system; occasionally, it is a
separate tool that needs to be integrated.

The point of the above list is really just to show that forum management is a complex problem that has
already been given a lot of thought, and to some degree been solved. You don't need to become an ex-
pert, but you will have to learn at least a little bit about it, and you should expect list management to oc-
cupy your attention from time to time in the course of running any free software project. Below we'll ex-
amine a few of the most common issues.

Spam Prevention

Between when this sentence is written and when it is published, the Internet-wide spam problem will
probably double in severity—or at least it will feel that way. There was a time, not so long ago, when
one could run a mailing list without taking any spam-prevention measures at all. The occasional stray
post would still show up, but infrequently enough to be only a low-level annoyance. That era is gone
forever. Today, a mailing list that takes no spam prevention measures will quickly be submerged in junk
emails, to the point of unusability. Spam prevention is mandatory.

We divide spam prevention into two categories: preventing spam posts from appearing on your mailing
lists, and preventing your mailing list from being a source of new email addresses for spammers' har-
vesters. The former is more important to your project, so we examine it first.

Filtering posts

There are three basic techniques for preventing spam posts, and most mailing list software offers all
three. They are best used in tandem:

1. Only auto-allow postings from list subscribers.

This is effective as far as it goes, and also involves very little administrative overhead, since it's usu-
ally just a matter of changing a setting in the mailing list software's configuration. But note that posts
which aren't automatically approved must not be simply discarded. Instead, they should go into a
moderation queue, for two reasons. First, you want to allow non-subscribers to post: a person with a
question or suggestion should not need to subscribe to a mailing list just to ask a question there. Se-
cond, even subscribers may sometimes post from an address other than the one by which they're sub-
scribed. Email addresses are not a reliable method of identifying people, and shouldn't be treated as
such.

2. Filter posts through spam-detection software.

If the mailing list software makes it possible (most do), you can have posts filtered by spam-filter-
ing software. Automatic spam-filtering is not perfect, and never will be, since there is a never-ending
arms race between spammers and filter writers. However, it can greatly reduce the amount of spam
that makes it through to the moderation queue, and since the longer that queue is the more time hu-
mans must spend examining it, any amount of automated filtering is beneficial.

Technical Infrastructure

44

There is not space here for detailed instructions on setting up spam filters. You will have to con-
sult your mailing list software's documentation for that (see the section called “Mailing List / Mes-
sage Forum Software” later in this chapter). List software often comes with some built-in spam
prevention features, but you may want to add some third-party filters. I've had good experiences
with SpamAssassin (spamassassin.apache.org [http://spamassassin.apache.org/]) and SpamProbe
(spamprobe.sourceforge.net [http://spamprobe.sourceforge.net/]), but this is not a comment on the
many other open source spam filters out there, some of which are apparently also quite good. I just
happen to have used those two myself and been satisfied with them.

3. Moderation.

For mails that aren't automatically allowed by virtue of being from a list subscriber, and which make
it through the spam filtering software, if any, the last stage is moderation: the mail is routed to a spe-
cial holding area, where a human examines it and confirms or rejects it.

Confirming a post usually takes one of two forms: you can accept the sender's post just this once, or
you can tell the system to allow this and all future posts from the same sender. You almost always
want to do the latter, in order to reduce the future moderation burden — after all, someone who has
made a valid post to a forum is unlikely to suddenly turn into a spammer later.

Rejecting is done by either marking the item to be discarded, or by explicitly telling the system the
message was spam so the system can improve its ability to recognize future spams. Sometimes you
also have the option to automatically discard future mails from the same sender without them ever
being held in the moderation queue, but there is rarely any point doing this, since spammers don't
send from the same address twice anyway.

Oddly, most message-forum systems have not yet given the moderation queue administrative in-
terface the attention it deserves, considering how common the task is, so moderation often still re-
quires more clicks and UI gestures than it should. I hope this situation will improve in the future. In
the meantime, perhaps knowing you're not alone in your frustration will temper your disappointment
somewhat.

Be sure to use moderation only for filtering out spams, and perhaps for clearly off-topic messages such
as when someone accidentally posts to the wrong mailing list. Although the moderation system may
give you a way to respond directly to the sender, you should never use that method to answer questions
that really belong on the mailing list itself, even if you know the answer off the top of your head. To do
so would deprive the project's community of an accurate picture of what sorts of questions people are
asking, and deprive people of a chance to answer questions themselves and/or see answers from oth-
ers. Mailing list moderation is strictly about keeping the list free of spam and of wildly off-topic emails,
nothing more.

Address hiding in archives

To prevent your mailing lists from being a source of addresses for spammers, a common technique is for
the archiving software to obscure people's email addresses, for example by replacing

jrandom@somedomain.com

with

jrandom_AT_somedomain.com

or

jrandomNOSPAM@somedomain.com

http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://spamprobe.sourceforge.net/
http://spamprobe.sourceforge.net/

Technical Infrastructure

45

or some similarly obvious (to a human) encoding. Since spam address harvesters often work by crawl-
ing through web pages—including your mailing list's online archives—and looking for sequences con-
taining "@", encoding the addresses is a way of making people's email addresses invisible or useless to
spammers. This does nothing to prevent spam from being sent to the mailing list itself, of course, but it
does avoid increasing the amount of spam sent directly to list users' personal addresses.

Address hiding can be controversial. Some people like it a lot, and will be surprised if your archives
don't do it automatically. Other people think it's too much of an inconvenience (because humans
also have to translate the addresses back before using them). Sometimes people assert that it's in-
effective, because a harvester could in theory compensate for any consistent encoding pattern.
However, note that there is empirical evidence that address hiding is effective; see cdt.org/speech/
spam/030319spamreport.shtml [http://www.cdt.org/speech/spam/030319spamreport.shtml].

Ideally, the list management software would leave the choice up to each individual subscriber, either
through a special yes/no header or a setting in that subscriber's list account preferences. However, I don't
know of any software which offers per-subscriber or per-post choice in the matter, so for now the list
manager must make a decision for everyone (assuming the archiver offers the feature at all, which is
not always the case). For what it's worth, I lean toward turning address hiding on. Some people are very
careful to avoid posting their email addresses on web pages or anywhere else a spam harvester might
see it, and they would be disappointed to have all that care thrown away by a mailing list archive; mean-
while, the inconvenience address hiding imposes on archive users is very slight, since it's trivial to trans-
form an obscured address back to a valid one if you need to reach the person. But keep in mind that, in
the end, it's still an arms race: by the time you read this, harvesters might well have evolved to the point
where they can recognize most common forms of hiding, and we'll have to think of something else.

Identification and Header Management

When interacting with the forum by email, subscribers often want to put mails from the list into a
project-specific folder, separate from their other mail. Their mail reading software can do this automati-
cally by examining the mail's headers. The headers are the fields at the top of the mail that indicate the
sender, recipient, subject, date, and various other things about the message. Certain headers are well
known and are effectively mandatory:

From: ...
To: ...
Subject: ...
Date: ...

Others are optional, though still quite standard. For example, emails are not strictly required to have the

Reply-to: sender@email.address.here

header, but most do, because it gives recipients a foolproof way to reach the author (it is especially use-
ful when the author had to send from an address other than the one to which replies should be directed).

Some mail reading software offers an easy-to-use interface for filing mails based on patterns in the Sub-
ject header. This leads people to request that the mailing list add an automatic prefix to all Subjects, so
they can set their readers to look for that prefix and automatically file the mails in the right folder. The
idea is that the original author would write:

Subject: Making the 2.5 release.

but the mail would show up on the list looking like this:

http://www.cdt.org/speech/spam/030319spamreport.shtml
http://www.cdt.org/speech/spam/030319spamreport.shtml
http://www.cdt.org/speech/spam/030319spamreport.shtml

Technical Infrastructure

46

Subject: [Scanley Discuss] Making the 2.5 release.

Although most list management software offers the option to do this, you may decide against turning the
option on. The problem it solves can often be solved in less obtrusive ways (see below), and there is a
cost to eating space in the Subject field. Experienced mailing list users typically scan the Subjects of the
day's incoming list mail to decide what to read and/or respond to. Prepending the list's name to the Sub-
ject can push the right side of the Subject off the screen, rendering it invisible. This obscures informa-
tion that people depend on to decide what mails to open, thus reducing the overall functionality of the
mailing list for everyone.

Instead of munging the Subject header, your project could take advantage of the other standard headers,
starting with the To header, which should say the mailing list's address:

To: <discuss@lists.example.org>

Any mail reader that can filter on Subject should be able to filter on To just as easily.

There are a few other optional-but-standard headers expected for mailing lists; they are sometimes not
displayed by most mailreader software, but they are present nonetheless. Filtering on them is even more
reliable than using the "To" or "Cc" headers, and since these headers are added to each post by the mail-
ing list management software itself, some users may be counting on their presence:

list-help: <mailto:discuss-help@lists.example.org>
list-unsubscribe: <mailto:discuss-unsubscribe@lists.example.org>
list-post: <mailto:discuss@lists.example.org>
Delivered-To: mailing list discuss@lists.example.org
Mailing-List: contact discuss-help@lists.example.org; run by ezmlm

For the most part, they are self-explanatory. See nisto.com/listspec/list-manager-intro.html [http://
www.nisto.com/listspec/list-manager-intro.html] for more explanation, or if you need the really detailed,
formal specification, see faqs.org/rfcs/rfc2369.html [http://www.faqs.org/rfcs/rfc2369.html].

Having said all that, these days I find that most subscribers just request that the Subject header include a
list-identifying prefix. That's increasingly how people are accustomed to filtering email: Subject-based
filtering is what many of the major online email services (like Gmail) offer users by default, and those
services tend not to make it easy to see the presence of less-commonly used headers like the ones I men-
tioned above — thus making it hard for people to figure out that they would even have the option of fil-
tering on those other headers.

Therefore, reluctantly, I recommend using a Subject prefix (keep it as short as you can) if that's what
your community wants. But if your project highly technical and most of its participants are comfortable
using the other headers, then that option is always there as a more space-efficient alternative.

It also used to be the case that if you have a mailing list named "foo", then you also have administra-
tive addresses "foo-help" and "foo-unsubscribe" available. In addition to these, it was traditional to have
"foo-subscribe" for joining, and "foo-owner", for reaching the list administrators. Increasingly, however,
subscribers manage their list membership via Web-based interfaces, so even if the list management soft-
ware you use sets up these administrative addresses, they may go largely unused.

Some mailing list software offers an option to append unsubscription instructions to the bottom of every
post. If that option is available, turn it on. It causes only a couple of extra lines per message, in a harm-
less location, and it can save you a lot of time, by cutting down on the number of people who mail you
—or worse, mail the list!—asking how to unsubscribe.

http://www.nisto.com/listspec/list-manager-intro.html
http://www.nisto.com/listspec/list-manager-intro.html
http://www.nisto.com/listspec/list-manager-intro.html
http://www.faqs.org/rfcs/rfc2369.html
http://www.faqs.org/rfcs/rfc2369.html

Technical Infrastructure

47

The Great Reply-to Debate

Earlier, in the section called “Avoid Private Discussions”, I stressed the importance of making sure dis-
cussions stay in public forums, and talked about how active measures are sometimes needed to prevent
conversations from trailing off into private email threads; furthermore, this chapter is all about setting
up project communications software to do as much of the work for people as possible. Therefore, if the
mailing list management software offers a way to automatically cause discussions to stay on the list, you
would think turning on that feature would be the obvious choice.

Well, not quite. There is such a feature, but it has some pretty severe disadvantages. The question of
whether or not to use it is one of the hottest debates in mailing list management—admittedly, not a con-
troversy that's likely to make the evening news in your city, but it can flare up from time to time in free
software projects. Below, I will describe the feature, give the major arguments on both sides, and make
the best recommendation I can.

The feature itself is very simple: the mailing list software can, if you wish, automatically set the Re-
ply-to header on every post to redirect replies to the mailing list. That is, no matter what the original
sender puts in the Reply-to header (or even if they don't include one at all), by the time the list sub-
scribers see the post, the header will contain the list address:

Reply-to: discuss@lists.example.org

On its face, this seems like a good thing. Because virtually all mail reading software pays attention to the
Reply-to header, now when anyone responds to a post, their response will be automatically addressed to
the entire list, not just to the sender of the message being responded to. Of course, the responder can still
manually change where the message goes, but the important thing is that by default replies are directed
to the list. It's a perfect example of using technology to encourage collaboration.

Unfortunately, there are some disadvantages. The first is known as the Can't Find My Way Back Home
problem: sometimes the original sender will put their "real" email address in the Reply-to field, because
for one reason or another they send email from a different address than where they receive it. People
who always read and send from the same location don't have this problem, and may be surprised that it
even exists. But for those who have unusual email configurations, or who cannot control how the From
address on their mails looks (perhaps because they send from work and do not have any influence over
the IT department), using Reply-to may be the only way they have to ensure that responses reach them.
When such a person posts to a mailing list that he's not subscribed to, his setting of Reply-to becomes
essential information. If the list software overwrites it3, he may never see the responses to his post.

The second disadvantage has to do with expectations, and in my opinion is the most powerful argument
against Reply-to munging. Most experienced mail users are accustomed to two basic methods of reply-
ing: reply-to-all and reply-to-author. All modern mail reading software has separate keys for these two
actions. Users know that to reply to everyone (that is, including the list), they should choose reply-to-all,
and to reply privately to the author, they should choose reply-to-author. Although you want to encourage
people to reply to the list whenever possible, there are certainly circumstances where a private reply is
the responder's prerogative—for example, they may want to say something confidential to the author of
the original message, something that would be inappropriate on the public list.

Now consider what happens when the list has overridden the original sender's Reply-to. The responder
hits the reply-to-author key, expecting to send a private message back to the original author. Because
that's the expected behavior, he may not bother to look carefully at the recipient address in the new mes-
sage. He composes his private, confidential message, one which perhaps says embarrassing things about

3In theory, the list software could add the lists's address to whatever Reply-to destination were already present, if any, instead of overwriting. In
practice, for reasons I don't know, most list software overwrites instead of appending.

Technical Infrastructure

48

someone on the list, and hits the send key. Unexpectedly, a few minutes later his message appears on the
mailing list! True, in theory he should have looked carefully at the recipient field, and should not have
assumed anything about the Reply-to header. But authors almost always set Reply-to to their own per-
sonal address (or rather, their mail software sets it for them), and many longtime email users have come
to expect that. In fact, when a person deliberately sets Reply-to to some other address, such as the list,
she usually makes a point of mentioning this in the body of her message, so people won't be surprised at
what happens when they reply.

Because of the possibly severe consequences of this unexpected behavior, my own preference is to con-
figure list management software to never touch the Reply-to header. This is one instance where using
technology to encourage collaboration has, it seems to me, potentially dangerous side-effects. Howev-
er, there are also some powerful arguments on the other side of this debate. Whichever way you choose,
you will occasionally get people posting to your list asking why you didn't choose the other way. Since
this is not something you ever want as the main topic of discussion on your list, it might be good to have
a canned response ready, of the sort that's more likely to stop discussion than encourage it. Make sure
you do not insist that your decision, whichever it is, is obviously the only right and sensible one (even
if you think that's the case). Instead, point out that this is a very old debate, there are good arguments
on both sides, no choice is going to satisfy all users, and therefore you just made the best decision you
could. Politely ask that the subject not be revisited unless someone has something genuinely new to say,
then stay out of the thread and hope it dies a natural death.

Someone may suggest a vote to choose one way or the other. You can do that if you want, but I person-
ally do not feel that counting heads is a satisfactory solution in this case. The penalty for someone who
is surprised by the behavior is so huge (accidentally sending a private mail to a public list), and the in-
convenience for everyone else is fairly slight (occasionally having to remind someone to respond to the
whole list instead of just to you), that it's not clear that the majority, even though they are the majority,
should be able to put the minority at such risk.

I have not addressed all aspects of this issue here, just the ones that seemed of overriding importance.
For a full discussion, see these two canonical documents, which are the ones people always cite when
they're having this debate:

• Leave Reply-to alone, by Chip Rosenthal

unicom.com/pw/reply-to-harmful.html [http://www.unicom.com/pw/reply-to-harmful.html]

• Set Reply-to to list, by Simon Hill

metasystema.net/essays/reply-to.mhtml [http://www.metasystema.net/essays/reply-to.mhtml]

Despite the mild preference indicated above, I do not feel there is a "right" answer to this question, and
happily participate in many lists that do set Reply-to. The most important thing you can do is settle on
one way or the other early, and try not to get entangled in debates about it after that. When the debate
re-arises every few years, as it inevitably will, you can point people to the archived discussion from last
time.

Two fantasies

Someday, someone will get the bright idea to implement a reply-to-list key in a mail reader. It would use
some of the custom list headers mentioned earlier to figure out the address of the mailing list, and then
address the reply directly to the list only, leaving off any other recipient addresses, since most are proba-
bly subscribed to the list anyway. Eventually, other mail readers will pick up the feature, and this whole
debate will go away. (Actually, the Mutt [http://www.mutt.org/] mail reader does offer this feature.4)

4Shortly after this book appeared, Michael Bernstein [http://www.michaelbernstein.com/] wrote me to say: "There are other email clients that im-
plement a reply-to-list function besides Mutt. For example, Evolution has this function as a keyboard shortcut, but not a button (Ctrl+L)."

http://www.unicom.com/pw/reply-to-harmful.html
http://www.unicom.com/pw/reply-to-harmful.html
http://www.metasystema.net/essays/reply-to.mhtml
http://www.metasystema.net/essays/reply-to.mhtml
http://www.mutt.org/
http://www.mutt.org/
http://www.michaelbernstein.com/
http://www.michaelbernstein.com/

Technical Infrastructure

49

An even better solution would be for Reply-to munging to be a per-subscriber preference. Those who
want the list to set Reply-to munged (either on others' posts or on their own posts) could ask for that, and
those who don't would ask for Reply-to to be left alone. However, I don't know of any list management
software that offers this on a per-subscriber basis. For now, we seem to be stuck with a global setting.5

Archiving

The technical details of setting up mailing list archiving are specific to the software that's running the
list, and are beyond the scope of this book. If you have to choose or configure an archiver, consider
these qualities:

Prompt updating
People will often want to refer to an archived message that was posted recently. If possible, the
archiver should archive each post instantaneously, so that by the time a post appears on the mail-
ing list, it's already present in the archives. If that option isn't available, then at least try to set the
archiver to update itself every hour or so. (By default, some archivers run their update processes
once per night, but in practice that's far too much lag time for an active mailing list.)

Referential stability
Once a message is archived at a particular URL, it should remain accessible at that exact same URL
forever, or as close to forever as possible. Even if the archives are rebuilt, restored from backup, or
otherwise fixed, any URLs that have already been made publicly available should remain the same.
Stable references make it possible for Internet search engines to index the archives, which is a major
boon to users looking for answers. Stable references are also important because mailing list posts
and threads are often linked to from the bug tracker (see the section called “Bug Tracker” later in
this chapter) or from other project documents.

Ideally, mailing list software would include a message's archive URL, or at least the message-spe-
cific portion of the URL, in a header when it distributes the message to recipients. That way peo-
ple who have a copy of the message would be able to know its archive location without having to
actually visit the archives, which would be helpful because any operation that involves one's web
browser is automatically time-consuming. Whether any mailing list software actually offers this fea-
ture, I don't know; unfortunately, the ones I have used do not. However, it's something to look for
(or, if you write mailing list software, it's a feature to consider implementing, please).

Thread support
It should be possible to go from any individual message to the thread (group of related messages)
that the original message is part of. Each thread should have its own URL too, separate from the
URLs of the individual messages in the thread.

Searchability
An archiver that doesn't support searching—on the bodies of messages, as well as on authors and
subjects—is close to useless. Note that some archivers support searching by simply farming the
work out to an external search engine such as Google [http://www.google.com/]. This is acceptable,
but direct search support is usually more fine-tuned, because it allows the searcher to specify that
the match must appear in a subject line versus the body, for example.

The above is just a technical checklist to help you evaluate and set up an archiver. Getting people to ac-
tually use the archiver to the project's advantage is discussed in later chapters, in particular the section
called “Conspicuous Use of Archives”.

Mailing List / Message Forum Software
5Since I wrote that, I've learned that there is at least one list management system that offers this feature: Siesta [http://siesta.unixbeard.net/]. See
also this article about it: perl.com/pub/a/2004/02/05/siesta.html [http://www.perl.com/pub/a/2004/02/05/siesta.html]

http://www.google.com/
http://www.google.com/
http://siesta.unixbeard.net/
http://siesta.unixbeard.net/
http://www.perl.com/pub/a/2004/02/05/siesta.html
http://www.perl.com/pub/a/2004/02/05/siesta.html

Technical Infrastructure

50

Here are some tools for running message forums. If the site where you're hosting your project already
has a default setup, then you can just use that and avoid having to choose. But if you need to install one
yourself, below are some possibilities. (Of course, there are probably other tools out there that I just
didn't happen to find, so don't take this as a complete list).

• Google Groups — groups.google.com [http://groups.google.com/]

Listing Google Groups first was a tough call. The service is not itself open source, and a few of its ad-
ministrative functions can be a bit hard to use. However, its advantages are substantial: your group's
archives are always online and searchable; you don't have to worry about scalability, backups, or oth-
er run-time infrastructure issues; the moderation and spam-prevention features are pretty good (with
the latter constantly being improved, which is important in the neverending spam arms race); and
Google Groups are easily accessible via both email and web, in ways that are likely to be already fa-
miliar to many participants. These are strong advantages. If you just want to get your project started,
and don't want to spend too much time thinking about what message forum software or service to use,
Google Groups is a good default choice.

• GroupServer — http://www.groupserver.org/

Has built-in archiver and integrated Web-based interface. GroupServer is a bit of work to set up,
but once you have it up and running it offers users a good experience. You may able to find free or
low-cost hosted GroupServer hosting for your project's forums, for example from OnlineGroups.net
[https://OnlineGroups.net/].

• Sympa — sympa.org [http://www.sympa.org/]

Developed and maintained by a consortium of French universities, and designed for a given instance
to handle both very large lists (> 700000 members, they claim) and a large number of lists. Sympa
can work with a variety of dependencies; for example, you can run it with sendmail, postfix, qmail or
exim as the underlying message transfer agent. It has built-in Web-based archiving.

• Mailman — list.org [http://www.list.org/]

For many years, Mailman was the standard for open source project mailing lists. It comes with a
built-in archiver, Pipermail, and hooks for plugging in external archivers. Unfortunately, Mailman is
showing its age now, and while it is very reliable in terms of message delivery and other under-the-
hood functionality, its administrative interfaces — especially for spam moderation and subscription
moderation — are frustrating for those accustomed to the modern Web. As of this writing in late
2013, the long-awaited Mailman 3 was still in development but was about to enter beta-testing; by
the time you read this, Mailman 3 may be released, and would be worth a look. It is supposed to solve
many of the problems of Mailman 2, and may make Mailman a reasonable choice again.

• Dada — dadamailproject.com [http://dadamailproject.com/]

I've not used Dada myself, but it is actively maintained and, at least from outward appearances, quite
spiffy. Note that to use it for particiatory lists, as opposed to announcement lists, you apparently need
to activate the plug-in "Dada Bridge". Commercial Dada hosting and installation offerings are avail-
able, or you can download the code and install it yourself.

Version Control
A version control system (or revision control system) is a combination of technologies and practices for
tracking and controlling changes to a project's files, in particular to source code, documentation, and
web pages. If you have never used version control before, the first thing you should do is go find some-
one who has, and get them to join your project. These days, everyone will expect at least your project's

http://groups.google.com/
http://groups.google.com/
http://www.groupserver.org/
https://OnlineGroups.net/
https://OnlineGroups.net/
http://www.sympa.org/
http://www.sympa.org/
http://www.list.org/
http://www.list.org/
http://dadamailproject.com/
http://dadamailproject.com/

Technical Infrastructure

51

source code to be under version control, and probably will not take the project seriously if it doesn't use
version control with at least minimal competence.

The reason version control is so universal is that it helps with virtually every aspect of running a project:
inter-developer communications, release management, bug management, code stability and experimental
development efforts, and attribution and authorization of changes by particular developers. The version
control system provides a central coordinating force among all of these areas. The core of version con-
trol is change management: identifying each discrete change made to the project's files, annotating each
change with metadata like the change's date and author, and then replaying these facts to whoever asks,
in whatever way they ask. It is a communications mechanism where a change is the basic unit of infor-
mation.

This section does not discuss all aspects of using a version control system. It's so all-encompassing that
it must be addressed topically throughout the book. Here, we will concentrate on choosing and setting up
a version control system in a way that will foster cooperative development down the road.

Version Control Vocabulary
This book cannot teach you how to use version control if you've never used it before, but it would be im-
possible to discuss the subject without a few key terms. These terms are useful independently of any par-
ticular version control system: they are the basic nouns and verbs of networked collaboration, and will
be used generically throughout the rest of this book. Even if there were no version control systems in the
world, the problem of change management would remain, and these words give us a language for talking
about that problem concisely.

If you're comfortably experienced with version control already, you can probably skip this section. If
you're not sure, then read through this section at least once. Certain version control terms have gradually
changed in meaning since the early 2000s, and you may occasionally find people using them in incom-
patible ways in the same conversation. Being able to detect that phenomenon early in a discussion can
often be helpful.

"Version" Versus "Revision"

The word version is sometimes used as a synonym for "revision", but I will not use it that way in
this book, because it is too easily confused with "version" in the sense of a version of a piece of
software—that is, the release or edition number, as in "Version 1.0". However, since the phrase
"version control" is already standard, I will continue to use it as a synonym for "revision control"
and "change control". Sorry. One of open source's most endearing characteristics is that it has two
words for everything, and one word for every two things.

commit
To make a change to the project; more formally, to store a change in the version control database in
such a way that it can be incorporated into future releases of the project. "Commit" can be used as
a verb or a noun. For example: "I just committed a fix for the server crash bug people have been re-
porting on Mac OS X. Jay, could you please review the commit and check that I'm not misusing the
allocator there?"

push
To publish a commit to a publicly online repository, from which others can incorporate it into their
copy of the project's code. When one says one has pushed a commit, the destination repository is
usually implied. Often it is the project's master repository, the one from which public releases are
made, but not always.

Note that in some version control systems (e.g., Subversion), commits are automatically and un-
avoidably pushed up to a predetermined central repository, while in others (e.g., Git, Mercurial) the

Technical Infrastructure

52

developer chooses when and where to push commits. Because the former types privilege a particu-
lar central repository, they are known as "centralized" version control systems, while the latter are
known as "decentralized". In general, decentralized systems are the modern trend, especially for
open source projects, which benefit from the peer-to-peer relationship between developers' reposito-
ries.

pull or update
To pull others' changes (commits) into your local copy of the project. When pulling changes from
a project's mainline development branch (see branch), people often say "update" instead of "pull",
for example: "Hey, I noticed the indexing code is always dropping the last byte. Is this a new bug?"
"Yes, but it was fixed last week—try updating and it should go away."

commit message or log message
A bit of commentary attached to each commit, describing the nature and purpose of the commit
(both terms are used about equally often; I'll use them interchangeably in this book). Log messages
are among the most important documents in any project: they are the bridge between the detailed,
highly technical meaning of each individual code changes and the more user-visible world of bug-
fixes, features and project progress. Later in this section, we'll look at ways to distribute them to the
appropriate audiences; also, the section called “Codifying Tradition” in Chapter 6, Communications
discusses ways to encourage contributors to write concise and useful commit messages.

repository
A database in which changes are stored and from which they are published. In centralized version
control systems, there is a single, master repository, which stores all changes to the project, and
each developer works with a kind of latest summary on her own machine. In decentralized systems,
each developer has her own repository, changes can be swapped back and forth between reposi-
tories arbitrarily, and the question of which repository is the "master" (that is, the one from which
public releases are rolled) is defined purely by social convention, instead of by a combination of so-
cial convention and technical enforcement.

clone (see also checkout)
To obtain one's own development repository by making a copy of the project's central repository.

checkout
When used in discussion, "checkout" usually means something like "clone", except that central-
ized systems don't really clone the full repository, they just obtain a working copy or working files.
When decentralized systems use the word "checkout", they also mean the process of obtaining
working files from a repository, but since the repository is local in that case, the user experience is
quite different because the network is not involved.

In the centralized sense, a checkout produces a directory tree called a "working copy" (see below),
from which changes may be sent back to the original repository.

working copy or working files
A developer's private directory tree containing the project's source code files, and possibly its web
pages or other documents, in a form that allows the developer to edit them. A working copy also
contains some version control metadata saying what repository it comes from, what branch it repre-
sents, and a few other things. Typically, each developer has her own working copy, from which she
edits, tests, commits, pulls, pushes, etc.

In decentralized systems, working copies and repositories are usually colocated anyway, so the
term "working copy" is less often used. Developers instead tend to say "my clone" or "my copy" or
sometimes "my fork".

revision, change, changeset, or (again) commit
A "revision" is a precisely specified incarnation of the project at a point in time, or of a particular
file or directory in the project. These days, most systems also use "revision", "change", "changeset",

Technical Infrastructure

53

or "commit" to refer to a set of changes committed together as one conceptual unit, if multiple files
were involved, though colloquially most people would refer to changeset 12's effect on file F as "re-
vision 12 of F".

These terms occasionally have distinct technical meanings in different version control systems, but
the general idea is always the same: they give a way to speak precisely about exact points in time in
the history of a file or a set of files (say, immediately before and after a bug is fixed). For example:
"Oh yes, she fixed that in revision 10" or "She fixed that in commit fa458b1fac".

When one talks about a file or collection of files without specifying a particular revision, it is gener-
ally assumed that one means the most recent revision(s) available.

diff
A textual representation of a change. A diff shows which lines were changed and how, plus a few
lines of surrounding context on either side. A developer who is already familiar with some code can
usually read a diff against that code and understand what the change did, and often even spot bugs.

tag or snapshot
A label for a particular state of the project at a point in time. Tags are generally used to mark inter-
esting snapshots of the project. For example, a tag is usually made for each public release, so that
one can obtain, directly from the version control system, the exact set of files/revisions comprising
that release. Tag names are often things like Release_1_0, Delivery_20130630, etc.

branch
A copy of the project, under version control but isolated so that changes made to the branch don't
affect other branches of the project, and vice versa, except when changes are deliberately "merged"
from one branch to another (see below). Branches are also known as "lines of development". Even
when a project has no explicit branches, development is still considered to be happening on the
"main branch", also known as the "main line" or "trunk" or "master".

Branches offer a way to keep different lines of development from interfering with each other. For
example, a branch can be used for experimental development that would be too destabilizing for the
main trunk. Or conversely, a branch can be used as a place to stabilize a new release. During the re-
lease process, regular development would continue uninterrupted in the main branch of the repos-
itory; meanwhile, on the release branch, no changes are allowed except those approved by the re-
lease managers. This way, making a release needn't interfere with ongoing development work. See
the section called “Use branches to avoid bottlenecks” later in this chapter for a more detailed dis-
cussion of branching.

merge or port
To move a change from one branch to another. This includes merging from the main trunk to some
other branch, or vice versa. In fact, those are the most common kinds of merges; it is less common
to port a change between two non-trunk branches. See the section called “Singularity of informa-
tion” for more on change porting.

"Merge" has a second, related meaning: it is what some version control systems do when they see
that two people have changed the same file but in non-overlapping ways. Since the two changes do
not interfere with each other, when one of the people updates their copy of the file (already con-
taining their own changes), the other person's changes will be automatically merged in. This is very
common, especially on projects where multiple people are hacking on the same code. When two
different changes do overlap, the result is a "conflict"; see below.

conflict
What happens when two people try to make different changes to the same place in the code. All ver-
sion control systems automatically detect conflicts, and notify at least one of the humans involved
that their changes conflict with someone else's. It is then up to that human to resolve the conflict,
and to communicate that resolution to the version control system.

Technical Infrastructure

54

lock
A way to declare an exclusive intent to change a particular file or directory. For example, "I can't
commit any changes to the web pages right now. It seems Alfred has them all locked while he fix-
es their background images." Not all version control systems even offer the ability to lock, and of
those that do, not all require the locking feature to be used. This is because parallel, simultaneous
development is the norm, and locking people out of files is (usually) contrary to this ideal.

Version control systems that require locking to make commits are said to use the lock-modify-un-
lock model. Those that do not are said to use the copy-modify-merge model. An excellent in-depth
explanation and comparison of the two models may be found at svnbook.red-bean.com/nightly/en/
svn.basic.version-control-basics.html#svn.basic.vsn-models [http://svnbook.red-bean.com/night-
ly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models]. In general, the copy-modi-
fy-merge model is better for open source development, and all the version control systems discussed
in this book support that model.

Choosing a Version Control System
If you don't already have a strong opinion about which version control system your project should use,
then choose Git (git-scm.com [http://git-scm.com/]), and host your project's repositories at GitHub.com
[http://github.com/], which offers unlimited free hosting for open source projects.

Git is by now the de facto standard in the open source world, as is hosting one's repositories at GitHub.
Because so many developers are already comfortable with that combination, choosing it sends the sig-
nal that your project is ready for participants. But Git-at-GitHub is not the only viable combination. Two
other reasonable choices of version control system are Mercurial [http://mercurial.selenic.com/] and
Subversion [http://subversion.apache.org/]. Mercurial and Git are both decentralized systems, where-
as Subversion is centralized. All three are offered at many different free hosting services; some services
even support more than one of them (though GitHub only supports Git, as its name suggests). While
some projects host their repositories on their own servers, most just put their repositories on one of the
free hosting services, as described in Appendix A, Canned Hosting Sites.

There isn't space here for an in-depth exploration of why you might choose something other than Git.
If you have a reason to do so, then you already know what that reason is. If you don't, then just use Git
(and probably on GitHub). If you find yourself using something other than Git, Mercurial, or Subver-
sion, ask yourself why — because whatever that other version control system is, most other developers
won't be familiar with it, and it likely has a smaller and less stable community of support around it than
the big three do.

Using the Version Control System
The recommendations in this section are not targeted toward a particular version control system, and
should be implementable in any of them. Consult your specific system's documentation for details.

Version everything

Keep not only your project's source code under version control, but also its web pages, documentation,
FAQ, design notes, and anything else that people might want to edit. Keep them right with the source
code, in the same repository tree. Any piece of information worth writing down is worth versioning—
that is, any piece of information that could change. Things that don't change should be archived, not ver-
sioned. For example, an email, once posted, does not change; therefore, versioning it wouldn't make
sense (unless it becomes part of some larger, evolving document).

The reason to version everything together in one place is so that people only have to learn one mech-
anism for submitting changes. Often a contributor will start out making edits to the web pages or doc-
umentation, and move to small code contributions later, for example. When the project uses the same

http://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
http://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
http://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
http://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
http://git-scm.com/
http://git-scm.com/
http://github.com/
http://github.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://subversion.apache.org/
http://subversion.apache.org/

Technical Infrastructure

55

system for all kinds of submissions, people only have to learn the ropes once. Versioning everything to-
gether also means that new features can be committed together with their documentation updates, that
branching the code will branch the documentation too, etc.

Don't keep generated files under version control. They are not truly editable data, since they are pro-
duced programmatically from other files. For example, some build systems create a file named con-
figure based on a template in configure.in. To make a change to the configure, one would
edit configure.in and then regenerate; thus, only the template configure.in is an "editable
file." Just version the templates—if you version the generated files as well, people will inevitably for-
get to regenerate them when they commit a change to a template, and the resulting inconsistencies will
cause no end of confusion.

There are technical exceptions to the rule that all editable data should be kept in the same version con-
trol system as the code. For example, a project's bug tracker and its wiki hold plenty of editable data, but
usually do not store that data in the main version control system6. However, they should still have ver-
sioning systems of their own, e.g., the comment history in a bug ticket, and the ability to browse past re-
visions and view differences between them in a wiki.

Browsability

The project's repository should be browsable on the Web. This means not only the ability to see the lat-
est revisions of the project's files, but to go back in time and look at earlier revisions, view the differ-
ences between revisions, read log messages for selected changes, etc.

Browsability is important because it is a lightweight portal to project data. If the repository cannot be
viewed through a web browser, then someone wanting to inspect a particular file (say, to see if a cer-
tain bugfix had made it into the code) would first have to install version control client software locally,
which could turn their simple query from a two-minute task into a half-hour or longer task.

Browsability also implies canonical URLs for viewing a particular change (i.e., a commit), and for view-
ing the latest revision at any given time without specifying its commit identifier. This can be very useful
in technical discussions or when pointing people to documentation. For example, instead of saying "For
bug management guidelines, see the community-guide/index.html file in your working copy," one can
say "For bug management guidelines, see http://subversion.apache.org/docs/community-guide/," giving
a URL that always points to the latest revision of the community-guides/index.html file. The
URL is better because it is completely unambiguous, and avoids the question of whether the addressee
has an up-to-date working copy.

Some version control systems come with built-in repository-browsing mechanisms, and in any case most
hosting sites offer a good web interface. But if you need to install a third-party tool for repository brows-
ing, there are many out there. Three that support Git are GitLab (gitlab.org [http://gitlab.org/]), GitWeb
(git.wiki.kernel.org/index.php/Gitweb [https://git.wiki.kernel.org/index.php/Gitweb]), and GitList
(gitlist.org [http://gitlist.org/]). For Subversion, there is ViewVC (viewvc.org [http://viewvc.org/]). A
web search will turn up plenty of others besides these.

Use branches to avoid bottlenecks

Non-expert version control users are sometimes a bit afraid of branching and merging. If you are among
those people, resolve right now to conquer any fears you may have and take the time to learn how to do
branching and merging. They are not difficult operations, once you get used to them, and they become
increasingly important as a project acquires more developers.

Branches are valuable because they turn a scarce resource—working room in the project's code—into an
abundant one. Normally, all developers work together in the same sandbox, constructing the same cas-

6There are development environments that integrate everything into one unified version control world; see Veracity for an example.

http://gitlab.org/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/Gitweb
https://git.wiki.kernel.org/index.php/Gitweb
http://gitlist.org/
http://gitlist.org/
http://viewvc.org/
http://viewvc.org/

Technical Infrastructure

56

tle. When someone wants to add a new drawbridge, but can't convince everyone else that it would be an
improvement, branching makes it possible for her to make a copy of the castle, take it off to an isolated
corner, and try out the new drawbridge design. If the effort succeeds, she can invite the other develop-
ers to examine the result (in GitHub-speak, this invitation is known as a "pull request" — see the section
called “Pull requests”). If everyone agrees that the result is good, she or someone else can tell the ver-
sion control system to move ("merge") the drawbridge from the branch version of the castle over to the
main version, sometimes called the master branch.

It's easy to see how this ability helps collaborative development. People need the freedom to try new
things without feeling like they're interfering with others' work. Equally importantly, there are times
when code needs to be isolated from the usual development churn, in order to get a bug fixed or a re-
lease stabilized (see the section called “Stabilizing a Release” and the section called “Maintaining Multi-
ple Release Lines” in Chapter 7, Packaging, Releasing, and Daily Development) without worrying about
tracking a moving target. At the same time, people need to be able to review and comment on experi-
mental work, whether it's happening in the master branch or somewhere else. Treating branches as first-
class, publishable objects makes all this possible.

Use branches liberally, and encourage others to use them. But also make sure that a given branch is on-
ly active for as long as needed. Every active branch is a slight drain on the community's attention. Even
those who are not working in a branch still maintain a peripheral awareness of what's going on in it.
Such awareness is desirable, of course, and commit notices should be sent out for branch commits just
as for any other commit. But branches should not become a mechanism for dividing the development
community. With rare exceptions, the eventual goal of most branches should be to merge their changes
back into the main line and disappear.

Singularity of information

Merging has an important corollary: never commit the same change twice. That is, a given change
should enter the version control system exactly once. The revision (or set of revisions) in which the
change entered is its unique identifier from then on. If it needs to be applied to branches other than the
one on which it entered, then it should be merged from its original entry point to those other destina-
tions—as opposed to committing a textually identical change, which would have the same effect in the
code, but would make accurate bookkeeping and release management much harder.

The practical effects of this advice differ from one version control system to another. In some systems,
merges are special events, fundamentally distinct from commits, and carry their own metadata with
them. In others, the results of merges are committed the same way other changes are committed, so the
primary means of distinguishing a "merge commit" from a "new change commit" is in the log message.
In a merge's log message, don't repeat the log message of the original change. Instead, just indicate that
this is a merge, and give the identifying revision of the original change, with at most a one-sentence
summary of its effect. If someone wants to see the full log message, she should consult the original revi-
sion.

One reason it's important to avoid repeating the log message is that, in some systems, log messages are
sometimes edited after they've been committed. If a change's log message were repeated at each merge
destination, then even if someone edited the original message, she'd still leave all the repeats uncorrect-
ed—which would only cause confusion down the road. Another reason is that non-duplication makes it
easier to be sure when one has tracked down the original source of a change. When you're looking at a
complete log message that doesn't refer to a some other merge source, you can know that it must be the
original change, and handle it accordingly.

The same principle applies to reverting a change. If a change is withdrawn from the code, then the log
message for the reversion should merely state that some specific revision(s) is being reverted, not de-
scribe the actual code change that results from the reversion, since the semantics of the change can be
derived by reading the original log message and change. Of course, the reversion's log message should

Technical Infrastructure

57

also state the reason why the change is being reverted, but it should not duplicate anything from the
original change's log message. If possible, go back and edit the original change's log message to point
out that it was reverted.

All of the above implies that you should use a consistent syntax for referring to changes. This is helpful
not only in log messages, but in emails, the bug tracker, and elsewhere. In Git and Mercurial, the syn-
tax is usually "commit bb2377" (where the commit hash code on the right is long enough to be unique in
the relevant context); in Subversion, revision numbers are linearly incremented integers and the standard
syntax for, say, revision 1729 is "r1729". In other systems, there is usually a standard syntax for express-
ing the changeset name. Whatever the appropriate syntax is for your system, encourage people to use
it when referring to changes. Consistent expression of change names makes project bookkeeping much
easier (as we will see in Chapter 6, Communications and Chapter 7, Packaging, Releasing, and Daily
Development), and since a lot of the bookkeeping may be done by volunteers, it needs to be as easy as
possible.

See also the section called “Releases and Daily Development” in Chapter 7, Packaging, Releasing, and
Daily Development.

Authorization

Many version control systems offer a feature whereby certain people can be allowed or disallowed from
committing in specific sub-areas of the master repository. Following the principle that when handed a
hammer, people start looking around for nails, many projects use this feature with abandon, carefully
granting people access to just those areas where they have been approved to commit, and making sure
they can't commit anywhere else. (See the section called “Committers” in Chapter 8, Managing Volun-
teers for how projects decide who can put changes where.)

Exercising such tight control is usually unnecessary, and may even be harmful. Some projects simply
use an honor system: when a person is granted commit access, even for a sub-area of the project, what
they actually receive is the ability to commit anywhere in the master repository. They're just asked to
keep their commits in their area. Remember that there is little real risk here: the repository provides an
audit trail, and in an active project, all commits are reviewed anyway. If someone commits where they're
not supposed to, others will notice it and say something. If a change needs to be undone, that's simple
enough—everything's under version control anyway, so just revert.

There are several advantages to this more relaxed approach. First, as developers expand into other ar-
eas (which they usually will if they stay with the project), there is no administrative overhead to granting
them wider privileges. Once the decision is made, the person can just start committing in the new area
right away.

Second, expansion can be done in a more fine-grained manner. Generally, a committer in area X who
wants to expand to area Y will start posting patches against Y and asking for review. If someone who
already has commit access to area Y sees such a patch and approves of it, she can just tell the submitter
to commit the change directly (mentioning the reviewer/approver's name in the log message, of course).
That way, the commit will come from the person who actually wrote the change, which is preferable
from both an information management standpoint and from a crediting standpoint.

Last, and perhaps most important, using the honor system encourages an atmosphere of trust and mutu-
al respect. Giving someone commit access to a subdomain is a statement about their technical prepared-
ness—it says: "We see you have expertise to make commits in a certain domain, so go for it." But im-
posing strict authorization controls says: "Not only are we asserting a limit on your expertise, we're al-
so a bit suspicious about your intentions." That's not the sort of statement you want to make if you can
avoid it. Bringing someone into the project as a committer is an opportunity to initiate them into a circle
of mutual trust. A good way to do that is to give them more power than they're supposed to use, then in-
form them that it's up to them to stay within the stated limits.

Technical Infrastructure

58

The Subversion project has operated on this honor system way or well over a decade, with more than 40
full committers and many more partial committers as of this writing. The only distinction the system ac-
tually enforces is between committers and non-committers; further subdivisions are maintained solely
by human judgement. Yet the project never had a serious problem with someone deliberately commit-
ting outside their domain. Once or twice there's been an innocent misunderstanding about the extent of
someone's commit privileges, but it's always been resolved quickly and amiably.

Obviously, in situations where self-policing is impractical, you must rely on hard authorization controls.
But such situations are rare. Even when there are millions of lines of code and hundreds or thousands
of developers, a commit to any given code module should still be reviewed by those who work on that
module, and they can recognize if someone committed there who wasn't supposed to. If regular commit
review isn't happening, then the project has bigger problems to deal with than the authorization system
anyway.

In summary, don't spend too much time fiddling with the version control authorization system, unless
you have a specific reason to. It usually won't bring much tangible benefit, and there are advantages to
relying on human controls instead.

None of this should be taken to mean that the restrictions themselves are unimportant, of course. It
would be bad for a project to encourage people to commit in areas where they're not qualified. Further-
more, in many projects, full (unrestricted) commit access has a special corollary status: it implies voting
rights on project-wide questions. This political aspect of commit access is discussed more in the section
called “Who Votes?” in Chapter 4, Social and Political Infrastructure.

Tools for commit review
9 September 2013: If you're reading this note, then you've encountered this section while it's in the
process of being written as part of the overall update of this book (see producingoss.com/v2.html [http://
producingoss.com/v2.html]).

poss2 todo: there are three main things to cover here: Gerrit and similar tools, the GitHub PR model, and
commit emails. Intro paragraph should give an overview and describe how they interact, then a short
section on each. The section for commit emails is already done as it was just moved here from its old
home as a subsection of the "Using the Version Control System" section. Discuss how human-centered
commit review can be linked with automated buildbots that may or may not be a hard gateway to the
central repository.

Pull requests

TBD (Gerrit et al)

Commit emails

Every commit to the repository should generate an email showing who made the change, when they
made it, what files and directories changed, and how they changed. The email should go to a special
mailing list devoted to commit emails, separate from the mailing lists to which humans post. Develop-
ers and other interested parties should be encouraged to subscribe to the commits list, as it is the most
effective way to keep up with what's happening in the project at the code level. Aside from the obvious
technical benefits of peer review (see the section called “Practice Conspicuous Code Review”), commit
emails help create a sense of community, because they establish a shared environment in which people
can react to events (commits) that they know are visible to others as well.

The specifics of setting up commit emails will vary depending on your version control system, but usu-
ally there's a script or other packaged facility for doing it. If you're having trouble finding it, try looking

http://producingoss.com/v2.html
http://producingoss.com/v2.html
http://producingoss.com/v2.html

Technical Infrastructure

59

for documentation on hooks (or sometimes triggers) specifically a post-commit hook hook. Post-commit
hooks are a general means of launching automated tasks in response to commits. The hook is triggered
when a given commit finalizes, is fed all the information about that commit, and is then free to use that
information to do anything—for example, to send out an email.

With pre-packaged commit email systems, you may want to modify some of the default behaviors:

1. Some commit mailers don't include the actual diffs in the email, but instead provide a URL to view
the change on the web using the repository browsing system. While it's good to provide the URL, so
the change can be referred to later, it is also important that the commit email include the diffs them-
selves. Reading email is already part of people's routine, so if the content of the change is visible
right there in the commit email, developers will review the commit on the spot, without leaving their
mail reader. If they have to click on a URL to review the change, most won't do it, because that re-
quires a new action instead of a continuation of what they were already doing. Furthermore, if the re-
viewer wants to ask something about the change, it's vastly easier to hit reply-with-text and simply
annotate the quoted diff than it is to visit a web page and laboriously cut-and-paste parts of the diff
from web browser to email client.

(Of course, if the diff is huge, such as when a large body of new code has been added to the reposito-
ry, then it makes sense to omit the diff and offer only the URL. Most commit mailers can do this kind
of size-limiting automatically. If yours can't, then it's still better to include diffs, and live with the oc-
casional huge email, than to leave the diffs off entirely. Convenient reviewing and commenting is a
cornerstone of cooperative development, and much too important to do without.)

2. The commit emails should set their Reply-to header to the regular development list, not the commit
email list. That is, when someone reviews a commit and writes a response, their response should be
automatically directed toward the human development list, where technical issues are normally dis-
cussed. There are a few reasons for this. First, you want to keep all technical discussion on one list,
because that's where people expect it to happen, and because that way there's only one archive to
search. Second, there might be interested parties not subscribed to the commit email list. Third, the
commit email list advertises itself as a service for watching commits, not for watching commits and
having occasional technical discussions. Those who subscribed to the commit email list did not sign
up for anything but commit emails; sending them other material via that list would violate an implicit
contract.

Note that this advice to set Reply-to does not contradict the recommendations in the section called
“The Great Reply-to Debate” earlier in this chapter. It's always okay for the sender of a message to
set Reply-to. In this case, the sender is the version control system itself, and it sets Reply-to in order
to indicate that the appropriate place for replies is the development mailing list, not the commit list.

Bug Tracker
Bug tracking is a broad topic; various aspects of it are discussed throughout this book. Here I'll try to
concentrate mainly on setup and technical considerations, but to get to those, we have to start with a pol-
icy question: exactly what kind of information should be kept in a bug tracker?

The term bug tracker is misleading. Bug tracking systems are also frequently used to track new feature
requests, one-time tasks, unsolicited patches—really anything that has distinct beginning and end states,
with optional transition states in between, and that accrues information over its lifetime. For this reason,
bug trackers are also called issue trackers, defect trackers, artifact trackers, request trackers, trouble
ticket systems, etc. See Appendix C, Free Bug Trackers for a list of software.

In this book, I'll continue to use "bug tracker" for the software that does the tracking, because that's what
most people call it, but will use issue to refer to a single item in the bug tracker's database. This allows

Technical Infrastructure

60

us to distinguish between the behavior or misbehavior that the user encountered (that is, the bug itself),
and the tracker's record of the bug's discovery, diagnosis, and eventual resolution. Keep in mind that al-
though most issues are about actual bugs, issues can be used to track other kinds of tasks too.

The classic issue life cycle looks like this:

1. Someone files the issue. They provide a summary, an initial description (including a reproduction
recipe, if applicable; see the section called “Treat Every User as a Potential Volunteer” in Chapter 8,
Managing Volunteers for how to encourage good bug reports), and whatever other information the
tracker asks for. The person who files the issue may be totally unknown to the project—bug reports
and feature requests are as likely to come from the user community as from the developers.

Once filed, the issue is in what's called an open state. Because no action has been taken yet, some
trackers also label it as unverified and/or unstarted. It is not assigned to anyone; or, in some systems,
it is assigned to a fake user to represent the lack of real assignation. At this point, it is in a holding
area: the issue has been recorded, but not yet integrated into the project's consciousness.

2. Others read the issue, add comments to it, and perhaps ask the original filer for clarification on some
points.

3. The bug gets reproduced. This may be the most important moment in its life cycle. Although the
bug is not actually fixed yet, the fact that someone besides the original filer was able to make it hap-
pen proves that it is genuine, and, no less importantly, confirms to the original filer that they've con-
tributed to the project by reporting a real bug.

4. The bug gets diagnosed: its cause is identified, and if possible, the effort required to fix it is estimat-
ed. Make sure these things get recorded in the issue; if the person who diagnosed the bug suddenly
has to step away from the project for a while (as can often happen with volunteer developers), some-
one else should be able to pick up where she left off.

In this stage, or sometimes the previous one, a developer may "take ownership" of the issue and as-
sign it to herself (the section called “Distinguish clearly between inquiry and assignment” in Chap-
ter 8, Managing Volunteers examines the assignment process in more detail). The issue's priority may
also be set at this stage. For example, if it is so severe that it should delay the next release, that fact
needs to be identified early, and the tracker should have some way of noting it.

5. The issue gets scheduled for resolution. Scheduling doesn't necessarily mean naming a date by which
it will be fixed. Sometimes it just means deciding which future release (not necessarily the next one)
the bug should be fixed by, or deciding that it need not block any particular release. Scheduling may
also be dispensed with, if the bug is quick to fix.

6. The bug gets fixed (or the task completed, or the patch applied, or whatever). The change or set of
changes that fixed it should be recorded in a comment in the issue, after which the issue is closed
and/or marked as resolved.

There are some common variations on this life cycle. Sometimes an issue is closed very soon after being
filed, because it turns out not to be a bug at all, but rather a misunderstanding on the part of the user. As
a project acquires more users, more and more such invalid issues will come in, and developers will close
them with increasingly short-tempered responses. Try to guard against the latter tendency. It does no one
any good, as the individual user in each case is not responsible for all the previous invalid issues; the sta-
tistical trend is visible only from the developers' point of view, not the user's. (In the section called “Pre-
Filtering the Bug Tracker” later in this chapter, we'll look at techniques for reducing the number of in-
valid issues.) Also, if different users are experiencing the same misunderstanding over and over, it might
mean that aspect of the software needs to be redesigned. This sort of pattern is easiest to notice when
there is an issue manager monitoring the bug database; see the section called “Issue Manager” in Chap-
ter 8, Managing Volunteers.

Technical Infrastructure

61

Another common life cycle variation is for the issue to be closed as a duplicate soon after Step 1. A du-
plicate is when someone files an issue that's already known to the project. Duplicates are not confined to
open issues: it's possible for a bug to come back after having been fixed (this is known as a regression),
in which case the preferred course is usually to reopen the original issue and close any new reports as
duplicates of the original one. The bug tracking system should keep track of this relationship bidirection-
ally, so that reproduction information in the duplicates is available to the original issue, and vice versa.

A third variation is for the developers to close the issue, thinking they have fixed it, only to have the
original reporter reject the fix and reopen it. This is usually because the developers simply don't have ac-
cess to the environment necessary to reproduce the bug, or because they didn't test the fix using the ex-
act same reproduction recipe as the reporter.

Aside from these variations, there may be other small details of the life cycle that vary depending on the
tracking software. But the basic shape is the same, and while the life cycle itself is not specific to open
source software, it has implications for how open source projects use their bug trackers.

As Step 1 implies, the tracker is as much a public face of the project as the mailing lists or web pages.
Anyone may file an issue, anyone may look at an issue, and anyone may browse the list of currently
open issues. It follows that you never know how many people are waiting to see progress on a given is-
sue. While the size and skill of the development community constrains the rate at which issues can be
resolved, the project should at least try to acknowledge each issue the moment it appears. Even if the is-
sue lingers for a while, a response encourages the reporter to stay involved, because she feels that a hu-
man has registered what she has done (remember that filing an issue usually involves more effort than,
say, posting an email). Furthermore, once an issue is seen by a developer, it enters the project's con-
sciousness, in the sense that the developer can be on the lookout for other instances of the issue, can talk
about it with other developers, etc.

The need for timely reactions implies two things:

• The tracker must be connected to a mailing list, such that every change to an issue, including its initial
filing, causes a mail to go out describing what happened. This mailing list is usually different from the
regular development list, since not all developers may want to receive automated bug mails, but (just
as with commit mails) the Reply-to header should be set to the development mailing list.

• The form for filing issues should capture the reporter's email address, so she can be contacted for
more information. (However, it should not require the reporter's email address, as some people prefer
to report issues anonymously. See the section called “Anonymity and involvement” later in this chap-
ter for more on the importance of anonymity.)

Interaction with Mailing Lists
Make sure the bug tracker doesn't turn into a message forum. Although it is important to maintain a hu-
man presence in the bug tracker, it is not fundamentally suited to real-time discussion. Think of it rather
as an archiver, a way to organize facts and references to other discussions, primarily those that take
place on mailing lists.

There are two reasons to make this distinction. First, the bug tracker is more cumbersome to use than the
mailing lists (or than real-time chat forums, for that matter). This is not because bug trackers have bad
user interface design, it's just that their interfaces were designed for capturing and presenting discrete
states, not free-flowing discussions. Second, not everyone who should be involved in discussing a giv-
en issue is necessarily watching the bug tracker. Part of good issue management (see the section called
“Share Management Tasks as Well as Technical Tasks” in Chapter 8, Managing Volunteers) is to make
sure each issue is brought to the right peoples' attention, rather than requiring every developer to monitor
all issues. In the section called “No Conversations in the Bug Tracker” in Chapter 6, Communications,
we'll look at ways to make sure people don't accidentally siphon discussions out of appropriate forums
and into the bug tracker.

Technical Infrastructure

62

Some bug trackers can monitor mailing lists and automatically log all emails that are about a known is-
sue. Typically they do this by recognizing the issue's identifying number in the subject line of the mail,
as part of a special string; developers learn to include these strings in their mails to attract the tracker's
notice. The bug tracker may either save the entire email, or (even better) just record a link to the mail in
the regular mailing list archive. Either way, this is a very useful feature; if your tracker has it, make sure
both to turn it on and to remind people to take advantage of it.

Pre-Filtering the Bug Tracker
Most issue databases eventually suffer from the same problem: a crushing load of duplicate or invalid
issues filed by well-meaning but inexperienced or ill-informed users. The first step in combatting this
trend is usually to put a prominent notice on the front page of the bug tracker, explaining how to tell if a
bug is really a bug, how to search to see if it's already been filed, and finally, how to effectively report it
if one still thinks it's a new bug.

This will reduce the noise level for a while, but as the number of users increases, the problem will even-
tually come back. No individual user can be blamed for it. Each one is just trying to contribute to the
project's well-being, and even if their first bug report isn't helpful, you still want to encourage them to
stay involved and file better issues in the future. In the meantime, though, the project needs to keep the
issue database as free of junk as possible.

The two things that will do the most to prevent this problem are: making sure there are people watch-
ing the bug tracker who have enough knowledge to close issues as invalid or duplicates the moment they
come in, and requiring (or strongly encouraging) users to confirm their bugs with other people before
filing them in the tracker.

The first technique seems to be used universally. Even projects with huge issue databases (say, the De-
bian bug tracker at bugs.debian.org [http://bugs.debian.org/], which contained 712,440 issues as of this
writing) still arrange things so that someone sees each issue that comes in. It may be a different person
depending on the category of the issue. For example, the Debian project is a collection of software pack-
ages, so Debian automatically routes each issue to the appropriate package maintainers. Of course, users
can sometimes misidentify an issue's category, with the result that the issue is sent to the wrong person
initially, who may then have to reroute it. However, the important thing is that the burden is still shared
—whether the user guesses right or wrong when filing, issue watching is still distributed more or less
evenly among the developers, so each issue is able to receive a timely response.

The second technique is less widespread, probably because it's harder to automate. The essential idea
is that every new issue gets "buddied" into the database. When a user thinks he's found a problem, he is
asked to describe it on one of the mailing lists, or in an IRC channel, and get confirmation from some-
one that it is indeed a bug. Bringing in that second pair of eyes early can prevent a lot of spurious re-
ports. Sometimes the second party is able to identify that the behavior is not a bug, or is fixed in recent
releases. Or she may be familiar with the symptoms from a previous issue, and can prevent a duplicate
filing by pointing the user to the older issue. Often it's enough just to ask the user "Did you search the
bug tracker to see if it's already been reported?" Many people simply don't think of that, yet are happy to
do the search once they know someone's expecting them to.

The buddy system can really keep the issue database clean, but it has some disadvantages too. Many
people will file solo anyway, either through not seeing, or through disregarding, the instructions to find
a buddy for new issues. Thus it is still necessary for volunteers to watch the issue database. Furthermore,
because most new reporters don't understand how difficult the task of maintaining the issue database is,
it's not fair to chide them too harshly for ignoring the guidelines. Thus the volunteers must be vigilant,
and yet exercise restraint in how they bounce unbuddied issues back to their reporters. The goal is to
train each reporter to use the buddying system in the future, so that there is an ever-growing pool of peo-
ple who understand the issue-filtering system. On seeing an unbuddied issue, the ideal steps are:

http://bugs.debian.org/
http://bugs.debian.org/

Technical Infrastructure

63

1. Immediately respond to the issue, politely thanking the user for filing, but pointing them to the bud-
dying guidelines (which should, of course, be prominently posted on the web site).

2. If the issue is clearly valid and not a duplicate, approve it anyway, and start it down the normal life
cycle. After all, the reporter's now been informed about buddying, so there's no point wasting the
work done so far by closing a valid issue.

3. Otherwise, if the issue is not clearly valid, close it, but ask the reporter to reopen it if they get confir-
mation from a buddy. When they do, they should put a reference to the confirmation thread (e.g., a
URL into the mailing list archives).

Remember that although this system will improve the signal/noise ratio in the issue database over time,
it will never completely stop the misfilings. The only way to prevent misfilings entirely is to close off
the bug tracker to everyone but developers—a cure that is almost always worse than the disease. It's bet-
ter to accept that cleaning out invalid issues will always be part of the project's routine maintenance, and
to try to get as many people as possible to help.

See also the section called “Issue Manager” in Chapter 8, Managing Volunteers.

IRC / Real-Time Chat Systems
Many projects offer real-time chat rooms using Internet Relay Chat (IRC), forums where users and de-
velopers can ask each other questions and get instant responses. While you can run an IRC server from
your own web site, it is generally not worth the hassle. Instead, do what everyone else does: run your
IRC channels at Freenode (freenode.net [http://freenode.net/]). Freenode gives you the control you need
to administer your project's IRC channels,7 while sparing you the not-insignificant trouble of maintain-
ing an IRC server yourself.

The first thing to do is choose a channel name. The most obvious choice is the name of your project—if
that's available at Freenode, then use it. If not, try to choose something as close to your project's name,
and as easy to remember, as possible. Advertise the channel's availabity from your project's web site, so
a visitor with a quick question will see it right away. For example, this appears in a prominently placed
box at the top of Subversion's home page:

If you're using Subversion, we recommend that you join the
users@subversion.tigris.org mailing list, and read the Subversion Book
[http://svnbook.red-bean.com/] and FAQ [http://subversion.tigris.org/faq.html]. You
can also ask questions on IRC at irc.freenode.net channel #svn.

Some projects have multiple channels, one per subtopic. For example, one channel for installation prob-
lems, another for usage questions, another for development chat, etc. (the section called “Handling
Growth” in Chapter 6, Communications discusses and how to divide into multiple channels). When your
project is young, there should only be one channel, with everyone talking together. Later, as the user-to-
developer ratio increases, separate channels may become necessary.

How will people know all the available channels, let alone which channel to talk in? And when they
talk, how will they know what the local conventions are?

The answer is to tell them by setting the channel topic.8 The channel topic is a brief message each user
sees when they first enter the channel. It gives quick guidance to newcomers, and pointers to further in-
formation. For example:

7There is no requirement or expectation that you donate to Freenode, but if you or your project can afford it, please consider a contribution. They
are a tax-exempt charity in the U.S., and they perform a valuable service.
8To set a channel topic, use the /topic command. All commands in IRC start with "/". See irchelp.org [http://www.irchelp.org/] if you're not
familiar with IRC usage and administration; in particular, irchelp.org/irchelp/irctutorial.html [http://www.irchelp.org/irchelp/irctutorial.html] is
an excellent tutorial.

http://freenode.net/
http://freenode.net/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://subversion.tigris.org/faq.html
http://subversion.tigris.org/faq.html
http://www.irchelp.org/
http://www.irchelp.org/
http://www.irchelp.org/irchelp/irctutorial.html
http://www.irchelp.org/irchelp/irctutorial.html

Technical Infrastructure

64

You are now talking on #svn

Topic for #svn is Forum for Subversion user questions, see also
http://subversion.tigris.org/. || Development discussion happens in
#svn-dev. || Please don't paste long transcripts here, instead use
a pastebin site like http://pastebin.ca/. || NEWS: Subversion 1.1.0
is released, see http://svn110.notlong.com/ for details.

That's terse, but it tells newcomers what they need to know. It says exactly what the channel is for,
gives the project home page (in case someone wanders into the channel without having first been to the
project web site), mentions a related channel, and gives some guidance about pasting.

Paste Sites

An IRC channel is a shared space: everyone can see what everyone else is saying. Normally, this
is a good thing, as it allows people to jump into a conversation when they think they have some-
thing to contribute, and allows spectators to learn by watching. But it becomes problematic when
someone has to provide a large quantity of information at once, such as a debugging session tran-
script, because pasting too many lines of output into the channel will disrupt other conversations.

The solution is to use one of the pastebin or pastebot sites. When requesting a large amount of
data from someone, ask them not to paste it into the channel, but instead to go to (for example)
pastebin.ca [http://pastebin.ca/], paste their data into the form there, and tell the resulting new
URL to the IRC channel. Anyone can then visit the URL and view the data.

There are a number of free paste sites available now, too many for a comprehensive list, but here
are some of the ones I've used or seen used: paste.lisp.org [http://paste.lisp.org/], paste.debian.net
[http://paste.debian.net/], nomorepasting.com [http://www.nomorepasting.com/], pastebin.ca
[http://pastebin.ca/], and pastebin.com [http://www.pastebin.com/]. Pastebins are also fairly sim-
ple web applications to write and deploy, so many programmers have the released source code be-
hind their pastebins (for example code.google.com/p/rafb-nopaste [http://code.google.com/p/rafb-
nopaste] is the code that ran the long-popular but now-defunct rafb.net/paste site).

Bots
Many technically-oriented IRC channels have a non-human member, a so-called bot, that is capable of
storing and regurgitating information in response to specific commands. Typically, the bot is addressed
just like any other member of the channel, that is, the commands are delivered by "speaking to" the bot.
For example:

<kfogel> ayita: learn diff-cmd = http://subversion.tigris.org/faq.html#diff-cmd
<ayita> Thanks!

That told the bot (who is logged into the channel as ayita) to remember a certain URL as the answer to
the query "diff-cmd". Now we can address ayita, asking the bot to tell another user about diff-cmd:

<kfogel> ayita: tell jrandom about diff-cmd
<ayita> jrandom: http://subversion.tigris.org/faq.html#diff-cmd

The same thing can be accomplished via a convenient shorthand:

http://pastebin.ca/
http://pastebin.ca/
http://paste.lisp.org/
http://paste.lisp.org/
http://paste.debian.net/
http://paste.debian.net/
http://www.nomorepasting.com/
http://www.nomorepasting.com/
http://pastebin.ca/
http://pastebin.ca/
http://www.pastebin.com/
http://www.pastebin.com/
http://code.google.com/p/rafb-nopaste
http://code.google.com/p/rafb-nopaste
http://code.google.com/p/rafb-nopaste

Technical Infrastructure

65

<kfogel> !a jrandom diff-cmd
<ayita> jrandom: http://subversion.tigris.org/faq.html#diff-cmd

The exact command set and behaviors differ from bot to bot. The above example is with ayita
(hix.nu/svn-public/alexis/trunk [http://hix.nu/svn-public/alexis/trunk/]), of which there is usually an
instance running in #svn at freenode. Other bots include Dancer (dancer.sourceforge.net [http://
dancer.sourceforge.net/]) and Supybot (supybot.com [http://supybot.com/]). Note that no special server
privileges are required to run a bot. A bot is a client program; anyone can set one up and direct it to lis-
ten to a particular server/channel.

If your channel tends to get the same questions over and over, I highly recommend setting up a bot. On-
ly a small percentage of channel users will acquire the expertise needed to manipulate the bot, but those
users will answer a disproportionately high percentage of questions, because the bot enables them to re-
spond so much more efficiently.

CIA: A Standardized Change Publication Mechanism

poss2 todo: 2 February 2014: If you're reading this note, then you've encountered this
sidebar while it's undergoing substantial revision; see producingoss.com/v2.html [http://
producingoss.com/v2.html] for details. In this case, the detail is that CIA.vc as a service effec-
tively shut down in 2012. lwn.net/Articles/518955 [https://lwn.net/Articles/518955/] documents
how other less centralized replacements have since filled the gap. So what needs to happen here
is that this sidebar probably needs to be turned into a subsection, with the non-technical advice
remaining the same but recommending things other than CIA to implement that advice. (Howev-
er, the "cia" subsection ID will remain for link compatibility, although the new canonical ID will
probably be "irc-activity-notices" or something.) Somewhere, maybe not here, we should men-
tion OhLoh too, since it's a decent aggregator of project activity and offers a contributor-focused
view.

Commit emails are not the only way to propagate change news. You can also install CIA (cia.vc
[http://cia.vc/]), a real-time commit statistics aggregator and distributor. The most popular use of
CIA is to send commit notifications to IRC channels, so that people logged into those channels
see the commits happening in real time. Though of somewhat less technical utility than commit
emails, since observers might or might not be around when a commit notice pops up in IRC, this
technique is of immense social utility. People get the sense of being part of something alive and
active, and feel that they can see progress being made right before their eyes. And because the no-
tifications appear in a shared space, people in the chat room often react in real time, reviewing the
commit and commenting on it on the spot.

The way CIA works is that you invoke its notifier program from your post-commit hook. The no-
tifier formats the commit information into an XML message, which it sends to a central server
(typically cia.vi). That server then distributes the commit information to other forums.

CIA can also be configured to send out RSS [http://www.xml.com/pub/a/2002/12/18/dive-in-
to-xml.html] feeds. See the documentation at cia.vc [http://cia.vc/] for details.

To see an example of CIA in action, point your IRC client at irc.freenode.net, channel
#commits, which shows activity across all the projects CIA is watching.

Archiving IRC
Although it is possible to archive everything that happens in an IRC channel, it's not necessarily expect-
ed. IRC conversations may be nominally public, but many people think of them as informal, semi-pri-

http://hix.nu/svn-public/alexis/trunk/
http://hix.nu/svn-public/alexis/trunk/
http://dancer.sourceforge.net/
http://dancer.sourceforge.net/
http://dancer.sourceforge.net/
http://supybot.com/
http://supybot.com/
http://producingoss.com/v2.html
http://producingoss.com/v2.html
http://producingoss.com/v2.html
https://lwn.net/Articles/518955/
https://lwn.net/Articles/518955/
http://cia.vc/
http://cia.vc/
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://cia.vc/
http://cia.vc/

Technical Infrastructure

66

vate conversations. Users may be careless with grammar, and often express opinions (for example, about
other software or other programmers) that they wouldn't want preserved forever in an online archive.

Of course, there will sometimes be excerpts that should be preserved, and that's fine. Most IRC clients
can log a conversation to a file at the user's request, or failing that, one can always just cut and paste the
conversation from IRC into a more permanent forum (most often the bug tracker). But indiscriminate
logging may make some users uneasy. If you do archive everything, make sure you state so clearly in
the channel topic, and give a URL to the archive.

RSS Feeds
RSS (Really Simple Syndication) is a mechanism for distributing meta-data-rich news summaries
to "subscribers", that is, people who have indicated an interest in receiving those summaries. A giv-
en RSS source is usually called a feed, and the user's subscription interface is called a feed reader
or feed aggregator. RSS Bandit [http://www.rssbandit.org/] and the eponymous Feedreader [http://
www.feedreader.com/] are two open source RSS readers, for example.

There is not space here for a detailed technical explanation of RSS9, but you should be aware of two
main things. First, the feed reading software is chosen by the subscriber and is the same for all the feeds
that subscriber monitors — in fact, this is the major selling point of RSS: that the subscriber chooses
one interface to use for all their feeds, so each feed can concentrate just on delivering content. Second,
RSS is now ubiquitous, so much so that most people who use it don't even know they're using it. To the
world at large, RSS looks like a little button on a web page, with a label saying "Subscribe to this site"
or "News feed". You click on the button, and from then on, your feed reader (which may well be an ap-
plet embedded in your home page) automatically updates whenever there's news from the site.

This means that your open source project should probably offer an RSS feed (note that many of the
canned hosting sites — see the section called “Canned Hosting” — offer it right out of the box). Be
careful not to post so many news items each day that subscribers can't separate the wheat from the chaff.
If there are too many news events, people will just ignore the feed, or even unsubscribe in exasperation.
Ideally, a project would offer separate feeds, one for big announcements, another following (say) events
in the issue tracker, another for each mailing list, etc. In practice, this is hard to do well: it can result in
interface confusion both for visitors to the project's web site and for the administrators. But at a mini-
mum, the project should offer one RSS feed on the front page, for sending out major announcements
such as releases and security alerts.10

Wikis
A wiki is a web site that allows any visitor to edit or extend its content; the term "wiki" (from a Hawai-
ian word meaning "quick" or "super-fast") is also used to refer to the software that enables such edit-
ing. Wikis were invented in 1995, but their popularity has really started to take off since 2000 or 2001,
boosted partly by the success of Wikipedia (http://www.wikipedia.org/), a wiki-based free-content ency-
clopedia. Think of a wiki as falling somewhere between IRC and web pages: wikis don't happen in real-
time, so people get a chance to ponder and polish their contributions, but they are also very easy to add
to, involving less interface overhead than editing a regular web page.

Wikis are not yet standard equipment for open source projects, but they probably will be soon. As they
are relatively new technology, and people are still experimenting with different ways of using them, I
will just offer a few words of caution here—at this stage, it's easier to analyze misuses of wikis than to
analyze their successes.

9See xml.com/pub/a/2002/12/18/dive-into-xml.html [http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html] for that.
10Credit where credit is due: this section wasn't in the first published edition of the book, but Brian Aker's blog entry "Release Criteria, Open
Source, Thoughts On..." [http://krow.livejournal.com/564980.html] reminded me of the usefulness of RSS feeds for open source projects.

http://www.rssbandit.org/
http://www.rssbandit.org/
http://www.feedreader.com/
http://www.feedreader.com/
http://www.feedreader.com/
http://www.wikipedia.org/
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://krow.livejournal.com/564980.html
http://krow.livejournal.com/564980.html
http://krow.livejournal.com/564980.html

Technical Infrastructure

67

If you decide to run a wiki, put a lot of effort into having a clear page organization and pleasing visu-
al layout, so that visitors (i.e., potential editors) will instinctively know how to fit in their contributions.
Equally important, post those standards on the wiki itself, so people have somewhere to go for guidance.
Too often, wiki administrators fall victim to the fantasy that because hordes of visitors are individually
adding high quality content to the site, the sum of all these contributions must therefore also be of high
quality. That's not how web sites work. Each individual page or paragraph may be good when consid-
ered by itself, but it will not be good if embedded in a disorganized or confusing whole. Too often, wikis
suffer from:

• Lack of navigational principles. A well-organized web site makes visitors feel like they know where
they are at any time. For example, if the pages are well-designed, people can intuitively tell the differ-
ence between a "table of contents" region and a "content" region. Contributors to a wiki will respect
such differences too, but only if the differences are present to begin with.

• Duplication of information. Wikis frequently end up with different pages saying similar things, be-
cause the individual contributors did not notice the duplications. This can be partly a consequence of
the lack of navigational principles noted above, in that people may not find the duplicate content if it
is not where they expect it to be.

• Inconsistent target audience. To some degree this problem is inevitable when there are so many
authors, but it can be lessened if there are written guidelines about how to create new content. It al-
so helps to aggressively edit new contributions at the beginning, as an example, so that the standards
start to sink in.

The common solution to all these problems is the same: have editorial standards, and demonstrate them
not only by posting them, but by editing pages to adhere to them. In general, wikis will amplify any fail-
ings in their original material, since contributors imitate whatever patterns they see in front of them.
Don't just set up the wiki and hope everything falls into place. You must also prime it with well-written
content, so people have a template to follow.

The shining example of a well-run wiki is Wikipedia, though this may be partly because the content
(encyclopedia entries) is naturally well-suited to the wiki format. But if you examine Wikipedia close-
ly, you'll see that its administrators laid a very thorough foundation for cooperation. There is extensive
documentation on how to write new entries, how to maintain an appropriate point of view, what sorts
of edits to make, what edits to avoid, a dispute resolution process for contested edits (involving sever-
al stages, including eventual arbitration), and so forth. They also have authorization controls, so that if
a page is the target of repeated inappropriate edits, they can lock it down until the problem is resolved.
In other words, they didn't just throw some templates onto a web site and hope for the best. Wikipedia
works because its founders thought carefully about how to get thousands of strangers to tailor their writ-
ing to a common vision. While you may not need the same level of preparedness to run a wiki for a free
software project, the spirit is worth emulating.

For more information about wikis, see en.wikipedia.org/wiki/Wiki [http://en.wikipedia.org/wiki/Wi-
ki]. Also, the first wiki remains alive and well, and contains a lot of discussion about running wikis: see
c2.com/cgi/wiki?WelcomeVisitors [http://www.c2.com/cgi/wiki?WelcomeVisitors], c2.com/cgi/wi-
ki?WhyWikiWorks [http://www.c2.com/cgi/wiki?WhyWikiWorks], and c2.com/cgi/wiki?WhyWiki-
WorksNot [http://www.c2.com/cgi/wiki?WhyWikiWorksNot] for various points of view.

Social Networking Services
24 March 2013: If you're reading this note, then you've encountered this section while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 tbd: subsections for Twitter, Facebook, any others. Twitter is useful; Facebook appears not to be
so relevant to open source projects but check this with people who use it more. Identi.ca (if will persist).

http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki
http://www.c2.com/cgi/wiki?WelcomeVisitors
http://www.c2.com/cgi/wiki?WelcomeVisitors
http://www.c2.com/cgi/wiki?WhyWikiWorks
http://www.c2.com/cgi/wiki?WhyWikiWorks
http://www.c2.com/cgi/wiki?WhyWikiWorks
http://www.c2.com/cgi/wiki?WhyWikiWorksNot
http://www.c2.com/cgi/wiki?WhyWikiWorksNot
http://www.c2.com/cgi/wiki?WhyWikiWorksNot
http://producingoss.com/v2.html
http://producingoss.com/v2.html

Technical Infrastructure

68

Others? Eventbrite (mention from "meeting-in-person" section), what else? Acknowledge that many of
these services are not open source; times have changed, the train has left the barn or the horse has left
the station or whatever.

69

Chapter 4. Social and Political
Infrastructure

The first questions people usually ask about free software are "How does it work? What keeps a project
running? Who makes the decisions?" I'm always dissatisfied with bland responses about meritocracy,
the spirit of cooperation, code speaking for itself, etc. The fact is, the question is not easy to answer.
Meritocracy, cooperation, and running code are all part of it, but they do little to explain how projects
actually run on a day-to-day basis, and say nothing about how conflicts are resolved.

This chapter tries to show the structural underpinnings successful projects have in common. I mean
"successful" not just in terms of technical quality, but also operational health and survivability. Opera-
tional health is the project's ongoing ability to incorporate new code contributions and new developers,
and to be responsive to incoming bug reports. Survivability is the project's ability to exist independent-
ly of any individual participant or sponsor—think of it as the likelihood that the project would contin-
ue even if all of its founding members were to move on to other things. Technical success is not hard to
achieve, but without a robust developer base and social foundation, a project may be unable to handle
the growth that initial success brings, or the departure of charismatic individuals.

There are various ways to achieve this kind of success. Some involve a formal governance structure, by
which debates are resolved, new developers are invited in (and sometimes out), new features planned,
and so on. Others involve less formal structure, but more conscious self-restraint, to produce an atmos-
phere of fairness that people can rely on as a de facto form of governance. Both ways lead to the same
result: a sense of institutional permanence, supported by habits and procedures that are well understood
by everyone who participates. These features are even more important in self-organizing systems than in
centrally-controlled ones, because in self-organizing systems, everyone is conscious that a few bad ap-
ples can spoil the whole barrel, at least for a while.

Forkability
The indispensable ingredient that binds developers together on a free software project, and makes them
willing to compromise when necessary, is the code's forkability: the ability of anyone to take a copy of
the source code and use it to start a competing project, known as a fork. The paradoxical thing is that
the possibility of forks is usually a much greater force in free software projects than actual forks, which
are very rare. Because a fork is bad for everyone (for reasons examined in detail in the section called
“Forks” in Chapter 8, Managing Volunteers), the more serious the threat of a fork becomes, the more
willing people are to compromise to avoid it.

Forks, or rather the potential for forks, are the reason there are no true dictators in free software projects.
This may seem like a surprising claim, considering how common it is to hear someone called the "dic-
tator" or "tyrant" in a given open source project. But this kind of tyranny is special, quite different from
the conventional understanding of the word. Imagine a king whose subjects could copy his entire king-
dom at any time and move to the copy to rule as they see fit. Would not such a king govern very differ-
ently from one whose subjects were bound to stay under his rule no matter what he did?

This is why even projects that are not formally organized as democracies are, in practice, democracies
when it comes to important decisions. Replicability implies forkability; forkability implies consensus. It
may well be that everyone is willing to defer to one leader (the most famous example being Linus Tor-
valds in Linux kernel development), but this is because they choose to do so, in an entirely non-cyni-
cal and non-sinister way. The dictator has no magical hold over the project. A key property of all open
source licenses is that they do not give one party more power than any other in deciding how the code

Social and Political Infrastructure

70

can be changed or used. If the dictator were to suddenly start making bad decisions, there would be rest-
lessness, followed eventually by revolt and a fork. Except, of course, things rarely get that far, because
the dictator compromises first.

But just because forkability puts an upper limit on how much power anyone can exert in a project
doesn't mean there aren't important differences in how projects are governed. You don't want every deci-
sion to come down to the last-resort question of who is considering a fork. That would get tiresome very
quickly, and sap energy away from real work. The next two sections examine different ways to organize
projects such that most decisions go smoothly. These two examples are somewhat idealized extremes;
many projects fall somewhere along a continuum between them.

Benevolent Dictators
The benevolent dictator model is exactly what it sounds like: final decision-making authority rests with
one person, who, by virtue of personality and experience, is expected to use it wisely.

Although "benevolent dictator" (or BD)is the standard term for this role, it would be better to think of
it as "community-approved arbitrator" or "judge". Generally, benevolent dictators do not actually make
all the decisions, or even most of the decisions. It's unlikely that one person could have enough exper-
tise to make consistently good decisions across all areas of the project, and anyway, quality developers
won't stay around unless they have some influence on the project's direction. Therefore, benevolent dic-
tators commonly do not dictate much. Instead, they let things work themselves out through discussion
and experimentation whenever possible. They participate in those discussions themselves, but as regular
developers, often deferring to an area maintainer who has more expertise. Only when it is clear that no
consensus can be reached, and that most of the group wants someone to guide the decision so that devel-
opment can move on, do they put their foot down and say "This is the way it's going to be." Reluctance
to make decisions by fiat is a trait shared by virtually all successful benevolent dictators; it is one of the
reasons they manage to keep the role.

Who Can Be a Good Benevolent Dictator?
Being a BD requires a combination of traits. It needs, first of all, a well-honed sensitivity to one's own
influence in the project, which in turn brings self-restraint. In the early stages of a discussion, one should
not express opinions and conclusions with so much certainty that others feel like it's pointless to dissent.
People must be free to air ideas, even stupid ideas. It is inevitable that the BD will post a stupid idea
from time to time too, of course, and therefore the role also requires an ability to recognize and acknowl-
edge when one has made a bad decision—though this is simply a trait that any good developer should
have, especially if she stays with the project a long time. But the difference is that the BD can afford to
slip from time to time without worrying about long-term damage to her credibility. Developers with less
seniority may not feel so secure, so the BD should phrase critiques or contrary decisions with some sen-
sitivity for how much weight her words carry, both technically and psychologically.

The BD does not need to have the sharpest technical skills of anyone in the project. She must be skilled
enough to work on the code herself, and to understand and comment on any change under consideration,
but that's all. The BD position is neither acquired nor held by virtue of intimidating coding skills. What
is important is experience and overall design sense—not necessarily the ability to produce good design
on demand, but the ability to recognize good design, whatever its source.

It is common for the benevolent dictator to be a founder of the project, but this is more a correlation
than a cause. The sorts of qualities that make one able to successfully start a project—technical compe-
tence, ability to persuade other people to join, etc.—are exactly the qualities any BD would need. And of
course, founders start out with a sort of automatic seniority, which can often be enough to make benevo-
lent dictatorship appear the path of least resistance for all concerned.

Social and Political Infrastructure

71

Remember that the potential to fork goes both ways. A BD can fork a project just as easily as anyone
else, and some have occasionally done so, when they felt that the direction they wanted to take the
project was different from where the majority of other developers wanted to go. Because of forkabili-
ty, it does not matter whether the benevolent dictator has root (system administrator privileges) on the
project's main servers or not. People sometimes talk of server control as though it were the ultimate
source of power in a project, but in fact it is irrelevant. The ability to add or remove people's commit
passwords on one particular server affects only the copy of the project that resides on that server. Pro-
longed abuse of that power, whether by the BD or someone else, would simply lead to development
moving to a different server.

Whether your project should have a benevolent dictator, or would run better with some less centralized
system, largely depends on who is available to fill the role. As a general rule, if it's simply obvious to
everyone who should be the BD, then that's the way to go. But if no candidate for BD is immediately
obvious, then the project should probably use a decentralized decision-making process, as described in
the next section.

Consensus-based Democracy
As projects get older, they tend to move away from the benevolent dictatorship model and toward more
openly democratic systems. This is not necessarily out of dissatisfaction with a particular BD. It's simply
that group-based governance is more "evolutionarily stable", to borrow a biological metaphor. Whenev-
er a benevolent dictator steps down, or attempts to spread decision-making responsibility more evenly,
it is an opportunity for the group to settle on a new, non-dictatorial system—establish a constitution, as
it were. The group may not take this opportunity the first time, or the second, but eventually they will;
once they do, the decision is unlikely ever to be reversed. Common sense explains why: if a group of N
people were to vest one person with special power, it would mean that N - 1 people were each agreeing
to decrease their individual influence. People usually don't want to do that. Even if they did, the result-
ing dictatorship would still be conditional: the group anointed the BD, clearly the group could depose
the BD. Therefore, once a project has moved from leadership by a charismatic individual to a more for-
mal, group-based system, it rarely moves back.

The details of how these systems work vary widely, but there are two common elements: one, the group
works by consensus most of the time; two, there is a formal voting mechanism to fall back on when con-
sensus cannot be reached.

Consensus merely means an agreement that everyone is willing to live with. It is not an ambiguous state:
a group has reached consensus on a given question when someone proposes that consensus has been
reached, and no one contradicts the assertion. The person proposing consensus should, of course, state
specifically what the consensus is, and what actions would be taken in consequence of it, if they're not
obvious.

Most conversation in a project is on technical topics, such as the right way to fix a certain bug, whether
or not to add a feature, how strictly to document interfaces, etc. Consensus-based governance works well
because it blends seamlessly with the technical discussion itself. By the end of a discussion, there is of-
ten general agreement on what course to take. Someone will usually make a concluding post, which is
simultaneously a summary of what has been decided and an implicit proposal of consensus. This pro-
vides a last chance for someone else to say "Wait, I didn't agree to that. We need to hash this out some
more."

For small, uncontroversial decisions, the proposal of consensus is implicit. For example, when a devel-
oper spontaneously commits a bugfix, the commit itself is a proposal of consensus: "I assume we all
agree that this bug needs to be fixed, and that this is the way to fix it." Of course, the developer does not
actually say that; she just commits the fix, and the others in the project do not bother to state their agree-

Social and Political Infrastructure

72

ment, because silence is consent. If someone commits a change that turns out not to have consensus, the
result is simply for the project to discuss the change as though it had not already been committed. The
reason this works is the topic of the next section.

Version Control Means You Can Relax
The fact that the project's source code is kept under version control means that most decisions can be
easily unmade. The most common way this happens is that someone commits a change mistakenly
thinking everyone would be happy with it, only to be met with objections after the fact. It is typical for
such objections to start out with an obligatory apology for having missed out on prior discussion, though
this may be omitted if the objector finds no record of such a discussion in the mailing list archives. Ei-
ther way, there is no reason for the tone of the discussion to be different after the change has been com-
mitted than before. Any change can be reverted, at least until dependent changes are introduced (i.e.,
new code that would break if the original change were suddenly removed). The version control system
gives the project a way to undo the effects of bad or hasty judgement. This, in turn, frees people to trust
their instincts about how much feedback is necessary before doing something.

This also means that the process of establishing consensus need not be very formal. Most projects han-
dle it by feel. Minor changes can go in with no discussion, or with minimal discussion followed by a few
nods of agreement. For more significant changes, especially ones with the potential to destabilize a lot
of code, people should wait a day or two before assuming there is consensus, the rationale being that no
one should be marginalized in an important conversation simply because he didn't check email frequent-
ly enough.

Thus, when someone is confident he knows what needs to be done, he should just go ahead and do it.
This applies not only to software fixes, but to web site updates, documentation changes, and anything
else unlikely to be controversial. Usually there will be only a few instances where an action needs to be
undone, and these can be handled on a case-by-case basis. Of course, one shouldn't encourage people to
be headstrong. There is still a psychological difference between a decision under discussion and one that
has already taken effect, even if it is technically reversible. People always feel that momentum is allied
to action, and will be slightly more reluctant to revert a change than to prevent it in the first place. If a
developer abuses this fact by committing potentially controversial changes too quickly, however, people
can and should complain, and hold that developer to a stricter standard until things improve.

When Consensus Cannot Be Reached, Vote
Inevitably, some debates just won't consense. When all other means of breaking a deadlock fail, the so-
lution is to vote. But before a vote can be taken, there must be a clear set of choices on the ballot. Here,
again, the normal process of technical discussion blends serendipitously with the project's decision-mak-
ing procedures. The kinds of questions that come to a vote often involve complex, multifaceted issues.
In any such complex discussion, there are usually one or two people playing the role of honest broker:
posting periodic summaries of the various arguments and keeping track of where the core points of dis-
agreement (and agreement) lie. These summaries help everyone measure how much progress has been
made, and remind everyone of what issues remain to be addressed. Those same summaries can serve
as prototypes for a ballot sheet, should a vote become necessary. If the honest brokers have been doing
their job well, they will be able to credibly call for a vote when the time comes, and the group will be
willing to use a ballot sheet based on their summary of the issues. The brokers themselves may be par-
ticipants in the debate; it is not necessary for them to remain above the fray, as long as they can under-
stand and fairly represent others' views, and not let their partisan sentiments prevent them from summa-
rizing the state of the debate in a neutral fashion.

The actual content of the ballot is usually not controversial. By the time matters reach a vote, the dis-
agreement has usually boiled down to a few key issues, with recognizable labels and brief descriptions.

Social and Political Infrastructure

73

Occasionally a developer will object to the form of the ballot itself. Sometimes his concern is legitimate,
for example, that an important choice was left off or not described accurately. But other times a develop-
er may be merely trying to stave off the inevitable, perhaps knowing that the vote probably won't go his
way. See the section called “Difficult People” in Chapter 6, Communications for how to deal with this
sort of obstructionism.

Remember to specify the voting system, as there are many different kinds, and people might make
wrong assumptions about which procedure is being used. A good choice in most cases is approval vot-
ing, whereby each voter can vote for as many of the choices on the ballot as he likes. Approval voting
is simple to explain and to count, and unlike some other methods, it only involves one round of voting.
See en.wikipedia.org/wiki/Voting_system [http://en.wikipedia.org/wiki/Voting_system] for more details
about approval voting and other voting systems, but try to avoid getting into a long debate about which
voting system to use (because, of course, you will then find yourself in a debate about which voting sys-
tem to use to decide the voting system!). One reason approval voting is a good choice is that it's very
hard for anyone to object to—it's about as fair as a voting system can be.

Finally, conduct votes in public. There is no need for secrecy or anonymity in a vote on matters that
have been debated publicly anyway. Have each participant post her votes to the project mailing list, so
that any observer can tally and check the results for herself, and so that everything is recorded in the
archives.

When To Vote
The hardest thing about voting is determining when to do it. In general, taking a vote should be very rare
—a last resort for when all other options have failed. Don't think of voting as a great way to resolve de-
bates. It isn't. It ends discussion, and thereby ends creative thinking about the problem. As long as dis-
cussion continues, there is the possibility that someone will come up with a new solution everyone likes.
This happens surprisingly often: a lively debate can produce a new way of thinking about the problem,
and lead to a proposal that eventually satisfies everyone. Even when no new proposal arises, it's still
usually better to broker a compromise than to hold a vote. After a compromise, everyone is a little bit
unhappy, whereas after a vote, some people are unhappy while others are happy. From a political stand-
point, the former situation is preferable: at least each person can feel he extracted a price for his unhap-
piness. He may be dissatisfied, but so is everyone else.

Voting's main advantage is that it finally settles a question so everyone can move on. But it settles it by
a head count, instead of by rational dialogue leading everyone to the same conclusion. The more expe-
rienced people are with open source projects, the less eager I find them to be to settle questions by vote.
Instead they will try to explore previously unconsidered solutions, or compromise more severely than
they'd originally planned. Various techniques are available to prevent a premature vote. The most ob-
vious is simply to say "I don't think we're ready for a vote yet," and explain why not. Another is to ask
for an informal (non-binding) show of hands. If the response clearly tends toward one side or another,
this will make some people suddenly more willing to compromise, obviating the need for a formal vote.
But the most effective way is simply to offer a new solution, or a new viewpoint on an old suggestion,
so that people re-engage with the issues instead of merely repeating the same arguments.

In certain rare cases, everyone may agree that all the compromise solutions are worse than any of the
non-compromise ones. When that happens, voting is less objectionable, both because it is more likely
to lead to a superior solution and because people will not be overly unhappy no matter how it turns out.
Even then, the vote should not be rushed. The discussion leading up to a vote is what educates the elec-
torate, so stopping that discussion early can lower the quality of the result.

(Note that this advice to be reluctant to call votes does not apply to the change-inclusion voting de-
scribed in the section called “Stabilizing a Release” in Chapter 7, Packaging, Releasing, and Daily De-
velopment. There, voting is more of a communications mechanism, a means of registering one's involve-

http://en.wikipedia.org/wiki/Voting_system
http://en.wikipedia.org/wiki/Voting_system

Social and Political Infrastructure

74

ment in the change review process so that everyone can tell how much review a given change has re-
ceived.)

Who Votes?
Having a voting system raises the question of electorate: who gets to vote? This has the potential to be a
sensitive issue, because it forces the project to officially recognize some people as being more involved,
or as having better judgement, than others.

The best solution is to simply take an existing distinction, commit access, and attach voting privileges to
it. In projects that offer both full and partial commit access, the question of whether partial committers
can vote largely depends on the process by which partial commit access is granted. If the project hands
it out liberally, for example as a way of maintaining many third-party contributed tools in the repository,
then it should be made clear that partial commit access is really just about committing, not voting. The
reverse implication naturally holds as well: since full committers will have voting privileges, they must
be chosen not only as programmers, but as members of the electorate. If someone shows disruptive or
obstructionist tendencies on the mailing list, the group should be very cautious about making him a com-
mitter, even if the person is technically skilled.

The voting system itself should be used to choose new committers, both full and partial. But here is one
of the rare instances where secrecy is appropriate. You can't have votes about potential committers post-
ed to a public mailing list, because the candidate's feelings (and reputation) could be hurt. Instead, the
usual way is that an existing committer posts to a private mailing list consisting only of the other com-
mitters, proposing that someone be granted commit access. The other committers speak their minds
freely, knowing the discussion is private. Often there will be no disagreement, and therefore no vote
necessary. After waiting a few days to make sure every committer has had a chance to respond, the pro-
poser mails the candidate and offers him commit access. If there is disagreement, discussion ensues as
for any other question, possibly resulting in a vote. For this process to be open and frank, the mere fact
that the discussion is taking place at all should be secret. If the person under consideration knew it was
going on, and then were never offered commit access, he could conclude that he had lost the vote, and
would likely feel hurt. Of course, if someone explicitly asks for commit access, then there is no choice
but to consider the proposal and explicitly accept or reject him. If the latter, then it should be done as
politely as possible, with a clear explanation: "We liked your patches, but haven't seen enough of them
yet," or "We appreciate all your patches, but they required considerable adjustments before they could
be applied, so we don't feel comfortable giving you commit access yet. We hope that this will change
over time, though." Remember, what you're saying could come as a blow, depending on the person's lev-
el of confidence. Try to see it from their point of view as you write the mail.

Because adding a new committer is more consequential than most other one-time decisions, some
projects have special requirements for the vote. For example, they may require that the proposal receive
at least n positive votes and no negative votes, or that a supermajority vote in favor. The exact parame-
ters are not important; the main idea is to get the group to be careful about adding new committers. Sim-
ilar, or even stricter, special requirements can apply to votes to remove a committer, though hopefully
that will never be necessary. See the section called “Committers” in Chapter 8, Managing Volunteers for
more on the non-voting aspects of adding and removing committers.

Polls Versus Votes
For certain kinds of votes, it may be useful to expand the electorate. For example, if the developers sim-
ply can't figure out whether a given interface choice matches the way people actually use the software,
one solution is to ask to all the subscribers of the project's mailing lists to vote. These are really polls
rather than votes, but the developers may choose to treat the result as binding. As with any poll, be sure
to make it clear to the participants that there's a write-in option: if someone thinks of a better option not
offered in the poll questions, her response may turn out to be the most important result of the poll.

Social and Political Infrastructure

75

Vetoes
Some projects allow a special kind of vote known as a veto. A veto is a way for a developer to put a halt
to a hasty or ill-considered change, at least long enough for everyone to discuss it more. Think of a ve-
to as somewhere between a very strong objection and a filibuster. Its exact meaning varies from one
project to another. Some projects make it very difficult to override a veto; others allow them to be over-
ridden by regular majority vote, perhaps after an enforced delay for more discussion. Any veto should
be accompanied by a thorough explanation; a veto without such an explanation should be considered in-
valid on arrival.

With vetoes comes the problem of veto abuse. Sometimes developers are too eager to raise the stakes by
casting a veto, when really all that was called for was more discussion. You can prevent veto abuse by
being very reluctant to use vetoes yourself, and by gently calling it out when someone else uses her ve-
to too often. If necessary, you can also remind the group that vetoes are binding for only as long as the
group agrees they are—after all, if a clear majority of developers wants X, then X is going to happen
one way or another. Either the vetoing developer will back down, or the group will decide to weaken the
meaning of a veto.

You may see people write "-1" to express a veto. This usage comes from the Apache Software Foun-
dation, which has a highly structured voting and veto process, described at apache.org/founda-
tion/voting.html [http://www.apache.org/foundation/voting.html]. The Apache standards have spread to
other projects, and you will see their conventions used to varying degrees in a lot of places in the open
source world. Technically, "-1" does not always indicate a formal veto even according to the Apache
standards, but informally it is usually taken to mean a veto, or at least a very strong objection.

Like votes, vetoes can apply retroactively. It's not okay to object to a veto on the grounds that the change
in question has already been committed, or the action taken (unless it's something irrevocable, like
putting out a press release). On the other hand, a veto that arrives weeks or months late isn't likely to be
taken very seriously, nor should it be.

Writing It All Down
At some point, the number of conventions and agreements floating around in your project may become
so great that you need to record it somewhere. In order to give such a document legitimacy, make it
clear that it is based on mailing list discussions and on agreements already in effect. As you compose
it, refer to the relevant threads in the mailing list archives, and whenever there's a point you're not sure
about, ask again. The document should not contain any surprises: it is not the source of the agreements,
it is merely a description of them. Of course, if it is successful, people will start citing it as a source of
authority in itself, but that just means it reflects the overall will of the group accurately.

This is the document alluded to in the section called “Developer Guidelines” in Chapter 2, Getting Start-
ed. Naturally, when the project is very young, you will have to lay down guidelines without the benefit
of a long project history to draw on. But as the development community matures, you can adjust the lan-
guage to reflect the way things actually turn out.

Don't try to be comprehensive. No document can capture everything people need to know about partic-
ipating in a project. Many of the conventions a project evolves remain forever unspoken, never men-
tioned explicitly, yet adhered to by all. Other things are simply too obvious to be mentioned, and would
only distract from important but non-obvious material. For example, there's no point writing guidelines
like "Be polite and respectful to others on the mailing lists, and don't start flame wars," or "Write clean,
readable bug-free code." Of course these things are desirable, but since there's no conceivable universe
in which they might not be desirable, they are not worth mentioning. If people are being rude on the
mailing list, or writing buggy code, they're not going to stop just because the project guidelines said to.
Such situations need to be dealt with as they arise, not by blanket admonitions to be good. On the other

http://www.apache.org/foundation/voting.html
http://www.apache.org/foundation/voting.html
http://www.apache.org/foundation/voting.html

Social and Political Infrastructure

76

hand, if the project has specific guidelines about how to write good code, such as rules about document-
ing every API in a certain format, then those guidelines should be written down as completely as possi-
ble.

A good way to determine what to include is to base the document on the questions that newcomers ask
most often, and on the complaints experienced developers make most often. This doesn't necessarily
mean it should turn into a FAQ sheet—it probably needs a more coherent narrative structure than FAQs
can offer. But it should follow the same reality-based principle of addressing the issues that actually
arise, rather than those you anticipate might arise.

If the project is a benevolent dictatorship, or has officers endowed with special powers (president, chair,
whatever), then the document is also a good opportunity to codify succession procedures. Sometimes
this can be as simple as naming specific people as replacements in case the BD suddenly leaves the
project for any reason. Generally, if there is a BD, only the BD can get away with naming a successor.
If there are elected officers, then the nomination and election procedure that was used to choose them in
the first place should be described in the document. If there was no procedure originally, then get con-
sensus on a procedure on the mailing lists before writing about it. People can sometimes be touchy about
hierarchical structures, so the subject needs to be approached with sensitivity.

Perhaps the most important thing is to make it clear that the rules can be reconsidered. If the conven-
tions described in the document start to hamper the project, remind everyone that it is supposed to be a
living reflection of the group's intentions, not a source of frustration and blockage. If someone makes
a habit of inappropriately asking for rules to be reconsidered every time the rules get in her way, you
don't always need to debate it with her—sometimes silence is the best tactic. If other people agree with
the complaints, they'll chime in, and it will be obvious that something needs to change. If no one else
agrees, then the person won't get much response, and the rules will stay as they are.

Two good examples of project guidelines are the Subversion Community Guide, at
subversion.apache.org/docs/community-guide/ [http://subversion.apache.org/docs/communi-
ty-guide/], and the Apache Software Foundation governance documents, at apache.org/founda-
tion/how-it-works.html [http://www.apache.org/foundation/how-it-works.html] and apache.org/founda-
tion/voting.html [http://www.apache.org/foundation/voting.html]. The ASF is really a collection of soft-
ware projects, legally organized as a nonprofit corporation, so its documents tend to describe governance
procedures more than development conventions. They're still worth reading, though, because they repre-
sent the accumulated experience of a lot of open source projects.

Joining or Creating a Non-Profit Organization
24 March 2013: If you're reading this note, then you've encountered this section while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 tbd

Mention Software Freedom Conservancy, SPI, ASF, GNOME, any others. Note "non-profit" vs "not-for-
profit". Mention Kuali et al as models. Problems of consortiums. Don't assume the U.S. tax code bene-
fit is familiar everywhere. Emphasize clear separation between the legal infrastructure and the day-to-
day running of the project: the organization is there to take care of the things the developers don't want
to deal with, not to interfere with the things the developers already know how to do. Explain fiscal spon-
sorship when talking about fundraising. Note trademark ownership as well as copyright ownership, and
link to this section as appropriate from the licensing/copyrights chapter and from the money / corporate
involvement chapter.

http://subversion.apache.org/docs/community-guide/
http://subversion.apache.org/docs/community-guide/
http://subversion.apache.org/docs/community-guide/
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/voting.html
http://www.apache.org/foundation/voting.html
http://www.apache.org/foundation/voting.html
http://producingoss.com/v2.html
http://producingoss.com/v2.html

77

Chapter 5. Money
This chapter examines how to bring funding into a free software environment. It is aimed not only at de-
velopers who are paid to work on free software projects, but also at their managers, who need to under-
stand the social dynamics of the development environment. In the sections that follow, the addressee
("you") is presumed to be either a paid developer, or one who manages such developers. The advice will
often be the same for both; when it's not, the intended audience will be made clear from context.

Corporate funding of free software development is not a new phenomenon. A lot of development has al-
ways been informally subsidized. When a system administrator writes a network analysis tool to help
her do her job, then posts it online and gets bug fixes and feature contributions from other system ad-
ministrators, what's happened is that an unofficial consortium has been formed. The consortium's fund-
ing comes from the sysadmins' salaries, and its office space and network bandwidth are donated, albeit
unknowingly, by the organizations they work for. Those organizations benefit from the investment, of
course, although they may not be institutionally aware of it at first.

The difference today is that many of these efforts are being formalized. Corporations have become con-
scious of the benefits of open source software, and started involving themselves more directly in its de-
velopment. Developers too have come to expect that really important projects will attract at least dona-
tions, and possibly even long-term sponsors. While the presence of money has not changed the basic dy-
namics of free software development, it has greatly changed the scale at which things happen, both in
terms of the number of developers and time-per-developer. It has also had effects on how projects are
organized, and on how the parties involved in them interact. The issues are not merely about how the
money is spent, or how return on investment is measured. They are also about management and process:
how can the hierarchical command structures of corporations and the semi-decentralized volunteer com-
munities of free software projects work productively with each other? Will they even agree on what
"productively" means?

Financial backing is, in general, welcomed by open source development communities. It can reduce a
project's vulnerability to the Forces of Chaos, which sweep away so many projects before they really get
off the ground, and therefore it can make people more willing to give the software a chance—they feel
they're investing their time into something that will still be around six months from now. After all, cred-
ibility is contagious, to a point. When, say, IBM backs an open source project, people pretty much as-
sume the project won't be allowed to fail, and their resultant willingness to devote effort to it can make
that a self-fulfilling prophecy.

However, funding also brings a perception of control. If not handled carefully, money can divide a
project into in-group and out-group developers. If the unpaid volunteers get the feeling that design de-
cisions or feature additions are simply available to the highest bidder, they'll head off to a project that
seems more like a meritocracy and less like unpaid labor for someone else's benefit. They may nev-
er complain overtly on the mailing lists. Instead, there will simply be less and less noise from external
sources, as the volunteers gradually stop trying to be taken seriously. The buzz of small-scale activity
will continue, in the form of bug reports and occasional small fixes. But there won't be any large code
contributions or outside participation in design discussions. People sense what's expected of them, and
live up (or down) to those expectations.

Although money needs to be used carefully, that doesn't mean it can't buy influence. It most certainly
can. The trick is that it can't buy influence directly. In a straightforward commercial transaction, you
trade money for what you want. If you need a feature added, you sign a contract, pay for it, and it gets
done. In an open source project, it's not so simple. You may sign a contract with some developers, but
they'd be fooling themselves—and you—if they guaranteed that the work you paid for would be accept-
ed by the development community simply because you paid for it. The work can only be accepted on its
own merits and on how it fits into the community's vision for the software. You may have some say in
that vision, but you won't be the only voice.

Money

78

So money can't purchase influence, but it can purchase things that lead to influence. The most obvious
example is programmers. If good programmers are hired, and they stick around long enough to get ex-
perience with the software and credibility in the community, then they can influence the project by the
same means as any other member. They will have a vote, or if there are many of them, they will have a
voting bloc. If they are respected in the project, they will have influence beyond just their votes. There
is no need for paid developers to disguise their motives, either. After all, everyone who wants a change
made to the software wants it for a reason. Your company's reasons are no less legitimate than anyone
else's. It's just that the weight given to your company's goals will be determined by its representatives'
status in the project, not by the company's size, budget, or business plan.

Crowdfunding: Kickstarter, etc
24 March 2013: If you're reading this note, then you've encountered this section while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 tbd

Kickstarter is the obvious place to start, but there are other funding systems too. Look at campaigns
that have used indiegogo, snowdrift (if in production by then), ask around for others. Use Michael
Bernstein's tips on how to do it right.

Types of Corporate Involvement
There are many different reasons open source projects get funded. The items in this list aren't mutually
exclusive; often a project's financial backing will result from several, or even all, of these motivations:

Sharing the burden
Separate organizations with related software needs often find themselves duplicating effort, either
by redundantly writing similar code in-house, or by purchasing similar products from proprietary
vendors. When they realize what's going on, the organizations may pool their resources and create
(or join) an open source project tailored to their needs. The advantages are obvious: the costs of de-
velopment are divided, but the benefits accrue to all. Although this scenario seems most intuitive for
nonprofits, it can make strategic sense even for for-profit competitors.

Examples: openadapter.org [http://www.openadapter.org/], koha.org [http://www.koha.org/]

Augmenting services
When a company sells services which depend on, or are made more attractive by, particular open
source programs, it is naturally in that company's interests to ensure those programs are actively
maintained.

Example: CollabNet's [http://www.collab.net/] support of Subversion [http://
subversion.apache.org/] (disclaimer: I worked for CollabNet on that project, but it's also a perfect
example of this model).

Supporting hardware sales
The value of computers and computer components is directly related to the amount of software
available for them. Hardware vendors—not just whole-machine vendors, but also makers of pe-
ripheral devices and microchips—have found that having high-quality free software to run on their
hardware is important to customers.

Undermining a competitor
Sometimes companies support a particular open source project as a means of undermining a
competitor's product, which may or may not be open source itself. Eating away at a competitor's

http://producingoss.com/v2.html
http://producingoss.com/v2.html
http://www.openadapter.org/
http://www.openadapter.org/
http://www.koha.org/
http://www.koha.org/
http://www.collab.net/
http://www.collab.net/
http://subversion.apache.org/
http://subversion.apache.org/
http://subversion.apache.org/

Money

79

market share is usually not the sole reason for getting involved with an open source project, but it
can be a factor.

Example: openoffice.org [http://www.openoffice.org/] (this is a historical example now, since Sun
Microsystems, which started the OpenOffice project, has been bought by Oracle, and as a result
most of the developer momentum has moved from OpenOffice to its offspring LibreOffice. Al-
though undermining a competitor wasn't the only reason Sun started OpenOffice, it was at least
partly a response to Microsoft Office, and LibreOffice today continues to be a strong competitor to
MS Office).

Marketing
Having your company associated with a popular open source application can be simply good brand
management.

Dual-licensing
Dual-licensing is the practice of offering software under a traditional proprietary license for cus-
tomers who want to resell it as part of a proprietary application of their own, and simultaneously un-
der a free license for those willing to use it under open source terms (see the section called “Dual
Licensing Schemes” in Chapter 10, Licenses, Copyrights, and Patents). If the open source develop-
er community is active, the software gets the benefits of wide-area debugging and development, yet
the company still gets a royalty stream to support some full-time programmers.

Two well-known examples are MySQL [http://www.mysql.com/], makers of the database software
of the same name, and Sleepycat [http://www.sleepycat.com/], which offers distributions and sup-
port for the Berkeley Database. It's no coincidence that they're both database companies. Database
software tends to be integrated into applications rather than marketed directly to users, so it's very
well-suited to the dual-licensing model.

Donations
A widely-used project can sometimes get significant contributions, from both individuals and orga-
nizations, just by having an online donation button, or sometimes by selling branded merchandise
such as coffee mugs, T-shirts, mousepads, etc. A word of caution: if your project accepts donations,
plan out how the money will be used before it comes in, and state the plans on the project's web site.
Discussions about how to allocate money tend to go a lot more smoothly when held before there's
actual money to spend; and anyway, if there are significant disagreements, it's better to find that out
while it's still academic.

A funder's business model is not the only factor in how it relates to an open source community. The his-
torical relationship between the two also matters: did the company start the project, or is it joining an ex-
isting development effort? In both cases, the funder will have to earn credibility, but, not surprisingly,
there's a bit more earning to be done in the latter case. The organization needs to have clear goals with
respect to the project. Is the company trying to keep a position of leadership, or simply trying to be one
voice in the community, to guide but not necessarily govern the project's direction? Or does it just want
to have a couple of committers around, able to fix customers' bugs and get the changes into the public
distribution without any fuss?

Keep these questions in mind as you read the guidelines that follow. They are meant to apply to any sort
of organizational involvement in a free software project, but every project is a human environment, and
therefore no two are exactly alike. To some degree, you will always have to play by ear, but following
these principles will increase the likelihood of things turning out the way you want.

Hire for the Long Term
If you're managing programmers on an open source project, keep them there long enough that they ac-
quire both technical and political expertise—a couple of years, at a minimum. Of course, no project,

http://www.openoffice.org/
http://www.openoffice.org/
http://www.mysql.com/
http://www.mysql.com/
http://www.sleepycat.com/
http://www.sleepycat.com/

Money

80

whether open or closed-source, benefits from swapping programmers in and out too often. The need for
a newcomer to learn the ropes each time would be a deterrent in any environment. But the penalty is
even stronger in open source projects, because outgoing developers take with them not only their knowl-
edge of the code, but also their status in the community and the human relationships they have made
there.

The credibility a developer has accumulated cannot be transferred. To pick the most obvious example,
an incoming developer can't inherit commit access from an outgoing one (see the section called “Money
Can't Buy You Love” later in this chapter), so if the new developer doesn't already have commit access,
he will have to submit patches until he does. But commit access is only the most measurable manifes-
tation of lost influence. A long-time developer also knows all the old arguments that have been hashed
and rehashed on the discussion lists. A new developer, having no memory of those conversations, may
try to raise the topics again, leading to a loss of credibility for your organization; the others might won-
der "Can't they remember anything?" A new developer will also have no political feel for the project's
personalities, and will not be able to influence development directions as quickly or as smoothly as one
who's been around a long time.

Train newcomers through a program of supervised engagement. The new developer should be in direct
contact with the public development community from the very first day, starting off with bug fixes and
cleanup tasks, so he can learn the code base and acquire a reputation in the community, yet not spark
any long and involved design discussions. All the while, one or more experienced developers should be
available for questioning, and should be reading every post the newcomer makes to the development
lists, even if they're in threads that the experienced developers normally wouldn't pay attention to. This
will help the group spot potential rocks before the newcomer runs aground. Private, behind-the-scenes
encouragement and pointers can also help a lot, especially if the newcomer is not accustomed to mas-
sively parallel peer review of his code.

When CollabNet hires a new developer to work on Subversion, we sit down together and pick some
open bugs for the new person to cut his teeth on. We'll discuss the technical outlines of the solutions,
and then assign at least one experienced developer to (publicly) review the patch that the new develop-
er will (also publicly) post. We typically don't even look at the patch before the main development list
sees it, although we could if there were some reason to. The important thing is that the new developer go
through the process of public review, learning the code base while simultaneously becoming accustomed
to receiving critiques from complete strangers. But we try to coordinate the timing so that our own re-
view comes immediately after the posting of the patch. That way the first review the list sees is ours,
which can help set the tone for the others' reviews. It also contributes to the idea that this new person is
to be taken seriously: if others see that we're putting in the time to give detailed reviews, with thorough
explanations and references into the archives where appropriate, they'll appreciate that a form of training
is going on, and that it probably signifies a long-term investment. This can make them more positively
disposed toward that developer, at least to the degree of spending a little extra time answering questions
and reviewing patches.

Appear as Many, Not as One
Your developers should strive to appear in the project's public forums as individual participants, rather
than as a monolithic corporate presence. This is not because there is some negative connotation inherent
in monolithic corporate presences (well, perhaps there is, but that's not what this book is about). Rather,
it's because individuals are the only sort of entity open source projects are structurally equipped to deal
with. An individual contributor can have discussions, submit patches, acquire credibility, vote, and so
forth. A company cannot.

Furthermore, by behaving in a decentralized manner, you avoid stimulating centralization of opposition.
Let your developers disagree with each other on the mailing lists. Encourage them to review each other's
code as often, and as publicly, as they would anyone else's. Discourage them from always voting as a

Money

81

bloc, because if they do, others may start to feel that, just on general principles, there should be an orga-
nized effort to keep them in check.

There's a difference between actually being decentralized and simply striving to appear that way. Un-
der certain circumstances, having your developers behave in concert can be quite useful, and they should
be prepared to coordinate behind the scenes when necessary. For example, when making a proposal,
having several people chime in with agreement early on can help it along, by giving the impression of
a growing consensus. Others will feel that the proposal has momentum, and that if they were to object,
they'd be stopping that momentum. Thus, people will object only if they have a good reason to do so.
There's nothing wrong with orchestrating agreement like this, as long as objections are still taken seri-
ously. The public manifestations of a private agreement are no less sincere for having been coordinat-
ed beforehand, and are not harmful as long as they are not used to prejudicially snuff out opposing argu-
ments. Their purpose is merely to inhibit the sort of people who like to object just to stay in shape; see
the section called “The Softer the Topic, the Longer the Debate” in Chapter 6, Communications for more
about them.

Be Open About Your Motivations
Be as open about your organization's goals as you can without compromising business secrets. If you
want the project to acquire a certain feature because, say, your customers have been clamoring for it,
just say so outright on the mailing lists. If the customers wish to remain anonymous, as is sometimes the
case, then at least ask them if they can be used as unnamed examples. The more the public development
community knows about why you want what you want, the more comfortable they'll be with whatever
you're proposing.

This runs counter to the instinct—so easy to acquire, so hard to shake off—that knowledge is power, and
that the more others know about your goals, the more control they have over you. But that instinct would
be wrong here. By publicly advocating the feature (or bugfix, or whatever it is), you have already laid
your cards on the table. The only question now is whether you will succeed in guiding the community to
share your goal. If you merely state that you want it, but can't provide concrete examples of why, your
argument is weak, and people will start to suspect a hidden agenda. But if you give just a few real-world
scenarios showing why the proposed feature is important, that can have a dramatic effect on the debate.

To see why this is so, consider the alternative. Too frequently, debates about new features or new direc-
tions are long and tiresome. The arguments people advance often reduce to "I personally want X," or the
ever-popular "In my years of experience as a software designer, X is extremely important to users / a
useless frill that will please no one." Predictably, the absence of real-world usage data neither shortens
nor tempers such debates, but instead allows them to drift farther and farther from any mooring in actual
user experience. Without some countervailing force, the end result is as likely as not to be determined by
whoever was the most articulate, or the most persistent, or the most senior.

As an organization with plentiful customer data available, you have the opportunity to provide just such
a countervailing force. You can be a conduit for information that might otherwise have no means of
reaching the development community. The fact that the information supports your desires is nothing to
be embarrassed about. Most developers don't individually have very broad experience with how the soft-
ware they write is used. Each developer uses the software in her own idiosyncratic way; as far as other
usage patterns go, she's relying on intuition and guesswork, and deep down, she knows this. By provid-
ing credible data about a significant number of users, you are giving the public development communi-
ty something akin to oxygen. As long as you present it right, they will welcome it enthusiastically, and it
will propel things in the direction you want to go.

The key, of course, is presenting it right. It will never do to insist that simply because you deal with a
large number of users, and because they need (or think they need) a given feature, therefore your solu-
tion ought to be implemented. Instead, you should focus your initial posts on the problem, rather than

Money

82

on one particular solution. Describe in great detail the experiences your customers are encountering, of-
fer as much analysis as you have available, and as many reasonable solutions as you can think of. When
people start speculating about the effectiveness of various solutions, you can continue to draw on your
data to support or refute what they say. You may have one particular solution in mind all along, but don't
single it out for special consideration at first. This is not deception, it is simply standard "honest broker"
behavior. After all, your true goal is to solve the problem; a solution is merely a means to that end. If the
solution you prefer really is superior, other developers will recognize that on their own eventually—and
then they will get behind it of their own free will, which is much better than you browbeating them into
implementing it. (There is also the possibility that they will think of a better solution.)

This is not to say that you can't ever come out in favor of a specific solution. But you must have the pa-
tience to see the analysis you've already done internally repeated on the public development lists. Don't
post saying "Yes, we've been over all that here, but it doesn't work for reasons A, B, and C. When you
get right down to it, the only way to solve this is..." The problem is not so much that it sounds arrogant
as that it gives the impression that you have already devoted some unknown (but, people will presume,
large) amount of analytical resources to the problem, behind closed doors. It makes it seem as though ef-
forts have been going on, and perhaps decisions made, that the public is not privy to, and that is a recipe
for resentment.

Naturally, you know how much effort you've devoted to the problem internally, and that knowledge is,
in a way, a disadvantage. It puts your developers in a slightly different mental space than everyone else
on the mailing lists, reducing their ability to see things from the point of view of those who haven't yet
thought about the problem as much. The earlier you can get everyone else thinking about things in the
same terms as you do, the smaller this distancing effect will be. This logic applies not only to individual
technical situations, but to the broader mandate of making your goals as clear as you can. The unknown
is always more destabilizing than the known. If people understand why you want what you want, they'll
feel comfortable talking to you even when they disagree. If they can't figure out what makes you tick,
they'll assume the worst, at least some of the time.

You won't be able to publicize everything, of course, and people won't expect you to. All organizations
have secrets; perhaps for-profits have more of them, but nonprofits have them too. If you must advocate
a certain course, but can't reveal anything about why, then simply offer the best arguments you can un-
der that handicap, and accept the fact that you may not have as much influence as you want in the dis-
cussion. This is one of the compromises you make in order to have a development community not on
your payroll.

Money Can't Buy You Love
If you're a paid developer on a project, then set guidelines early on about what the money can and can-
not buy. This does not mean you need to post twice a day to the mailing lists reiterating your noble and
incorruptible nature. It merely means that you should be on the lookout for opportunities to defuse the
tensions that could be created by money. You don't need to start out assuming that the tensions are there;
you do need to demonstrate an awareness that they have the potential to arise.

A perfect example of this came up in the Subversion project. Subversion was started in 2000 by Collab-
Net [http://www.collab.net/], which has been the project's primary funder since its inception, paying the
salaries of several developers (disclaimer: I'm one of them). Soon after the project began, we hired an-
other developer, Mike Pilato, to join the effort. By then, coding had already started. Although Subver-
sion was still very much in the early stages, it already had a development community with a set of basic
ground rules.

Mike's arrival raised an interesting question. Subversion already had a policy about how a new devel-
oper gets commit access. First, he submits some patches to the development mailing list. After enough
patches have gone by for the other committers to see that the new contributor knows what he's doing,

http://www.collab.net/
http://www.collab.net/
http://www.collab.net/

Money

83

someone proposes that he just commit directly (that proposal is private, as described in the section called
“Committers”). Assuming the committers agree, one of them mails the new developer and offers him di-
rect commit access to the project's repository.

CollabNet had hired Mike specifically to work on Subversion. Among those who already knew him,
there was no doubt about his coding skills or his readiness to work on the project. Furthermore, the vol-
unteer developers had a very good relationship with the CollabNet employees, and most likely would
not have objected if we'd just given Mike commit access the day he was hired. But we knew we'd be
setting a precedent. If we granted Mike commit access by fiat, we'd be saying that CollabNet had the
right to ignore project guidelines, simply because it was the primary funder. While the damage from this
would not necessarily be immediately apparent, it would gradually result in the non-salaried developers
feeling disenfranchised. Other people have to earn their commit access—CollabNet just buys it.

So Mike agreed to start out his employment at CollabNet like any other volunteer developer, without
commit access. He sent patches to the public mailing list, where they could be, and were, reviewed by
everyone. We also said on the list that we were doing things this way deliberately, so there could be no
missing the point. After a couple of weeks of solid activity by Mike, someone (I can't remember if it was
a CollabNet developer or not) proposed him for commit access, and he was accepted, as we knew he
would be.

That kind of consistency gets you a credibility that money could never buy. And credibility is a valuable
currency to have in technical discussions: it's immunization against having one's motives questioned lat-
er. In the heat of argument, people will sometimes look for non-technical ways to win the battle. The
project's primary funder, because of its deep involvement and obvious concern over the directions the
project takes, presents a wider target than most. By being scrupulous to observe all project guidelines
right from the start, the funder makes itself the same size as everyone else.

(See also Danese Cooper's blog post, preserved in the Internet Archive's Wayback Machine at
web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916
[http://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCoop-
er/20040916], for a similar story about commit access. Cooper was then Sun Microsystem's "Open
Source Diva"—I believe that was her official title—and in the blog entry, she describes how the Tomcat
development community got Sun to hold its own developers to the same commit-access standards as the
non-Sun developers.)

The need for the funders to play by the same rules as everyone else means that the Benevolent Dicta-
torship governance model (see the section called “Benevolent Dictators” in Chapter 4, Social and Po-
litical Infrastructure) is slightly harder to pull off in the presence of funding, particularly if the dictator
works for the primary funder. Since a dictatorship has few rules, it is hard for the funder to prove that it's
abiding by community standards, even when it is. It's certainly not impossible; it just requires a project
leader who is able to see things from the point of view of the outside developers, as well as that of the
funder, and act accordingly. Even then, it's probably a good idea to have a proposal for non-dictatorial
governance sitting in your back pocket, ready to be brought out the moment there are any indications of
widespread dissatisfaction in the community.

Contracting
Contracted work needs to be handled carefully in free software projects. Ideally, you want a contractor's
work to be accepted by the community and folded into the public distribution. In theory, it wouldn't
matter who the contractor is, as long as his work is good and meets the project's guidelines. Theory and
practice can sometimes match, too: a complete stranger who shows up with a good patch will generally
be able to get it into the software. The trouble is, it's very hard to produce a good patch for a non-trivial
enhancement or new feature while truly being a complete stranger; one must first discuss it with the rest
of the project. The duration of that discussion cannot be precisely predicted. If the contractor is paid by

http://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916
http://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916
http://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916

Money

84

the hour, you may end up paying more than you expected; if he is paid a flat sum, he may end up doing
more work than he can afford.

There are two ways around this. The preferred way is to make an educated guess about the length of the
discussion process, based on past experience, add in some padding for error, and base the contract on
that. It also helps to divide the problem into as many small, independent chunks as possible, to increase
the predictability of each chunk. The other way is to contract solely for delivery of a patch, and treat the
patch's acceptance into the public project as a separate matter. Then it becomes much easier to write the
contract, but you're stuck with the burden of maintaining a private patch for as long as you depend on
the software, or at least for as long as it takes you to get that patch or equivalent functionality into the
mainline. Of course, even with the preferred way, the contract itself cannot require that the patch be ac-
cepted into the code, because that would involve selling something that's not for sale. (What if the rest of
the project unexpectedly decides not to support the feature?) However, the contract can require a bona
fide effort to get the change accepted by the community, and that it be committed to the repository if the
community agrees with it. For example, if the project has written standards regarding code changes, the
contract can reference those standards and specify that the work must meet them. In practice, this usual-
ly works out the way everyone hopes.

The best tactic for successful contracting is to hire one of the project's developers—preferably a commit-
ter—as the contractor. This may seem like a form of purchasing influence, and, well, it is. But it's not as
corrupt as it might seem. A developer's influence in the project is due mainly to the quality of his code
and to his interactions with other developers. The fact that he has a contract to get certain things done
doesn't raise his status in any way, and doesn't lower it either, though it may make people scrutinize him
more carefully. Most developers would not risk their long-term position in the project by backing an in-
appropriate or widely disliked new feature. In fact, part of what you get, or should get, when you hire
such a contractor is advice about what sorts of changes are likely to be accepted by the community. You
also get a slight shift in the project's priorities. Because prioritization is just a matter of who has time to
work on what, when you pay for someone's time, you cause their work to move up in the priority queue
a bit. This is a well-understood fact of life among experienced open source developers, and at least some
of them will devote attention to the contractor's work simply because it looks like it's going to get done,
so they want to help it get done right. Perhaps they won't write any of the code, but they'll still discuss
the design and review the code, both of which can be very useful. For all these reasons, the contractor is
best drawn from the ranks of those already involved with the project.

This immediately raises two questions: Should contracts ever be private? And when they're not, should
you worry about creating tensions in the community by the fact that you've contracted with some devel-
opers and not others?

It's best to be open about contracts, when you can. Otherwise, the contractor's behavior may seem
strange to others in the community—perhaps he's suddenly giving inexplicably high priority to features
he's never shown interest in the past. When people ask him why he wants them now, how can he answer
convincingly if he can't talk about the fact that he's been contracted to write them?

At the same time, neither you nor the contractor should act as though others should treat your arrange-
ment as a big deal. Too often I've seen contractors waltz onto a development list with the attitude that
their posts should be taken more seriously simply because they're being paid. That kind of attitude sig-
nals to the rest of the project that the contractor regards the fact of the contract—as opposed to the code
resulting from the contract—to be the important thing. But from the other developers' point of view, on-
ly the code matters. At all times, the focus of attention should be kept on technical issues, not on the de-
tails of who is paying whom. For example, one of the developers in the Subversion community handles
contracting in a particularly graceful way. While discussing his code changes in IRC, he'll mention as an
aside (often in a private remark, an IRC privmsg, to one of the other committers) that he's being paid for
his work on this particular bug or feature. But he also consistently gives the impression that he'd want
to be working on that change anyway, and that he's happy the money is making it possible for him to do
that. He may or may not reveal his customer's identity, but in any case he doesn't dwell on the contract.

Money

85

His remarks about it are just an ornament to an otherwise technical discussion about how to get some-
thing done.

That example shows another reason why it's good to be open about contracts. There may be multiple
organizations sponsoring contracts on a given open source project, and if each knows what the others
are trying to do, they may be able to pool their resources. In the above case, the project's largest fun-
der (CollabNet) is not involved in any way with these piecework contracts, but knowing that someone
else is sponsoring certain bug fixes allows CollabNet to redirect its resources to other bugs, resulting in
greater efficiency for the project as a whole.

Will other developers resent that some are paid for working on the project? In general, no, particularly
when those who are paid are established, well-respected members of the community anyway. No one
expects contract work to be distributed equally among all the committers. People understand the impor-
tance of long-term relationships: the uncertainties involved in contracting are such that once you find
someone you can work reliably with, you would be reluctant to switch to a different person just for the
sake of evenhandedness. Think of it this way: the first time you hire, there will be no complaints, be-
cause clearly you had to pick someone—it's not your fault you can't hire everyone. Later, when you hire
the same person a second time, that's just common sense: you already know him, the last time was suc-
cessful, so why take unnecessary risks? Thus, it's perfectly natural to have one or two go-to people in the
community, instead of spreading the work around evenly.

Review and Acceptance of Changes

The community is still important to the success of contract work. Their involvement in the design and
review process for sizeable changes cannot be an afterthought. It must be considered part of the work,
and fully embraced by the contractor. Don't think of community scrutiny as an obstacle to be over-
come—think of it as a free design board and QA department. It is a benefit to be aggressively pursued,
not merely endured.

Case study: the CVS password-authentication protocol

In 1995, I was one half of a partnership that provided support and enhancements for CVS (the Concur-
rent Versions System; see cvs.nongnu.org [http://cvs.nongnu.org/]). My partner Jim and I were, infor-
mally, the maintainers of CVS by that point. But we'd never thought carefully about how we ought to re-
late to the existing, mostly volunteer CVS development community. We just assumed that they'd send in
patches, and we'd apply them, and that was pretty much how it worked.

Back then, networked CVS could be done only over a remote login program such as rsh. Using the
same password for CVS access as for login access was an obvious security risk, and many organizations
were put off by it. A major investment bank hired us to add a new authentication mechanism, so they
could safely use networked CVS with their remote offices.

Jim and I took the contract and sat down to design the new authentication system. What we came up
with was pretty simple (the United States had export controls on cryptographic code at the time, so the
customer understood that we couldn't implement strong authentication), but as we were not experi-
enced in designing such protocols, we still made a few gaffes that would have been obvious to an ex-
pert. These mistakes would easily have been caught had we taken the time to write up a proposal and run
it by the other developers for review. But we never did so, because it didn't occur to us to think of the
development list as a resource to be used. We knew that people were probably going to accept whatev-
er we committed, and—because we didn't know what we didn't know—we didn't bother to do the work
in a visible way, e.g., posting patches frequently, making small, easily digestible commits to a special
branch, etc. The resulting authentication protocol was not very good, and of course, once it became es-
tablished, it was difficult to improve, because of compatibility concerns.

http://cvs.nongnu.org/
http://cvs.nongnu.org/

Money

86

The root of the problem was not lack of experience; we could easily have learned what we needed to
know. The problem was our attitude toward the volunteer development community. We regarded ac-
ceptance of the changes as a hurdle to leap, rather than as a process by which the quality of the changes
could be improved. Since we were confident that almost anything we did would be accepted (as it was),
we made little effort to get others involved.

Obviously, when you're choosing a contractor, you want someone with the right technical skills and ex-
perience for the job. But it's also important to choose someone with a track record of constructive inter-
action with the other developers in the community. That way you're getting more than just a single per-
son; you're getting an agent who will be able to draw on a network of expertise to make sure the work is
done in a robust and maintainable way.

Funding Non-Programming Activities
Programming is only part of the work that goes on in an open source project. From the point of view of
the project's volunteers, it's the most visible and glamorous part. This unfortunately means that other ac-
tivities, such as documentation, formal testing, etc., can sometimes be neglected, at least compared to
the amount of attention they often receive in proprietary software. Corporate organizations are some-
times able to make up for this, by devoting some of their internal software development infrastructure to
open source projects.

The key to doing this successfully is to translate between the company's internal processes and those
of the public development community. Such translation is not effortless: often the two are not a close
match, and the differences can only be bridged via human intervention. For example, the company may
use a different bug tracker than the public project. Even if they use the same tracking software, the data
stored in it will be very different, because the bug-tracking needs of a company are very different from
those of a free software community. A piece of information that starts in one tracker may need to be re-
flected in the other, with confidential portions removed or, in the other direction, added.

The sections that follow are about how to build and maintain such bridges. The end result should be that
the open source project runs more smoothly, the community recognizes the company's investment of re-
sources, and yet does not feel that the company is inappropriately steering things toward its own goals.

Quality Assurance (i.e., Professional Testing)
In proprietary software development, it is normal to have teams of people dedicated solely to quality as-
surance: bug hunting, performance and scalability testing, interface and documentation checking, etc.
As a rule, these activities are not pursued as vigorously by the volunteer community on a free software
project. This is partly because it's hard to get volunteer labor for unglamorous work like testing, partly
because people tend to assume that having a large user community gives the project good testing cover-
age, and, in the case of performance and scalability testing, partly because volunteers often don't have
access to the necessary hardware resources anyway.

The assumption that having many users is equivalent to having many testers is not entirely baseless.
Certainly there's little point assigning testers for basic functionality in common environments: bugs there
will quickly be found by users in the natural course of things. But because users are just trying to get
work done, they do not consciously set out to explore uncharted edge cases in the program's functional-
ity, and are likely to leave certain classes of bugs unfound. Furthermore, when they discover a bug with
an easy workaround, they often silently implement the workaround without bothering to report the bug.
Most insidiously, the usage patterns of your customers (the people who drive your interest in the soft-
ware) may differ in statistically significant ways from the usage patterns of the Average User In The
Street.

A professional testing team can uncover these sorts of bugs, and can do so as easily with free software
as with proprietary software. The challenge is to convey the testing team's results back to the public in

Money

87

a useful form. In-house testing departments usually have their own way of reporting test results, involv-
ing company-specific jargon, or specialized knowledge about particular customers and their data sets.
Such reports would be inappropriate for the public bug tracker, both because of their form and because
of confidentiality concerns. Even if your company's internal bug tracking software were the same as that
used by the public project, management might need to make company-specific comments and metada-
ta changes to the issues (for example, to raise an issue's internal priority, or schedule its resolution for a
particular customer). Usually such notes are confidential—sometimes they're not even shown to the cus-
tomer. But even when they're not confidential, they're of no concern to the public project, and therefore
the public should not be distracted with them.

Yet the core bug report itself is important to the public. In fact, a bug report from your testing depart-
ment is in some ways more valuable than one received from users at large, since the testing department
probes for things that other users won't. Given that you're unlikely to get that particular bug report from
any other source, you definitely want to preserve it and make it available to the public project.

To do this, either the QA department can file issues directly in the public issue tracker, if they're
comfortable with that, or an intermediary (usually one of the developers) can "translate" the testing
department's internal reports into new issues in the public tracker. Translation simply means describing
the bug in a way that makes no reference to customer-specific information (the reproduction recipe may
use customer data, assuming the customer approves it, of course).

It is somewhat preferable to have the QA department filing issues in the public tracker directly. That
gives the public a more direct appreciation of your company's involvement with the project: useful bug
reports add to your organization's credibility just as any technical contribution would. It also gives de-
velopers a direct line of communication to the testing team. For example, if the internal QA team is
monitoring the public issue tracker, a developer can commit a fix for a scalability bug (which the de-
veloper may not have the resources to test herself), and then add a note to the issue asking the QA team
to see if the fix had the desired effect. Expect a bit of resistance from some of the developers; program-
mers have a tendency to regard QA as, at best, a necessary evil. The QA team can easily overcome this
by finding significant bugs and filing comprehensible reports; on the other hand, if their reports are not
at least as good as those coming from the regular user community, then there's no point having them in-
teract directly with the development team.

Either way, once a public issue exists, the original internal issue should simply reference the public issue
for technical content. Management and paid developers may continue to annotate the internal issue with
company-specific comments as necessary, but use the public issue for information that should be avail-
able to everyone.

You should go into this process expecting extra overhead. Maintaining two issues for one bug is, nat-
urally, more work than maintaining one issue. The benefit is that many more coders will see the report
and be able to contribute to a solution.

Legal Advice and Protection
Corporations, for-profit or nonprofit, are almost the only entities that ever pay attention to complex le-
gal issues in free software. Individual developers often understand the nuances of various open source li-
censes, but they generally do not have the time or resources to follow copyright, trademark, and patent
law in detail. If your company has a legal department, it can help a project by vetting the copyright sta-
tus of the code, and helping developers understand possible patent and trademark issues. The exact
forms this help could take are discussed in Chapter 10, Licenses, Copyrights, and Patents. The main
thing is to make sure that communications between the legal department and the development communi-
ty, if they happen at all, happen with a mutual appreciation of the very different universes the parties are
coming from. On occasion, these two groups talk past each other, each side assuming domain-specific
knowledge that the other does not have. A good strategy is to have a liaison (usually a developer, or else
a lawyer with technical expertise) stand in the middle and translate for as long as needed.

Money

88

Documentation and Usability
Documentation and usability are both famous weak spots in open source projects, although I think, at
least in the case of documentation, that the difference between free and proprietary software is frequent-
ly exaggerated. Nevertheless, it is empirically true that much open source software lacks first-class doc-
umentation and usability research.

If your organization wants to help fill these gaps for a project, probably the best thing it can do is hire
people who are not regular developers on the project, but who will be able to interact productively with
the developers. Not hiring regular developers is good for two reasons: one, that way you don't take de-
velopment time away from the project; two, those closest to the software are usually the wrong people to
write documentation or investigate usability anyway, because they have trouble seeing the software from
an outsider's point of view.

However, it will still be necessary for whoever works on these problems to communicate with the devel-
opers. Find people who are technical enough to talk to the coding team, but not so expert in the software
that they can't empathize with regular users anymore.

A medium-level user is probably the right person to write good documentation. In fact, after the first
edition of this book was published, I received the following email from an open source developer named
Dirk Reiners:

One comment on Money::Documentation and Usability: when we had some
money to spend and decided that a beginner's tutorial was the most
critical piece that we needed we hired a medium-level user to write it.
He had gone through the induction to the system recently enough to
remember the problems, but he had gotten past them so he knew how to
describe them. That allowed him to write something that needed only
minor fixes by the core developers for the things that he hadn't gotten
right, but still covering the 'obvious' stuff devs would have missed.

His case was even better, as it had been his job to introduce a bunch of
other people (students) to the system, so he combined the experience of
many people, which is something that was just a lucky occurrence and is
probably hard to get in most cases.

Providing Hosting/Bandwidth
For a project that's not using one of the free canned hosting sites (see the section called “Canned Host-
ing” in Chapter 3, Technical Infrastructure), providing a server and network connection—and most im-
portantly, system administration help—can be of significant assistance. Even if this is all your organi-
zation does for the project, it can be a moderately effective way to obtain good public relations karma,
though it will not bring any influence over the direction of the project.

You can probably expect a banner ad or an acknowledgment on the project's home page, thanking your
company for providing hosting. If you set up the hosting so that the project's web address is under your
company's domain name, then you will get some additional association just through the URL. This will
cause most users to think of the software as having something to do with your company, even if you
don't contribute to development at all. The problem is, the developers are aware of this associative ten-
dency too, and may not be very comfortable with having the project in your domain unless you're con-
tributing more resources than just bandwidth. After all, there are a lot of places to host these days. The
community may eventually feel that the implied misallocation of credit is not worth the convenience

Money

89

brought by hosting, and take the project elsewhere. So if you want to provide hosting, do so—but either
plan to get even more involved soon, or be circumspect about how much involvement you claim.

Marketing
Although most open source developers would probably hate to admit it, marketing works. A good mar-
keting campaign can create buzz around an open source product, even to the point where hardheaded
coders find themselves having vaguely positive thoughts about the software for reasons they can't quite
put their finger on. It is not my place here to dissect the arms-race dynamics of marketing in general.
Any corporation involved in free software will eventually find itself considering how to market them-
selves, the software, or their relationship to the software. The advice below is about how to avoid com-
mon pitfalls in such an effort; see also the section called “Publicity” in Chapter 6, Communications.

Remember That You Are Being Watched
For the sake of keeping the volunteer developer community on your side, it is very important not to say
anything that isn't demonstrably true. Audit all claims carefully before making them, and give the public
the means to check your claims on their own. Independent fact checking is a major part of open source,
and it applies to more than just the code.

Naturally no one would advise companies to make unverifiable claims anyway. But with open source
activities, there is an unusually high quantity of people with the expertise to verify claims—people
who are also likely to have high-bandwidth Internet access and the right social contacts to publicize
their findings in a damaging way, should they choose to. When Global Megacorp Chemical Industries
pollutes a stream, that's verifiable, but only by trained scientists, who can then be refuted by Global
Megacorp's scientists, leaving the public scratching their heads and wondering what to think. On the oth-
er hand, your behavior in the open source world is not only visible and recorded; it is also easy for many
people to check it independently, come to their own conclusions, and spread those conclusions by word
of mouth. These communications networks are already in place; they are the essence of how open source
operates, and they can be used to transmit any sort of information. Refutation is usually difficult, if not
impossible, especially when what people are saying is true.

For example, it's okay to refer to your organization as having "founded project X" if you really did. But
don't refer to yourself as the "makers of X" if most of the code was written by outsiders. Conversely,
don't claim to have a deeply involved volunteer developer community if anyone can look at your reposi-
tory and see that there are few or no code changes coming from outside your organization.

Not too long ago, I saw an announcement by a very well-known computer company, stating that they
were releasing an important software package under an open source license. When the initial announce-
ment came out, I took a look at their now-public version control repository and saw that it contained on-
ly three revisions. In other words, they had done an initial import of the source code, but hardly anything
had happened since then. That in itself was not worrying—they'd just made the announcement, after all.
There was no reason to expect a lot of development activity right away.

Some time later, they made another announcement. Here is what it said, with the name and release num-
ber replaced by pseudonyms:

We are pleased to announce that following rigorous testing by the Singer Community,
Singer 5 for Linux and Windows are now ready for production use.

Curious to know what the community had uncovered in "rigorous testing," I went back to the repository
to look at its recent change history. The project was still on revision 3. Apparently, they hadn't found a
single bug worth fixing before the release! Thinking that the results of the community testing must have

Money

90

been recorded elsewhere, I next examined the bug tracker. There were exactly six open issues, four of
which had been open for several months already.

This beggars belief, of course. When testers pound on a large and complex piece of software for any
length of time, they will find bugs. Even if the fixes for those bugs don't make it into the upcoming re-
lease, one would still expect some version control activity as a result of the testing process, or at least
some new issues. Yet to all appearances, nothing had happened between the announcement of the open
source license and the first open source release.

The point is not that the company was lying about the community testing. I have no idea if they were or
not. But they were oblivious to how much it looked like they were lying. Since neither the version con-
trol repository nor the issue tracker gave any indication that the alleged rigorous testing had occurred,
the company should either not have made the claim in the first place, or provided a clear link to some
tangible result of that testing ("We found 278 bugs; click here for details"). The latter would have al-
lowed anyone to get a handle on the level of community activity very quickly. As it was, it only took me
a few minutes to determine that whatever this community testing was, it had not left traces in any of the
usual places. That's not a lot of effort, and I'm sure I'm not the only one who took the trouble.

Transparency and verifiability are also an important part of accurate crediting, of course. See the section
called “Credit” in Chapter 8, Managing Volunteers for more on this.

Don't Bash Competing Open Source Products
Refrain from giving negative opinions about competing open source software. It's perfectly okay to give
negative facts—that is, easily confirmable assertions of the sort often seen in good comparison charts.
But negative characterizations of a less rigorous nature are best avoided, for two reasons. First, they are
liable to start flame wars that detract from productive discussion. Second, and more importantly, some
of the volunteer developers in your project may turn out to work on the competing project as well. This
is more likely than it at first might seem: the projects are already in the same domain (that's why they're
in competition), and developers with expertise in that domain may make contributions wherever their
expertise is applicable. Even when there is no direct developer overlap, it is likely that developers on
your project are at least acquainted with developers on related projects. Their ability to maintain con-
structive personal ties could be hampered by overly negative marketing messages.

Bashing competing closed-source products seems to be more widely accepted in the open source world,
especially when those products are made by Microsoft. Personally, I deplore this tendency (though
again, there's nothing wrong with straightforward factual comparisons), not merely because it's rude,
but also because it's dangerous for a project to start believing its own hype and thereby ignore the ways
in which the competition may actually be superior. In general, watch out for the effect that marketing
statements can have on your own development community. People may be so excited at being backed
by marketing dollars that they lose objectivity about their software's true strengths and weaknesses. It is
normal, and even expected, for a company's developers to exhibit a certain detachment toward market-
ing statements, even in public forums. Clearly, they should not come out and contradict the marketing
message directly (unless it's actually wrong, though one hopes that sort of thing would have been caught
earlier). But they may poke fun at it from time to time, as a way of bringing the rest of the development
community back down to earth.

Hiring Open Source Developers
24 March 2013: If you're reading this note, then you've encountered this section while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 todo: Not sure this is necessary as a separate section, but consider it. Ref Fitz's article, obviously.
Move material from above into here. Look at gun.io.

http://producingoss.com/v2.html
http://producingoss.com/v2.html

Money

91

Bounties
24 March 2013: If you're reading this note, then you've encountered this section while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 todo: Theory: bounties usually don't work in practice. Ask around, look for counterexamples.
What about gun.io?

http://producingoss.com/v2.html
http://producingoss.com/v2.html

92

Chapter 6. Communications
The ability to write clearly is perhaps the most important skill one can have in an open source environ-
ment. In the long run it matters more than programming talent. A great programmer with lousy commu-
nications skills can get only one thing done at a time, and even then may have trouble convincing others
to pay attention. But a lousy programmer with good communications skills can coordinate and persuade
many people to do many different things, and thereby have a significant effect on a project's direction
and momentum.

There does not seem to be much correlation, in either direction, between the ability to write good code
and the ability to communicate with one's fellow human beings. There is some correlation between pro-
gramming well and describing technical issues well, but describing technical issues is only a tiny part of
the communications in a project. Much more important is the ability to empathize with one's audience,
to see one's own posts and comments as others see them, and to cause others to see their own posts with
similar objectivity. Equally important is noticing when a given medium or communications method is
no longer working well, perhaps because it doesn't scale as the number of users increases, and taking the
time to do something about it.

All of which is obvious in theory—what makes it hard in practice is that free software development en-
vironments are bewilderingly diverse both in audiences and in communications mechanisms. Should a
given thought be expressed in a post to the mailing list, as an annotation in the bug tracker, or as a com-
ment in the code? When answering a question in a public forum, how much knowledge can you assume
on the part of the reader, given that "the reader" is not only the one who asked the question in the first
place, but all those who might see your response? How can the developers stay in constructive contact
with the users, without getting swamped by feature requests, spurious bug reports, and general chatter?
How do you tell when a medium has reached the limits of its capacity, and what do you do about it?

Solutions to these problems are usually partial, because any particular solution is eventually made ob-
solete by project growth or changes in project structure. They are also often ad hoc, because they're im-
provised responses to dynamic situations. All participants need to be aware of when and how communi-
cations can become bogged down, and be involved in solutions. Helping people do this is a big part of
managing an open source project. The sections that follow discuss both how to conduct your own com-
munications, and how to make maintenance of communications mechanisms a priority for everyone in
the project.1

You Are What You Write
Consider this: the only thing anyone knows about you on the Internet comes from what you write, or
what others write about you. You may be brilliant, perceptive, and charismatic in person—but if your
emails are rambling and unstructured, people will assume that's the real you. Or perhaps you really are
rambling and unstructured in person, but no one need ever know it, if your posts are lucid and informa-
tive.

Devoting some care to your writing will pay off hugely. Long-time free software hacker Jim Blandy
tells the following story:

Back in 1993, I was working for the Free Software Foundation, and we were beta-test-
ing version 19 of GNU Emacs. We'd make a beta release every week or so, and peo-

1There has been some interesting academic research on this topic; for example, see Group Awareness in Distributed Software Development by
Gutwin, Penner, and Schneider. This paper was online for a while, then unavailable, then online again at st.cs.uni-sb.de/edu/empirical-se/2006/
PDFs/gutwin04.pdf [http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf]. So try there first, but be prepared to use a search en-
gine if it moves again.

http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf
http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf
http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf

Communications

93

ple would try it out and send us bug reports. There was this one guy whom none of us
had met in person but who did great work: his bug reports were always clear and led
us straight to the problem, and when he provided a fix himself, it was almost always
right. He was top-notch.

Now, before the FSF can use code written by someone else, we have them do some
legal paperwork to assign their copyright interest to that code to the FSF. Just taking
code from complete strangers and dropping it in is a recipe for legal disaster.

So I emailed the guy the forms, saying, "Here's some paperwork we need, here's what
it means, you sign this one, have your employer sign that one, and then we can start
putting in your fixes. Thanks very much."

He sent me back a message saying, "I don't have an employer."

So I said, "Okay, that's fine, just have your university sign it and send it back."

After a bit, he wrote me back again, and said, "Well, actually... I'm thirteen years old
and I live with my parents."

Because that kid didn't write like a thirteen-year-old, no one knew that's what he was. Following are
some ways to make your writing give a good impression too.

Structure and Formatting
Don't fall into the trap of writing everything as though it were a cell phone text message. Write in com-
plete sentences, capitalizing the first word of each sentence, and use paragraph breaks where needed.
This is most important in emails and other composed writings. In IRC or similarly ephemeral forums,
it's generally okay to leave out capitalization, use compressed forms of common expressions, etc. Just
don't carry those habits over into more formal, persistent forums. Emails, documentation, bug reports,
and other pieces of writing that are intended to have a permanent life should be written using standard
grammar and spelling, and have a coherent narrative structure. This is not because there's anything in-
herently good about following arbitrary rules, but rather that these rules are not arbitrary: they evolved
into their present forms because they make text more readable, and you should adhere to them for that
reason. Readability is desirable not only because it means more people will understand what you write,
but because it makes you look like the sort of person who takes the time to communicate clearly: that is,
someone worth paying attention to.

For email in particular, experienced open source developers have settled on certain conventions:

Send plain text mails only, not HTML, RichText, or other formats that might be opaque to text-only
mail readers. Format your lines to be around 72 columns long. Don't exceed 80 columns, which has be-
come the de facto standard terminal width (that is, some people may use wider terminals, but no one us-
es a narrower one). By making your lines a little less than 80 columns, you leave room for a few levels
of quoting characters to be added in others' replies without forcing a rewrapping of your text.

Use real line breaks. Some mailers do a kind of fake line wrapping, whereby when you're composing an
email, the display shows line breaks that aren't actually there. When the mail goes out, it may not have
the line breaks you thought it had, and it will wrap awkwardly on some people's screens. If your mailer
might use fake line breaks, look for a setting you can tweak to make it show the true line breaks as you
compose.

When including screen output, snippets of code, or other preformatted text, offset it clearly, so that even
a lazy eye can easily see the boundaries between your prose and the material you're quoting. (I never ex-
pected to write that advice when I started this book, but on a number of open source mailing lists lately,

Communications

94

I've seen people mix texts from different sources without making it clear which is which. The effect is
very frustrating. It makes their posts significantly harder to understand, and frankly makes those people
look a little bit disorganized.)

When quoting someone else's mail, insert your responses where they're most appropriate, at several dif-
ferent places if necessary, and trim off the parts of their mail you didn't use. If you're writing a quick
comment that applies to their entire post, it's okay to top-post (that is, to put your response above the
quoted text of their mail); otherwise, you should quote the relevant portion of the original text first, fol-
lowed by your response.

Construct the subject lines of new mails carefully. It's the most important line in your mail, because it al-
lows each other person in the project to decide whether or not to read more. Modern mail reading soft-
ware organizes groups of related messages into threads, which can be defined not only by a common
subject, but by various other headers (which are sometimes not displayed). It follows that if a thread
starts to drift to a new topic, you can—and should—adjust the subject line accordingly when replying.
The thread's integrity will be preserved, due to those other headers, but the new subject will help people
looking at an overview of the thread know that the topic has drifted. Likewise, if you really want to start
a new topic, do it by posting a fresh mail, not by replying to an existing mail and changing the subject.
Otherwise, your mail would still be grouped in to the same thread as what you're replying to, and thus
fool people into thinking it's about something it's not. Again, the penalty would not only be the waste of
their time, but the slight dent in your credibility as someone fluent in using communications tools.

Content
Well-formatted mails attract readers, but content keeps them. No set of fixed rules can guarantee good
content, of course, but there are some principles that make it more likely.

Make things easy for your readers. There's a ton of information floating around in any active open
source project, and readers cannot be expected to be familiar with most of it—indeed, they cannot al-
ways be expected to know how to become familiar. Wherever possible, your posts should provide infor-
mation in the form most convenient for readers. If you have to spend an extra two minutes to dig up the
URL to a particular thread in the mailing list archives, in order to save your readers the trouble of doing
so, it's worth it. If you have to spend an extra 5 or 10 minutes summarizing the conclusions so far of a
complex thread, in order to give people context in which to understand your post, then do so. Think of it
this way: the more successful a project, the higher the reader-to-writer ratio in any given forum. If every
post you make is seen by n people, then as n rises, the worthwhileness of expending extra effort to save
those people time rises with it. And as people see you imposing this standard on yourself, they will work
to match it in their own communications. The result is, ideally, an increase in the global efficiency of the
project: when there is a choice between n people making an effort and one person doing so, the project
prefers the latter.

Don't engage in hyperbole. Exaggerating in online posts is a classic arms race. For example, a person re-
porting a bug may worry that the developers will not pay sufficient attention, so he'll describe it as a se-
vere, showstopper problem that is preventing him (and all his friends/coworkers/cousins) from using the
software productively, when it's actually only a mild annoyance. But exaggeration is not limited to users
—programmers often do the same thing during technical debates, particularly when the disagreement is
over a matter of taste rather than correctness:

"Doing it that way would make the code totally unreadable. It'd be a maintenance
nightmare, compared to J. Random's proposal..."

The same sentiment actually becomes stronger when phrased less sharply:

"That works, but it's less than ideal in terms of readability and maintainability, I think.
J. Random's proposal avoids those problems because it..."

Communications

95

You will not be able to get rid of hyperbole completely, and in general it's not necessary to do so. Com-
pared to other forms of miscommunication, hyperbole is not globally damaging—it hurts mainly the per-
petrator. The recipients can compensate, it's just that the sender loses a little more credibility each time.
Therefore, for the sake of your own influence in the project, try to err on the side of moderation. That
way, when you do need to make a strong point, people will take you seriously.

Edit twice. For any message longer than a medium-sized paragraph, reread it from top to bottom be-
fore sending it but after you think it's done the first time. This is familiar advice to anyone who's taken a
composition class, but it's especially important in online discussion. Because the process of online com-
position tends to be highly discontinuous (in the course of writing a message, you may need to go back
and check other mails, visit certain web pages, run a command to capture its debugging output, etc.),
it's especially easy to lose your sense of narrative place. Messages that were composed discontinuously
and not checked before being sent are often recognizable as such, much to the chagrin (or so one would
hope) of their authors. Take the time to review what you send. The more your posts hold together struc-
turally, the more they will be read.

Tone
After writing thousands of messages, you will probably find your style tending toward the terse. This
seems to be the norm in most technical forums, and there's nothing wrong with it per se. A degree of
terseness that would be unacceptable in normal social interactions is simply the default for free software
hackers. Here's a response I once drew on a mailing list about some free content management software,
quoted in full:

Can you possibly elaborate a bit more on exactly what problems
you ran into, etc?

Also:

What version of Slash are you using? I couldn't tell from your
original message.

Exactly how did you build the apache/mod_perl source?

Did you try the Apache 2.0 patch that was posted about on
slashcode.com?

 Shane

Now that's terse! No greeting, no sign-off other than his name, and the message itself is just a series of
questions phrased as compactly as possible. His one declarative sentence was an implicit criticism of
my original message. And yet, I was happy to see Shane's mail, and didn't take his terseness as a sign of
anything other than him being a busy person. The mere fact that he was asking questions, instead of ig-
noring my post, meant that he was willing to spend some time on my problem.

Will all readers react positively to this style? Not necessarily; it depends on the person and the context.
For example, if someone has just posted acknowledging that she made a mistake (perhaps she wrote a
bug), and you know from past experience that this person tends to be a bit insecure, then while you may
still write a compact response, you should make sure to leaven it with some sort of acknowledgment of
her feelings. The bulk of your response might be a brief, engineer's-eye analysis of the situation, as terse
as you want. But at the end, sign off with something indicating that your terseness is not to be taken as
coldness. For example, if you've just given reams of advice about exactly how the person should fix the
bug, then sign off with "Good luck, <your name here>" to indicate that you wish them well and are not

Communications

96

mad. A strategically placed smiley face or other emoticlue can often be enough to reassure an interlocu-
tor, too.

It may seem odd to focus as much on the participant's feelings as on the surface of what they say, but to
put it baldly, feelings affect productivity. Feelings are important for other reasons too, but even confin-
ing ourselves to purely utilitarian grounds, we may note that unhappy people write worse software, and
less of it. Given the restricted nature of most electronic media, though, there will often be no overt clue
as to how a person is feeling. You will have to make an educated guess based on a) how most people
would feel in that situation, and b) what you know of this particular person from past interactions. Some
people prefer a more hands-off attitude, and simply deal with everyone at face value, the idea being that
if a participant doesn't say outright that she feels a particular way, then one has no business treating her
as though she does. I don't buy this approach, for a couple of reasons. One, people don't behave that way
in real life, so why would they online? Two, since most interactions take place in public forums, peo-
ple tend to be even more restrained in expressing emotions than they might be in private. To be more
precise, they are often willing to express emotions directed at others, such as gratitude or outrage, but
not emotions directed inwardly, such as insecurity or pride. Yet most humans work better when they
know that others are aware of their state of mind. By paying attention to small clues, you can usually
guess right most of the time, and motivate people to stay involved to a greater degree than they other-
wise might.

I don't mean, of course, that your role is to be a group therapist, constantly helping everyone to get in
touch with their feelings. But by paying careful attention to long-term patterns in people's behavior, you
will begin to get a sense of them as individuals even if you never meet them face-to-face. And by being
sensitive to the tone of your own writing, you can have a surprising amount of influence over how others
feel, to the ultimate benefit of the project.

Recognizing Rudeness
One of the defining characteristics of open source culture is its distinctive notions of what does and does
not constitute rudeness. While the conventions described below are not unique to free software devel-
opment, nor even to software in general—they would be familiar to anyone working in mathematics,
the hard sciences, or engineering disciplines—free software, with its porous boundaries and constant in-
flux of newcomers, is an environment where these conventions are especially likely to be encountered
by people unfamiliar with them.

Let's start with the things that are not rude:

Technical criticism, even when direct and unpadded, is not rude. Indeed, it can be a form of flattery: the
critic is saying, by implication, that the target is worth taking seriously, and is worth spending some time
on. That is, the more viable it would have been to simply ignore someone's post, the more of a compli-
ment it becomes to take the time to criticize it (unless the critique descends into an ad hominem attack or
some other form of obvious rudeness, of course).

Blunt, unadorned questions, such as Shane's questions to me in the previously quoted email, are not rude
either. Questions that in other contexts might seem cold, rhetorical, or even mocking, are often intend-
ed seriously, and have no hidden agenda other than eliciting information as quickly as possible. The fa-
mous technical support question "Is your computer plugged in?" is a classic example of this. The sup-
port person really does need to know if your computer is plugged in, and after the first few days on the
job, has gotten tired of prefixing her question with polite blandishments ("I beg your pardon, I just want
to ask a few simple questions to rule out some possibilities. Some of these might seem pretty basic, but
bear with me..."). At this point, she doesn't bother with the padding anymore, she just asks straight out:
is it plugged in or not? Equivalent questions are asked all the time on free software mailing lists. The in-
tent is not to insult the recipient, but to quickly rule out the most obvious (and perhaps most common)
explanations. Recipients who understand this and react accordingly win points for taking a broad-mind-

Communications

97

ed view without prompting. But recipients who react badly should not be reprimanded, either. It's just a
collision of cultures, not anyone's fault. Explain amiably that your question (or criticism) had no hidden
meanings; it was just meant to get (or transmit) information as efficiently as possible, nothing more.

So what is rude?

By the same principle under which detailed technical criticism is a form of flattery, failure to provide
quality criticism can be a kind of insult. I don't mean simply ignoring someone's work, be it proposal,
code change, new issue filing, or whatever. Unless you explicitly promised a detailed reaction in ad-
vance, it's usually okay to simply not react at all. People will assume you just didn't have time to say
anything. But if you do react, don't skimp: take the time to really analyze things, provide concrete ex-
amples where appropriate, dig around in the archives to find related posts from the past, etc. Or if you
don't have time to put in that kind of effort, but still need to write some sort of brief response, then state
the shortcoming openly in your message ("I think there's an issue filed for this, but unfortunately didn't
have time to search for it, sorry"). The main thing is to recognize the existence of the cultural norm, ei-
ther by fulfilling it or by openly acknowledging that one has fallen short this time. Either way, the norm
is strengthened. But failing to meet that norm, while at the same time not explaining why you failed to
meet it, is like saying the topic (and those participating in it) was not worth much of your time. Better to
show that your time is valuable by being terse than by being lazy.

There are many other forms of rudeness, of course, but most of them are not specific to free software de-
velopment, and common sense is a good enough guide to avoid them. See also the section called “Nip
Rudeness in the Bud” in Chapter 2, Getting Started, if you haven't already.

Face
There is a region in the human brain devoted specifically to recognizing faces. It is known informally as
the "fusiform face area," and its capabilities are mostly inborn, not learned. It turns out that recognizing
individual people is such a crucial survival skill that we have evolved specialized hardware to do it.

Internet-based collaboration is therefore psychologically odd, because it involves tight cooperation be-
tween human beings who almost never get to identify each other by the most natural, intuitive methods:
facial recognition first of all, but also sound of voice, posture, etc. To compensate for this, try to use a
consistent screen name everywhere. It should be the front part of your email address (the part before the
@-sign), your IRC username, your repository committer name, your issue tracker username, and so on.
This name is your online "face": a short identifying string that serves some of the same purpose as your
real face, although it does not, unfortunately, stimulate the same built-in hardware in the brain.

The screen name should be some intuitive permutation of your real name (mine, for example, is "kfo-
gel"). In some situations it will be accompanied by your full name anyway, for example in mail headers:

From: "Karl Fogel" <kfogel@whateverdomain.com>

Actually, there are two things going on in that example. As mentioned earlier, the screen name matches
the real name in an intuitive way. But also, the real name is real. That is, it's not some made-up appella-
tion like:

From: "Wonder Hacker" <wonderhacker@whateverdomain.com>

There's a famous cartoon by Paul Steiner, from the July 5, 1993 issue of The New Yorker, that shows
one dog logged into a computer terminal, looking down and telling another conspiratorially: "On the In-
ternet, nobody knows you're a dog." This kind of thought probably lies behind a lot of the self-aggran-
dizing, meant-to-be-hip online identities people give themselves—as if calling oneself "Wonder Hack-

Communications

98

er" will actually cause people to believe one is a wonderful hacker. But the fact remains: even if no one
knows you're a dog, you're still a dog. A fantastical online identity never impresses readers. Instead, it
makes them think you're more into image than substance, or that you're simply insecure. Use your real
name for all interactions, or if for some reason you require anonymity, then make up a name that sounds
like a perfectly normal real name, and use it consistently.

In addition to keeping your online face consistent, there are some things you can do to make it more
attractive. If you have an official title (e.g., "doctor", "professor", "director"), don't flaunt it, nor even
mention it except when it's directly relevant to the conversation. Hackerdom in general, and free soft-
ware culture in particular, tends to view title displays as exclusionary and a sign of insecurity. It's okay
if your title appears as part of a standard signature block at the end of every mail you send, just don't
ever use it as a tool to bolster your position in a discussion—the attempt is guaranteed to backfire. You
want folks to respect the person, not the title.

Speaking of signature blocks: keep them small and tasteful, or better yet, nonexistent. Avoid large legal
disclaimers tacked on to the end of every mail, especially when they express sentiments incompatible
with participation in a free software project. For example, the following classic of the genre appears at
the end of every post a particular user makes to a public mailing list I'm on:

IMPORTANT NOTICE

If you have received this e-mail in error or wish to read our e-mail
disclaimer statement and monitoring policy, please refer to the
statement below or contact the sender.

This communication is from Deloitte & Touche LLP. Deloitte &
Touche LLP is a limited liability partnership registered in England
and Wales with registered number OC303675. A list of members' names
is available for inspection at Stonecutter Court, 1 Stonecutter
Street, London EC4A 4TR, United Kingdom, the firm's principal place of
business and registered office. Deloitte & Touche LLP is
authorised and regulated by the Financial Services Authority.

This communication and any attachments contain information which is
confidential and may also be privileged. It is for the exclusive use
of the intended recipient(s). If you are not the intended
recipient(s) please note that any form of disclosure, distribution,
copying or use of this communication or the information in it or in
any attachments is strictly prohibited and may be unlawful. If you
have received this communication in error, please return it with the
title "received in error" to IT.SECURITY.UK@deloitte.co.uk then delete
the email and destroy any copies of it.

E-mail communications cannot be guaranteed to be secure or error free,
as information could be intercepted, corrupted, amended, lost,
destroyed, arrive late or incomplete, or contain viruses. We do not
accept liability for any such matters or their consequences. Anyone
who communicates with us by e-mail is taken to accept the risks in
doing so.

When addressed to our clients, any opinions or advice contained in
this e-mail and any attachments are subject to the terms and
conditions expressed in the governing Deloitte & Touche LLP client

Communications

99

engagement letter.

Opinions, conclusions and other information in this e-mail and any
attachments which do not relate to the official business of the firm
are neither given nor endorsed by it.

For someone who's just showing up to ask a question now and then, that huge disclaimer looks a bit sil-
ly but probably doesn't do any lasting harm. However, if this person wanted to participate actively in the
project, that legal boilerplate would start to have a more insidious effect. It would send at least two po-
tentially destructive signals: first, that this person doesn't have full control over his tools—he's trapped
inside some corporate mailer that tacks an annoying message to the end of every email, and he hasn't got
any way to route around it—and second, that he has little or no organizational support for his free soft-
ware activities. True, the organization has clearly not banned him outright from posting to public lists,
but it has made his posts look distinctly unwelcoming, as though the risk of letting out confidential in-
formation must trump all other priorities.

If you work for an organization that insists on adding such signature blocks to all outgoing mail, then
consider getting a free email account from, for example, gmail.com [http://gmail.com/], hotmail.com
[http://www.hotmail.com/], or yahoo.com [http://www.yahoo.com/], and using that as your address for
the project.

Avoiding Common Pitfalls

Don't Post Without a Purpose
A common pitfall in online project participation is to think that you have to respond to everything. You
don't. First of all, there will usually be more threads going on than you can keep track of, at least after
the project is past its first few months. Second, even in the threads that you have decided to engage in,
much of what people say will not require a response. Development forums in particular tend to be domi-
nated by three kinds of messages:

1. Messages proposing something non-trivial

2. Messages expressing support or opposition to something someone else has said

3. Summing-up messages

None of these inherently requires a response, particularly if you can be fairly sure, based on watching
the thread so far, that someone else is likely to say what you would have said anyway. (If you're worried
that you'll be caught in a wait-wait loop because all the others are using this tactic too, don't be; there's
almost always someone out there who'll feel like jumping into the fray.) A response should be motivated
by a definite purpose. Ask yourself first: do you know what you want to accomplish? And second: will it
not get accomplished unless you say something?

Two good reasons to add your voice to a thread are a) when you see a flaw in a proposal and suspect that
you're the only one who sees it, and b) when you see that miscommunication is happening between oth-
ers, and know that you can fix it with a clarifying post. It's also generally fine to post just to thank some-
one for doing something, or to say "Me too!", because a reader can tell right away that such posts do not
require any response or further action, and therefore the mental effort demanded by the post ends cleanly
when the reader reaches the last line of the mail. But even then, think twice before saying something; it's
always better to leave people wishing you'd post more than wishing you'd post less. (See the second half
of Appendix D, Why Should I Care What Color the Bikeshed Is? for more thoughts about how to behave
on a busy mailing list.)

http://gmail.com/
http://gmail.com/
http://www.hotmail.com/
http://www.hotmail.com/
http://www.yahoo.com/
http://www.yahoo.com/

Communications

100

Productive vs Unproductive Threads
On a busy mailing list, you have two imperatives. One, obviously, is to figure out what you need to pay
attention to and what you can ignore. The other is to behave in a way that avoids causing noise: not only
do you want your own posts to have a high signal/noise ratio, you also want them to be the sorts of mes-
sages that stimulate other people to either post with a similarly high signal/noise ratio, or not post at all.

To see how to do that, let's consider the context in which it is done. What are some of the hallmarks of
an unproductive thread?

• Arguments that have been made already start being repeated, as though the poster thinks no one heard
them the first time.

• Increasing levels of hyperbole and involvement as the stakes get smaller and smaller.

• A majority of comments coming from people who do little or nothing, while the people who tend to
get things done are silent.

• Many ideas discussed without clear proposals ever being made. (Of course, any interesting idea starts
out as an imprecise vision; the important question is what direction it goes from there. Does the thread
seem to be turning the vision into something more concrete, or is it spinning off into sub-visions, side-
visions, and ontological disputes?)

Just because a thread is not productive at first doesn't mean it's a waste of time. It might be about an im-
portant topic, in which case the fact that it's not making any headway is all the more troublesome.

Guiding a thread toward usefulness without being pushy is an art. It won't work to simply admonish
people to stop wasting their time, or to ask them not to post unless they have something constructive to
say. You may, of course, think these things privately, but if you say them out loud then you will be of-
fensive. Instead, you have to suggest conditions for further progress—give people a route, a path to fol-
low that leads to the results you want, yet without sounding like you're dictating conduct. The distinction
is largely one of tone. For example, this is bad:

This discussion is going nowhere. Can we please drop this topic until someone has a
patch to implement one of these proposals? There's no reason to keep going around
and around saying the same things. Code speaks louder than words, folks.

Whereas this is good:

Several proposals have been floated in this thread, but none have had all the details
fleshed out, at least not enough for an up-or-down vote. Yet we're also not saying any-
thing new now; we're just reiterating what has been said before. So the best thing at
this point would probably be for further posts to contain either a complete specifica-
tion for the proposed behavior, or a patch. Then at least we'd have a definite action to
take (i.e., get consensus on the specification, or apply and test the patch).

Contrast the second approach with the first. The second way does not draw a line between you and the
others, or accuse them of taking the discussion into a spiral. It talks about "we", which is important
whether or not you actually participated in the thread before now, because it reminds everyone that even
those who have been silent thus far still have a stake in the thread's outcome. It describes why the thread
is going nowhere, but does so without pejoratives or judgements—it just dispassionately states some
facts. Most importantly, it offers a positive course of action, so that instead of people feeling like dis-
cussion is being closed off (a restriction against which they can only be tempted to rebel), they will feel
as if they're being offered a way to take the conversation to a more constructive level. This is a standard
people will naturally want to meet.

Communications

101

You won't always want a thread to make it to the next level of constructiveness—sometimes you'll want
it to just go away. The purpose of your post, then, is to make it do one or the other. If you can tell from
the way the thread has gone so far that no one is actually going to take the steps you suggested, then
your post effectively shuts down the thread without seeming to do so. Of course, there isn't any fool-
proof way to shut down a thread, and even if there were, you wouldn't want to use it. But asking partic-
ipants to either make visible progress or stop posting is perfectly defensible, if done diplomatically. Be
wary of quashing threads prematurely, however. Some amount of speculative chatter can be productive,
depending on the topic, and asking for it to be resolved too quickly will stifle the creative process, as
well as make you look impatient.

Don't expect any thread to stop on a dime. There will probably still be a few posts after yours, either be-
cause mails got crossed in the pipe, or because people want to have the last word. This is nothing to wor-
ry about, and you don't need to post again. Just let the thread peter out, or not peter out, as the case may
be. You can't have complete control; on the other hand, you can expect to have a statistically significant
effect across many threads.

The Softer the Topic, the Longer the Debate
Although discussion can meander in any topic, the probability of meandering goes up as the technical
difficulty of the topic goes down. After all, the greater the technical difficulty, the fewer participants
can really follow what's going on. Those who can are likely to be the most experienced developers, who
have already taken part in such discussions thousands of times before, and know what sort of behavior is
likely to lead to a consensus everyone can live with.

Thus, consensus is hardest to achieve in technical questions that are simple to understand and easy to
have an opinion about, and in "soft" topics such as organization, publicity, funding, etc. People can par-
ticipate in those arguments forever, because there are no qualifications necessary for doing so, no clear
ways to decide (even afterward) if a decision was right or wrong, and because simply outwaiting other
discussants is sometimes a successful tactic.

The principle that the amount of discussion is inversely proportional to the complexity of the topic has
been around for a long time, and is known informally as the Bikeshed Effect. Here is Poul-Henning
Kamp's explanation of it, from a now-famous post made to BSD developers:

It's a long story, or rather it's an old story, but it is quite short actually. C. Northcote
Parkinson wrote a book in the early 1960'ies, called "Parkinson's Law", which con-
tains a lot of insight into the dynamics of management.

[...]

In the specific example involving the bike shed, the other vital component is an atomic
power-plant, I guess that illustrates the age of the book.

Parkinson shows how you can go in to the board of directors and get approval for
building a multi-million or even billion dollar atomic power plant, but if you want to
build a bike shed you will be tangled up in endless discussions.

Parkinson explains that this is because an atomic plant is so vast, so expensive and so
complicated that people cannot grasp it, and rather than try, they fall back on the as-
sumption that somebody else checked all the details before it got this far. Richard P.
Feynmann gives a couple of interesting, and very much to the point, examples relating
to Los Alamos in his books.

A bike shed on the other hand. Anyone can build one of those over a weekend, and
still have time to watch the game on TV. So no matter how well prepared, no matter

Communications

102

how reasonable you are with your proposal, somebody will seize the chance to show
that he is doing his job, that he is paying attention, that he is here.

In Denmark we call it "setting your fingerprint". It is about personal pride and pres-
tige, it is about being able to point somewhere and say "There! I did that." It is a
strong trait in politicians, but present in most people given the chance. Just think about
footsteps in wet cement.

(His complete post is very much worth reading, too. See Appendix D, Why Should I Care What Color
the Bikeshed Is?; see also bikeshed.com [http://bikeshed.com/].)

Anyone who's ever taken regular part in group decision-making will recognize what Kamp is talking
about. However, it is usually impossible to persuade everyone to avoid painting bikesheds. The best you
can do is point out that the phenomenon exists, when you see it happening, and persuade the senior de-
velopers—the people whose posts carry the most weight—to drop their paintbrushes early, so at least
they're not contributing to the noise. Bikeshed painting parties will never go away entirely, but you can
make them shorter and less frequent by spreading an awareness of the phenomenon in the project's cul-
ture.

Avoid Holy Wars
A holy war is a dispute, often but not always over a relatively minor issue, which is not resolvable on
the merits of the arguments, but where people feel passionate enough to continue arguing anyway in the
hope that their side will prevail. Holy wars are not quite the same as bikeshed paintings. People paint-
ing bikesheds are usually quick to jump in with an opinion (because they can), but they won't necessar-
ily feel strongly about it, and indeed will sometimes express other, incompatible opinions, to show that
they understand all sides of the issue. In a holy war, on the other hand, understanding the other sides is
a sign of weakness. In a holy war, everyone knows there is One Right Answer; they just don't agree on
what it is.

Once a holy war has started, it generally cannot be resolved to everyone's satisfaction. It does no good
to point out, in the midst of a holy war, that a holy war is going on. Everyone knows that already. Un-
fortunately, a common feature of holy wars is disagreement on the very question of whether the dispute
is resolvable by continued discussion. Viewed from outside, it is clear that neither side is changing the
other's mind. Viewed from inside, the other side is being obtuse and not thinking clearly, but they might
come around if browbeaten enough. Now, I am not saying there's never a right side in a holy war. Some-
times there is—in the holy wars I've participated in, it's always been my side, of course. But it doesn't
matter, because there's no algorithm for convincingly demonstrating that one side or the other is right.

A common, but unsatisfactory, way people try to resolve holy wars is to say "We've already spent far
more time and energy discussing this than it's worth! Can we please just drop it?" There are two prob-
lems with this. First, that time and energy has already been spent and can never be recovered—the on-
ly question now is, how much more effort remains? If some people feel that just a little more discussion
will bring the issue to a close, then it still makes sense (from their point of view) to continue.

The other problem with asking for the matter to be dropped is that this is often equivalent to allowing
one side, the status quo, to declare victory by inaction. And in some cases, the status quo is known to be
unacceptable anyway: everyone agrees that some decision must be made, some action taken. Dropping
the subject would be worse for everyone than simply giving up the argument would be for anyone. But
since that dilemma applies to all equally, it's still possible to end up arguing forever about what to do.

So how should you handle holy wars?

The first answer is, try to set things up so they don't happen. This is not as hopeless as it sounds:

http://bikeshed.com/
http://bikeshed.com/

Communications

103

You can anticipate certain standard holy wars: they tend to come up over programming languages, li-
censes (see the section called “The GPL and License Compatibility” in Chapter 10, Licenses, Copy-
rights, and Patents), reply-to munging (see the section called “The Great Reply-to Debate” in Chapter 3,
Technical Infrastructure), and a few other topics. Each project usually has a holy war or two all its own,
as well, which longtime developers will quickly become familiar with. The techniques for stopping holy
wars, or at least limiting their damage, are pretty much the same everywhere. Even if you are positive
your side is right, try to find some way to express sympathy and understanding for the points the other
side is making. Often the problem in a holy war is that because each side has built its walls as high as
possible, and made it clear that any other opinion is sheer foolishness, the act of surrendering or chang-
ing one's mind becomes psychologically unbearable: it would be an admission not just of being wrong,
but of having been certain and still being wrong. The way you can make this admission palatable for the
other side is to express some uncertainty yourself—precisely by showing that you understand the argu-
ments they are making and find them at least sensible, if not finally persuasive. Make a gesture that pro-
vides space for a reciprocal gesture, and usually the situation will improve. You are no more or less like-
ly to get the technical result you wanted, but at least you can avoid unnecessary collateral damage to the
project's morale.

When a holy war can't be avoided, decide early how much you care, and then be willing to publicly give
up. When you do so, you can say that you're backing out because the holy war isn't worth it, but don't
express any bitterness and don't take the opportunity for a last parting shot at the opposing side's argu-
ments. Giving up is effective only when done gracefully.

Programming language holy wars are a bit of a special case, because they are often highly technical, yet
many people feel qualified to take part in them, and the stakes are very high, since the result may deter-
mine what language a good portion of the project's code is written in. The best solution is to choose the
language early, with buy-in from influential initial developers, and then defend it on the grounds that it's
what you are all comfortable writing in, not on the grounds that it's better than some other language that
could have been used instead. Never let the conversation degenerate into an academic comparison of
programming languages (this seems to happen especially often when someone brings up Perl, for some
reason); that's a death topic that you must simply refuse to be drawn into.

For more historical background on holy wars, see catb.org/~esr/jargon/html/H/holy-wars.html [http://
catb.org/~esr/jargon/html/H/holy-wars.html], and the paper by Danny Cohen that popularized the term,
ietf.org/rfc/ien/ien137.txt [http://www.ietf.org/rfc/ien/ien137.txt].

The "Noisy Minority" Effect
In any mailing list discussion, it's easy for a small minority to give the impression that there is a great
deal of dissent, by flooding the list with numerous lengthy emails. It's a bit like a filibuster, except that
the illusion of widespread dissent is even more powerful, because it's divided across an arbitrary number
of discrete posts and most people won't bother to keep track of who said what, when. They'll just have
an instinctive impression that the topic is very controversial, and wait for the fuss to die down.

The best way to counteract this effect is to point it out very clearly and provide supporting evidence
showing how small the actual number of dissenters is, compared to those in agreement. In order to in-
crease the disparity, you may want to privately poll people who have been mostly silent, but who you
suspect would agree with the majority. Don't say anything that suggests the dissenters were deliberately
trying to inflate the impression they were making. Chances are they weren't, and even if they were, there
would be no strategic advantage to pointing it out. All you need do is show the actual numbers in a side-
by-side comparison, and people will realize that their intuition of the situation does not match reality.

This advice doesn't just apply to issues with clear for-and-against positions. It applies to any discussion
where a fuss is being made, but it's not clear that most people consider the issue under discussion to be
a real problem. After a while, if you agree that the issue is not worthy of action, and can see that it has

http://catb.org/~esr/jargon/html/H/holy-wars.html
http://catb.org/~esr/jargon/html/H/holy-wars.html
http://catb.org/~esr/jargon/html/H/holy-wars.html
http://www.ietf.org/rfc/ien/ien137.txt
http://www.ietf.org/rfc/ien/ien137.txt

Communications

104

failed to get much traction (even if it has generated a lot of mails), you can just observe publicly that it's
not getting traction. If the "Noisy Minority" effect has been at work, your post will seem like a breath of
fresh air. Most people's impression of the discussion up to that point will have been somewhat murky:
"Huh, it sure feels like there's some big deal here, because there sure are a lot of posts, but I can't see any
clear progress happening." By explaining how the form of the discussion made it appear more turbulent
than it really was, you retrospectively give it a new shape, through which people can recast their under-
standing of what transpired.

Difficult People
Difficult people are no easier to deal with in electronic forums than they are in person. By "difficult" I
don't mean "rude". Rude people are annoying, but they're not necessarily difficult. This book has already
discussed how to handle them: comment on the rudeness the first time, and from then on, either ignore
them or treat them the same as anyone else. If they continue being rude, they will usually make them-
selves so unpopular as to have no influence on others in the project, so they are a self-containing prob-
lem.

The really difficult cases are people who are not overtly rude, but who manipulate or abuse the project's
processes in a way that ends up costing other people time and energy, yet do not bring any benefit to the
project2.

Often, such people look for wedgepoints in the project's procedures, to give themselves more influence
than they might otherwise have. This is much more insidious than mere rudeness, because neither the
behavior nor the damage it causes is apparent to casual observers. A classic example is the filibuster,
in which someone (always sounding as reasonable as possible, of course) keeps claiming that the mat-
ter under discussion is not ready for resolution, and offers more and more possible solutions, or new
viewpoints on old solutions, when what is really going on is that he senses that a consensus or a ballot is
about to form and he doesn't like where it's headed. Another example is when there's a debate that won't
converge on consensus, but the group tries to at least clarify the points of disagreement and produce a
summary for everyone to refer to from then on. The obstructionist, who knows the summary may lead to
a result he doesn't like, will often try to delay even the summary, by relentlessly complicating the ques-
tion of what should be in it, either by objecting to reasonable suggestions or by introducing unexpected
new items.

Handling Difficult People
To counteract such behavior, it helps to understand the mentality of those who engage in it. People gen-
erally do not do it consciously. No one wakes up in the morning and says to himself: "Today I'm going
to cynically manipulate procedural forms in order to be an irritating obstructionist." Instead, such actions
are often preceded by a semi-paranoid feeling of being shut out of group interactions and decisions. The
person feels he is not being taken seriously, or (in the more severe cases) that there is almost a conspira-
cy against him—that the other project members have decided to form an exclusive club, of which he is
not a member. This then justifies, in his mind, taking rules literally and engaging in a formal manipula-
tion of the project's procedures, in order to make everyone else take him seriously. In extreme cases, the
person can even believe that he is fighting a lonely battle to save the project from itself.

It is the nature of such an attack from within that not everyone will notice it at the same time, and some
people may not see it at all unless presented with very strong evidence. This means that neutralizing it

2For an extended discussion of one particular subspecies of difficult person, see Amy Hoy's hilariously on-target Help Vampires: A Spotter's
Guide [http://slash7.com/2006/12/22/vampires/]. Quoting Hoy: "It's so regular you could set your watch by it. The decay of a community is just
as predictable as the decay of certain stable nuclear isotopes. As soon as an open source project, language, or what-have-you achieves a certain
notoriety — its half-life, if you will — they swarm in, seemingly draining the very life out of the community itself. They are the Help Vampires.
And I'm here to stop them..."

http://slash7.com/2006/12/22/vampires/
http://slash7.com/2006/12/22/vampires/
http://slash7.com/2006/12/22/vampires/

Communications

105

can be quite a bit of work. It's not enough to persuade yourself that it's happening; you have to marshal
enough evidence to persuade others too, and then you have to distribute that evidence in a thoughtful
way.

Given that it's so much work to fight, it's often better just to tolerate it for a while. Think of it like a par-
asitic but mild disease: if it's not too debilitating, the project can afford to remain infected, and medicine
might have harmful side effects. However, if it gets too damaging to tolerate, then it's time for action.
Start gathering notes on the patterns you see. Make sure to include references to public archives—this
is one of the reasons the project keeps records, so you might as well use them. Once you've got a good
case built, start having private conversations with other project participants. Don't tell them what you've
observed; instead, first ask them what they've observed. This may be your last chance to get unfiltered
feedback about how others see the troublemaker's behavior; once you start openly talking about it, opin-
ion will become polarized and no one will be able to remember what he formerly thought about the mat-
ter.

If private discussions indicate that at least some others see the problem too, then it's time to do some-
thing. That's when you have to get really cautious, because it's very easy for this sort of person to try to
make it appear as though you're picking on them unfairly. Whatever you do, never accuse them of ma-
liciously abusing the project's procedures, of being paranoid, or, in general, of any of the other things
that you suspect are probably true. Your strategy should be to look both more reasonable and more con-
cerned with the overall welfare of the project, with the goal of either reforming the person's behavior,
or getting them to go away permanently. Depending on the other developers, and your relationship with
them, it may be advantageous to gather allies privately first. Or it may not; that might just create ill will
behind the scenes, if people think you're engaging in an improper whispering campaign.

Remember that although the other person may be the one behaving destructively, you will be the one
who appears destructive if you make a public charge that you can't back up. Be sure to have plenty of
examples to demonstrate what you're saying, and say it as gently as possible while still being direct. You
may not persuade the person in question, but that's okay as long as you persuade everyone else.

Case study
I remember only one situation, in more than 10 years of working in free software, where things got so
bad that we actually had to ask someone to stop posting altogether. As is so often the case, he was not
rude, and sincerely wanted only to be helpful. He just didn't know when to post and when not to post.
Our lists were open to the public, and he was posting so often, and asking questions on so many differ-
ent topics, that it was getting to be a noise problem for the community. We'd already tried asking him
nicely to do a little more research for answers before posting, but that had no effect.

The strategy that finally worked is a perfect example of how to build a strong case on neutral, quantita-
tive data. One of our developers did some digging in the archives, and then sent the following message
privately to a few developers. The offender (the third name on the list below, shown here as "J. Ran-
dom") had very little history with the project, and had contributed no code or documentation. Yet he was
the third most active poster on the mailing lists:

From: "Brian W. Fitzpatrick" <fitz@collab.net>
To: [... recipient list omitted for anonymity ...]
Subject: The Subversion Energy Sink
Date: Wed, 12 Nov 2003 23:37:47 -0600

In the last 25 days, the top 6 posters to the svn [dev|users] list have
been:

Communications

106

 294 kfogel@collab.net
 236 "C. Michael Pilato" <cmpilato@collab.net>
 220 "J. Random" <jrandom@problematic-poster.com>
 176 Branko #ibej <brane@xbc.nu>
 130 Philip Martin <philip@codematters.co.uk>
 126 Ben Collins-Sussman <sussman@collab.net>

I would say that five of these people are contributing to Subversion
hitting 1.0 in the near future.

I would also say that one of these people is consistently drawing time
and energy from the other 5, not to mention the list as a whole, thus
(albeit unintentionally) slowing the development of Subversion. I did
not do a threaded analysis, but vgrepping my Subversion mail spool tells
me that every mail from this person is responded to at least once by at
least 2 of the other 5 people on the above list.

I think some sort of radical intervention is necessary here, even if we
do scare the aforementioned person away. Niceties and kindness have
already proven to have no effect.

dev@subversion is a mailing list to facilitate development of a version
control system, not a group therapy session.

-Fitz, attempting to wade through three days of svn mail that he let
 pile up

Though it might not seem so at first, J. Random's behavior was a classic case of abusing project proce-
dures. He wasn't doing something obvious like trying to filibuster a vote, but he was taking advantage
of the mailing list's policy of relying on self-moderation by its members. We left it to each individual's
judgement when to post and on what topics. Thus, we had no procedural recourse for dealing with some-
one who either did not have, or would not exercise, such judgement. There was no rule one could point
to and say the fellow was violating it, yet everyone knew that his frequent posting was getting to be a se-
rious problem.

Fitz's strategy was, in retrospect, masterful. He gathered damning quantitative evidence, but then dis-
tributed it discreetly, sending it first to a few people whose support would be key in any drastic action.
They agreed that some sort of action was necessary, and in the end we called J. Random on the phone,
described the problem to him directly, and asked him to simply stop posting. He never really did under-
stand the reasons why; if he had been capable of understanding, he probably would have exercised ap-
propriate judgement in the first place. But he agreed to stop posting, and the mailing lists became use-
able again. Part of the reason this strategy worked was, perhaps, the implicit threat that we could start re-
stricting his posts via the moderation software normally used for preventing spam (see the section called
“Spam Prevention” in Chapter 3, Technical Infrastructure). But the reason we were able to have that op-
tion in reserve was that Fitz had gathered the necessary support from key people first.

Handling Growth
The price of success is heavy in the open source world. As your software gets more popular, the num-
ber of people who show up looking for information increases dramatically, while the number of peo-
ple able to provide information increases much more slowly. Furthermore, even if the ratio were even-
ly balanced, there is still a fundamental scalability problem with the way most open source projects han-
dle communications. Consider mailing lists, for example. Most projects have a mailing list for general

Communications

107

user questions—sometimes the list's name is "users", "discuss", "help", or something else. Whatever its
name, the purpose of the list is always the same: to provide a place where people can get their questions
answered, while others watch and (presumably) absorb knowledge from observing these exchanges.

These mailing lists work very well up to a few thousand users and/or a couple of hundred posts a day.
But somewhere after that, the system starts to break down, because every subscriber sees every post; if
the number of posts to the list begins to exceed what any individual reader can process in a day, the list
becomes a burden to its members. Imagine, for instance, if Microsoft had such a mailing list for Win-
dows XP. Windows XP has hundreds of millions of users; if even one-tenth of one percent of them had
questions in a given twenty-four hour period, then this hypothetical list would get hundreds of thou-
sands of posts per day! Such a list could never exist, of course, because no one would stay subscribed to
it. This problem is not limited to mailing lists; the same logic applies to IRC channels, other discussion
forums, indeed to any system in which a group hears questions from individuals. The implications are
ominous: the usual open source model of massively parallelized support simply does not scale to the lev-
els needed for world domination.

There will be no explosion when forums reach the breaking point. There is just a quiet negative feed-
back effect: people unsubscribe from the lists, or leave the IRC channel, or at any rate stop bothering
to ask questions, because they can see they won't be heard in all the noise. As more and more people
make this highly rational choice, the forum's activity will seem to stay at a manageable level. But it is
staying manageable precisely because the rational (or at least experienced) people have started looking
elsewhere for information—while the inexperienced people stay behind and continue posting. In other
words, one side effect of continuing to use unscalable communications models as the project grows is
that the average quality of both questions and answers tends to go down, which makes it look like new
users are dumber than they used to be, when in fact they're probably not. It's just that the benefit/cost
ratio of using those high-population forums goes down, so naturally those with the experience to do so
start to look elsewhere for answers first. Adjusting communications mechanisms to cope with project
growth therefore involves two related strategies:

1. Recognizing when particular parts of a forum are not suffering unbounded growth, even if the forum
as a whole is, and separating those parts off into new, more specialized forums (i.e., don't let the good
be dragged down by the bad).

2. Making sure there are many automated sources of information available, and that they are kept orga-
nized, up-to-date, and easy to find.

Strategy (1) is usually not too hard. Most projects start out with one main forum: a general discus-
sion mailing list, on which feature ideas, design questions, and coding problems can all be hashed out.
Everyone involved with the project is on the list. After a while, it usually becomes clear that the list has
evolved into several distinct topic-based sublists. For example, some threads are clearly about develop-
ment and design; others are user questions of the "How do I do X?" variety; maybe there's a third topic
family centered around processing bug reports and enhancement requests; and so on. A given individual,
of course, might participate in many different thread types, but the important thing is that there is not a
lot of overlap between the types themselves. They could be divided into separate lists without causing
any harmful balkanization, because the threads rarely cross topic boundaries.

Actually doing this division is a two-step process. You create the new list (or IRC channel, or whatev-
er it is to be), and then you spend whatever time is necessary gently nagging and reminding people to
use the new forums appropriately. That latter step can last for weeks, but eventually people will get the
idea. You simply have to make a point of always telling the sender when a post is sent to the wrong des-
tination, and do so visibly, so that other people are encouraged to help out with routing. It's also useful
to have a web page providing a guide to all the lists available; your responses can simply reference that
web page and, as a bonus, the recipient may learn something about looking for guidelines before post-
ing.

Communications

108

Strategy (2) is an ongoing process, lasting the lifetime of the project and involving many participants. Of
course it is partly a matter of having up-to-date documentation (see the section called “Documentation”
in Chapter 2, Getting Started) and making sure to point people there. But it is also much more than that;
the sections that follow discuss this strategy in detail.

Conspicuous Use of Archives
Typically, all communications in an open source project (except sometimes IRC conversations) are
archived. The archives are public and searchable, and have referential stability: that is, once a given
piece of information is recorded at a particular address, it stays at that address forever.

Use those archives as much as possible, and as conspicuously as possible. Even when you know the an-
swer to some question off the top of your head, if you think there's a reference in the archives that con-
tains the answer, spend the time to dig it up and present it. Every time you do that in a publicly visible
way, some people learn for the first time that the archives are there, and that searching in them can pro-
duce answers. Also, by referring to the archives instead of rewriting the advice, you reinforce the so-
cial norm against duplicating information. Why have the same answer in two different places? When the
number of places it can be found is kept to a minimum, people who have found it before are more like-
ly to remember what to search for to find it again. Well-placed references also contribute to the quality
of search results in general, because they strengthen the targeted resource's ranking in Internet search en-
gines.

There are times when duplicating information makes sense, however. For example, suppose there's a re-
sponse already in the archives, not from you, saying:

It appears that your Scanley indexes have become frobnicated. To
unfrobnicate them, run these steps:

1. Shut down the Scanley server.
2. Run the 'defrobnicate' program that ships with Scanley.
3. Start up the server.

Then, months later, you see another post indicating that someone's indexes have become frobnicated.
You search the archives and come up with the old response above, but you realize it's missing some
steps (perhaps by mistake, or perhaps because the software has changed since that post was written). The
classiest way to handle this is to post a new, more complete set of instructions, and explicitly obsolete
the old post by mentioning it:

It appears that your Scanley indexes have become frobnicated. We
saw this problem back in July, and J. Random posted a solution at
http://blahblahblah/blah. Below is a more complete description of
how to unfrobnicate your indexes, based on J. Random's instructions
but extending them a bit:

1. Shut down the Scanley server.
2. Become the user the Scanley server normally runs as.
3. As that user, run the 'defrobnicate' program on the indexes.
4. Run Scanley by hand to see if the indexes work now.
5. Restart the server.

(In an ideal world, it would be possible to attach a note to the old post, saying that there is newer infor-
mation available and pointing to the new post. However, I don't know of any archiving software that

Communications

109

offers an "obsoleted by" feature, perhaps because it would be mildly tricky to implement in a way that
doesn't violate the archives' integrity as a verbatim record. This is another reason why creating dedicated
web pages with answers to common questions is a good idea.)

Archives are probably most often searched for answers to technical questions, but their importance to
the project goes well beyond that. If a project's formal guidelines are its statutory law, the archives are
its common law: a record of all decisions made and how they were arrived at. In any recurring discus-
sion, it's pretty much obligatory nowadays to start with an archive search. This allows you to begin the
discussion with a summary of the current state of things, anticipate objections, prepare rebuttals, and
possibly discover angles you hadn't thought of. Also, the other participants will expect you to have done
an archive search. Even if the previous discussions went nowhere, you should include pointers to them
when you re-raise the topic, so people can see for themselves a) that they went nowhere, and b) that you
did your homework, and therefore are probably saying something now that has not been said before.

Treat all resources like archives

All of the preceding advice applies to more than just mailing list archives. Having particular pieces of
information at stable, conveniently findable addresses should be an organizing principle for all of the
project's information. Let's take the project FAQ as a case study.

How do people use a FAQ?

1. They want to search in it for specific words and phrases.

2. They want to browse it, soaking up information without necessarily looking for answers to specific
questions.

3. They expect search engines such as Google to know about the FAQ's content, so that searches can re-
sult in FAQ entries.

4. They want to be able to refer other people directly to specific items in the FAQ.

5. They want to be able to add new material to the FAQ, but note that this happens much less often than
answers are looked up—FAQs are far more often read from than written to.

Point 1 implies that the FAQ should be available in some sort of textual format. Points 2 and 3 imply
that the FAQ should be available as an HTML page, with point 2 additionally indicating that the HTML
should be designed for readability (i.e., you'll want some control over its look and feel), and should have
a table of contents. Point 4 means that each individual entry in the FAQ should be assigned an HTML
named anchor, a tag that allows people to reach a particular location on the page. Point 5 means the
source files for the FAQ should be available in a convenient way (see the section called “Version every-
thing” in Chapter 3, Technical Infrastructure), in a format that's easy to edit.

Communications

110

Named Anchors and ID Attributes

There are two ways to get a browser to jump to a specific location within a web page: named an-
chors and id attributes.

A named anchor is just a normal HTML anchor element (<a>...), but with a "name" at-
tribute:

...

More recent versions of HTML support a generic id attribute, which can be attached to any
HTML element, not just to <a>. For example:

<p id="mylabel">...</p>

Both named anchors and id attributes are used in the same way. One appends a hash mark and the
label to a URL, to cause the browser to jump straight to that spot in the page:

http://myproject.example.com/faq.html#mylabel

Virtually all browsers support named anchors; most modern browsers support the id attribute. To
play it safe, I would recommend using either named anchors alone, or named anchors and id at-
tributes together (with the same label for both in a given pair, of course). Named anchors can-
not be self-closing—even if there's no text inside the element, you must still write it in two-sided
form:

...though normally there would be some text, such as the title of a section.

Whether you use a named anchor, or an id attribute, or both, remember that the label will not be
visible to someone who browses to that location without using the label. But such a person might
want to discover the label for a particular location, so they can mail the URL for a FAQ answer to
a friend, for example. To help them do this, add a title attribute to the same element(s) where you
added the "name" and/or "id" attribute, for example:

...

When the mouse pointer is held over the text inside the title-attributed element, most browsers
will pop up a tiny box showing the title. I usually include the hash-sign, to remind the user that
this is what she would put at the end of the URL to jump straight to this location next time.

Formatting the FAQ like this is just one example of how to make a resource presentable. The same prop-
erties—direct searchability, availability to major Internet search engines, browsability, referential sta-
bility, and (where applicable) editability—apply to other web pages, the source code tree, the bug track-
er, etc. It just happens that most mailing list archiving software long ago recognized the importance of
these properties, which is why mailing lists tend to have this functionality natively, while other formats
may require some extra effort on the maintainer's part (Chapter 8, Managing Volunteers discusses how
to spread that maintenance burden across many volunteers).

Codifying Tradition
As a project acquires history and complexity, the amount of data each incoming participant must absorb
increases. Those who have been with the project a long time were able to learn, and invent, the project's

Communications

111

conventions as they went along. They will often not be consciously aware of what a huge body of tradi-
tion has accumulated, and may be surprised at how many missteps recent newcomers seem to make. Of
course, the issue is not that the newcomers are of any lower quality than before; it's that they face a big-
ger acculturation burden than newcomers did in the past.

The traditions a project accumulates are as much about how to communicate and preserve information
as they are about coding standards and other technical minutae. We've already looked at both sorts of
standards, in the section called “Developer documentation” in Chapter 2, Getting Started and the section
called “Writing It All Down” in Chapter 4, Social and Political Infrastructure respectively, and exam-
ples are given there. What this section is about is how to keep such guidelines up-to-date as the project
evolves, especially guidelines about how communications are managed, because those are the ones that
change the most as the project grows in size and complexity.

First, watch for patterns in how people get confused. If you see the same situations coming up over and
over, especially with new participants, chances are there is a guideline that needs to be documented but
isn't. Second, don't get tired of saying the same things over and over again, and don't sound like you're
tired of saying them. You and other project veterans will have to repeat yourselves often; this is an in-
evitable side effect of the arrival of newcomers.

Every web page, every mailing list message, and every IRC channel should be considered advertis-
ing space—not for commercial advertisements, but for ads about your project's own resources. What
you put in that space depends on the demographics of those likely to read it. An IRC channel for user
questions, for example, is likely to get people who have never interacted with the project before—often
someone who has just installed the software, and has a question he'd like answered immediately (after
all, if it could wait, he'd have sent it to a mailing list instead, which would probably use less of his total
time, although it would take longer for an answer to come back). People usually don't make a permanent
investment in the IRC channel; they'll show up, ask their question, and leave.

Therefore, the channel topic should be aimed at people looking for technical answers about the software
right now, rather than at, say, people who might get involved with the project in a long term way and for
whom community interaction guidelines might be more appropriate. Here's how a really busy channel
handles it (compare this with the earlier example in the section called “IRC / Real-Time Chat Systems”
in Chapter 3, Technical Infrastructure):

You are now talking on #linuxhelp

Topic for #linuxhelp is Please READ
http://www.catb.org/~esr/faqs/smart-questions.html &&
http://www.tldp.org/docs.html#howto BEFORE asking questions | Channel
rules are at http://www.nerdfest.org/lh_rules.html | Please consult
http://kerneltrap.org/node/view/799 before asking about upgrading to a
2.6.x kernel | memory read possible: http://tinyurl.com/4s6mc ->
update to 2.6.8.1 or 2.4.27 | hash algo disaster: http://tinyurl.com/6w8rf
| reiser4 out

With mailing lists, the "ad space" is a tiny footer appended to every message. Most projects put sub-
scription/unsubscription instructions there, and perhaps a pointer to the project's home page or FAQ
page as well. You might think that anyone subscribed to the list would know where to find those things,
and they probably do—but many more people than just subscribers see those mailing list messages. An
archived post may be linked to from many places; indeed, some posts become so widely known that they
eventually have more readers off the list than on it.

Formatting can make a big difference. For example, in the Subversion project, we were having limited
success using the bug-filtering technique described in the section called “Pre-Filtering the Bug Track-

Communications

112

er” in Chapter 3, Technical Infrastructure. Many bogus bug reports were still being filed by inexperi-
enced people, and each time it happened, the filer had to be educated in exactly the same way as the 500
people before him. One day, after one of our developers had finally gotten to the end of his rope and
flamed some poor user who didn't read the issue tracker guidelines carefully enough, another develop-
er decided this pattern had gone on long enough. He suggested that we reformat the issue tracker front
page so that the most important part, the injunction to discuss the bug on the mailing lists or IRC chan-
nels before filing, would stand out in huge, bold red letters, on a bright yellow background, centered
prominently above everything else on the page. We did so (it's been reformatted a bit since then, but
it's still very prominent—you can see the results at subversion.apache.org/reporting-issues.html [http://
subversion.apache.org/reporting-issues.html]), and the result was a noticeable drop in the rate of bo-
gus issue filings. We still get them, of course—we always will—but the rate has slowed considerably,
even as the number of users increases. The outcome is not only that the bug database contains less junk,
but that those who respond to issue filings stay in a better mood, and are more likely to remain friend-
ly when responding to one of the now-rare bogus filings. This improves both the project's image and the
mental health of its volunteers.

The lesson for us was that merely writing up the guidelines was not enough. We also had to put them
where they'd be seen by those who need them most, and format them in such a way that their status as
introductory material would be immediately clear to people unfamiliar with the project.

Static web pages are not the only venue for advertising the project's customs. A certain amount of in-
teractive policing (in the friendly-reminder sense, not the handcuffs-and-jail sense) is also required. All
peer review, even the commit reviews described in the section called “Practice Conspicuous Code Re-
view” in Chapter 2, Getting Started, should include review of people's conformance or non-conformance
with project norms, especially with regard to communications conventions.

Another example from the Subversion project: we settled on a convention of "r12908" to mean "revision
12908 in the version control repository." The lower-case "r" prefix is easy to type, and because it's half
the height of the digits, it makes an easily-recognizable block of text when combined with the digits. Of
course, settling on the convention doesn't mean that everyone will begin using it consistently right away.
Thus, when a commit mail comes in with a log message like this:

--
r12908 | qsimon | 2005-02-02 14:15:06 -0600 (Wed, 02 Feb 2005) | 4 lines

Patch from J. Random Contributor <jrcontrib@gmail.com>

* trunk/contrib/client-side/psvn/psvn.el:
 Fixed some typos from revision 12828.
--

...part of reviewing that commit is to say "By the way, please use 'r12828', not 'revision 12828' when re-
ferring to past changes." This isn't just pedantry; it's important as much for automatic parsability as for
human readership.

By following the general principle that there should be canonical referral methods for common entities,
and that these referral methods should be used consistently everywhere, the project in effect exports cer-
tain standards. Those standards enable people to write tools that present the project's communications
in more useable ways—for example, a revision formatted as "r12828" could be transformed into a live
link into the repository browsing system. This would be harder to do if the revision were written as "re-
vision 12828", both because that form could be divided across a line break, and because it's less distinct
(the word "revision" will often appear alone, and groups of numbers will often appear alone, whereas the
combination "r12828" can only mean a revision number). Similar concerns apply to issue numbers, FAQ
items (hint: use a URL with a named anchor, as described in Named Anchors and ID Attributes), etc.

http://subversion.apache.org/reporting-issues.html
http://subversion.apache.org/reporting-issues.html
http://subversion.apache.org/reporting-issues.html

Communications

113

Even for entities where there is not an obvious short, canonical form, people should still be encouraged
to provide key pieces of information consistently. For example, when referring to a mailing list message,
don't just give the sender and subject; also give the archive URL and the Message-ID header. The last
allows people who have their own copy of the mailing list (people sometimes keep offline copies, for
example to use on a laptop while traveling) to unambiguously identify the right message even if they
don't have access to the archives. The sender and subject wouldn't be enough, because the same person
might make several posts in the same thread, even on the same day.

The more a project grows, the more important this sort of consistency becomes. Consistency means that
everywhere people look, they see the same patterns being followed, so they know to follow those pat-
terns themselves. This, in turn, reduces the number of questions they need to ask. The burden of hav-
ing a million readers is no greater than that of having one; scalability problems start to arise only when a
certain percentage of those readers ask questions. As a project grows, therefore, it must reduce that per-
centage by increasing the density and accessibility of information, so that any given person is more like-
ly to find what he needs without having to ask.

No Conversations in the Bug Tracker
In any project that's making active use of its bug tracker, there is always a danger of the tracker turning
into a discussion forum itself, even though the mailing lists would really be better. Usually it starts off
innocently enough: someone annotates an issue with, say, a proposed solution, or a partial patch. Some-
one else sees this, realizes there are problems with the solution, and attaches another annotation pointing
out the problems. The first person responds, again by appending to the issue...and so it goes.

The problem with this is, first, that the bug tracker is a pretty cumbersome place to have a discussion,
and second, that other people may not be paying attention—after all, they expect development discus-
sion to happen on the development mailing list, so that's where they look for it. They may not be sub-
scribed to the issue changes list at all, and even if they are, they may not follow it very closely.

But exactly where in the process did something go wrong? Was it when the original person attached her
solution to the issue—should she have posted it to the list instead? Or was it when the second person re-
sponded in the issue, instead of on the list?

There isn't one right answer, but there is a general principle: if you're just adding data to an issue, then
do it in the tracker, but if you're starting a conversation, then do it on the mailing list. You may not al-
ways be able to tell which is the case, but just use your best judgement. For example, when attaching a
patch that contains a potentially controversial solution, you might be able to anticipate that people are
going to have questions about it. So even though you would normally attach the patch to the issue (as-
suming you don't want to or can't commit the change directly), in this case you might choose to post it
to a mailing list instead. At any rate, there eventually will come a point in the exchange where one par-
ty or the other can tell that it is about to go from mere appending of data to an actual conversation—in
the example that started this section, that would be the second respondent, who on realizing that there
were problems with the patch, could predict that a real conversation is about to ensue, and therefore that
it should be held in the appropriate medium.

To use a mathematical analogy, if the information looks like it will be quickly convergent, then put it di-
rectly in the bug tracker; if it looks like it will be divergent, then a mailing list or IRC channel would be
a better place.

This doesn't mean there should never be any exchanges in the bug tracker. Asking for more details of the
reproduction recipe from the original reporter tends to be a highly convergent process, for instance. The
person's response is unlikely to raise new issues; it's simply going to flesh out information already filed.
There's no need to distract the mailing list with that process; by all means, take care of it with a series of
comments in the tracker. Likewise, if you're fairly sure that the bug has been misreported (i.e., is not a

Communications

114

bug), then you can simply say so right in the issue. Even pointing out a minor problem with a proposed
solution is fine, assuming the problem is not a showstopper for the entire solution.

On the other hand, if you're raising philosophical issues about the bug's scope or the software's proper
behavior, you can be pretty sure other developers will want to be involved. The discussion is likely to di-
verge for a while before it converges, so do it on the mailing list.

Always link to the mailing list thread from the issue, when you choose to post to the mailing list. It's still
important for someone following the issue to be able to reach the discussion, even if the issue itself isn't
the forum of discussion. The person who starts the thread may find this laborious, but open source is
fundamentally a writer-responsible culture: it's much more important to make things easy for the tens or
hundreds of people who may read the bug than for the three or five people writing about it.

It's fine to take important conclusions or summaries from the list discussion and paste them into the is-
sue, if that will make things convenient for readers. A common idiom is to start a list discussion, put a
link to the thread in the issue, and then when the discussion finishes, paste the final summary into the is-
sue (along with a link to the message containing that summary), so someone browsing the issue can easi-
ly see what conclusion was reached without having to click to somewhere else. Note that the usual "two
masters" data duplication problem does not exist here, because both archives and issue comments are
usually static, unchangeable data anyway.

Publicity
In free software, there is a fairly smooth continuum between purely internal discussions and public re-
lations statements. This is partly because the target audience is always ill-defined: given that most or
all posts are publicly accessible, the project doesn't have full control over the impression the world
gets. Someone—say, a slashdot.org [http://slashdot.org/] editor—may draw millions of readers' atten-
tion to a post that no one ever expected to be seen outside the project. This is a fact of life that all open
source projects live with, but in practice, the risk is usually small. In general, the announcements that
the project most wants publicized are the ones that will be most publicized, assuming you use the right
mechanisms to indicate relative newsworthiness to the outside world.

For major announcements, there tend to be four or five main channels of distribution, on which an-
nouncements should be made as nearly simultaneously as possible:

1. Your project's front page is probably seen by more people than any other part of the project. If you
have a really major announcement, put a blurb there. The blurb should be a very brief synopsis that
links to the press release (see below) for more information.

2. At the same time, you should also have a "News" or "Press Releases" area of the web site, where the
announcement can be written up in detail. Part of the purpose of a press release is to provide a single,
canonical "announcement object" that other sites can link to, so make sure it is structured according-
ly: either as one web page per release, as a discrete blog entry, or as some other kind of entity that can
be linked to while still being kept distinct from other press releases in the same area.

3. If your project has an RSS feed (see the section called “RSS Feeds”), make sure the announcement
goes out there too. This may happen automatically when you create the press release, depending on
how things are set up at your site.

4. If the announcement is about a new release of the software, then update your project's entry on
freecode.com [http://freecode.com/] (see the section called “Announcing” about creating the entry in
the first place). Every time you update a Freecode entry, that entry goes onto the Freecode change list
for the day. The change list is updated not only on Freecode itself, but on various portal sites (includ-
ing slashdot.org [http://slashdot.org]) which are watched eagerly by hordes of people. Freecode also

http://slashdot.org/
http://slashdot.org/
http://freecode.com/
http://freecode.com/
http://slashdot.org
http://slashdot.org

Communications

115

offers the same data via RSS feed, so people who are not subscribed to your project's own RSS feed
might still see the announcement via Freecode's.

5. Send a mail to your project's announcement mailing list. This list's name should actually be "an-
nounce", that is, announce@yourprojectdomain.org, because that's a fairly standard con-
vention now, and the list's charter should make it clear that it is very low-traffic, reserved for major
project announcements. Most of those announcements will be about new releases of the software,
but occasionally other events, such as a fundraising drive, the discovery of a security vulnerability
(see the section called “Announcing Security Vulnerabilities”) later in this chapter, or a major shift
in project direction may be posted there as well. Because it is low traffic and used only for important
things, the announce list typically has the highest subscribership of any mailing list in the project
(of course, this means you shouldn't abuse it—consider carefully before posting). To avoid random
people making announcements, or worse, spam getting through, the announce list must always be
moderated.

Try to make the announcements in all these places at the same time, as nearly as possible. People
might get confused if they see an announcement on the mailing list but then don't see it reflected on the
project's home page or in its press releases area. If you get the various changes (emails, web page edits,
etc.) queued up and then send them all in a row, you can keep the window of inconsistency very small.

For a less important event, you can eliminate some or all of the above outlets. The event will still be no-
ticed by the outside world in direct proportion to its importance. For example, while a new release of the
software is a major event, merely setting the date of the next release, while still somewhat newsworthy,
is not nearly as important as the release itself. Setting a date is worth an email to the daily mailing lists
(not the announce list), and an update of the project's timeline or status web page, but no more.

However, you might still see that date appearing in discussions elsewhere on the Internet, wherever
there are people interested in the project. People who are lurkers on your mailing lists, just listening and
never saying anything, are not necessarily silent elsewhere. Word of mouth gives very broad distribu-
tion; you should count on it, and construct even minor announcements in such a way as to encourage
accurate informal transmission. Specifically, posts that you expect to be quoted should have a clearly
meant-to-be-quoted portion, just as though you were writing a formal press release. For example:

Just a progress update: we're planning to release version 2.0 of Scanley in mid-August
2005. You can always check http://www.scanley.org/status.html for updates. The ma-
jor new feature will be regular-expression searches.

Other new features include: ... There will also be various bugfixes, including: ...

The first paragraph is short, gives the two most important pieces of information (the release date and the
major new feature), and a URL to visit for further news. If that paragraph is the only thing that crosses
someone's screen, you're still doing pretty well. The rest of the mail could be lost without affecting the
gist of the content. Of course, sometimes people will link to the entire mail anyway, but just as often,
they'll quote only a small part. Given that the latter is a possibility, you might as well make it easy for
them, and in the bargain get some influence over what gets quoted.

Announcing Security Vulnerabilities
Handling a security vulnerability is different from handling any other kind of bug report. In free soft-
ware, doing things openly and transparently is normally almost a religious credo. Every step of the stan-
dard bug-handling process is visible to all who care to watch: the arrival of the initial report, the ensuing
discussion, and the eventual fix.

Security bugs are different. They can compromise users' data, and possibly users' entire computers. To
discuss such a problem openly would be to advertise its existence to the entire world—including to all

Communications

116

the parties who might make malicious use of the bug. Even merely committing a fix effectively an-
nounces the bug's existence (there are potential attackers who watch the commit logs of public projects,
systematically looking for changes that indicate security problems in the pre-change code). Most open
source projects have settled on approximately the same set of steps to handle this conflict between open-
ness and secrecy, based on the these basic guidelines:

1. Don't talk about the bug publicly until a fix is available; then supply the fix at exactly the same mo-
ment you announce the bug.

2. Come up with that fix as fast as you can—especially if someone outside the project reported the bug,
because then you know there's at least one person outside the project who is able to exploit the vul-
nerability.

In practice, those principles lead to a fairly standardized series of steps, which are described in the sec-
tions below.

Receive the report

Obviously, a project needs the ability to receive security bug reports from anyone. But the regular bug
reporting address won't do, because it can be watched by anyone too. Therefore, have a separate mailing
list for receiving security bug reports. That mailing list must not have publicly readable archives, and its
subscribership must be strictly controlled—only long-time, trusted developers can be on the list. If you
need a formal definition of "trusted", you can use "anyone who has had commit access for two years or
more" or something like that, to avoid favoritism. This is the group that will handle security bugs.

Ideally, the security list should not be spam-protected or moderated, since you don't want an important
report to get filtered out or delayed just because no moderators happened to be online that weekend. If
you do use automated spam-protection software, try to configure it with high-tolerance settings; it's bet-
ter to let a few spams through than to miss a report. For the list to be effective, you must advertise its ad-
dress, of course; but given that it will be unmoderated and, at most, lightly spam-protected, try to nev-
er to post its address without some sort of address-disguising transformation, as described in the section
called “Address hiding in archives” in Chapter 3, Technical Infrastructure.

Develop the fix quietly

So what does the security list do when it receives a report? The first task is to evaluate the problem's
severity and urgency:

1. How serious is the vulnerability? Does it allow a malicious attacker to take over the computer of
someone who uses your software? Or does it, say, merely leak information about the sizes of some of
their files?

2. How easy is it to exploit the vulnerability? Can an attack be scripted, or does it require circumstantial
knowledge, educated guessing, and luck?

3. Who reported the problem to you? The answer to this question doesn't change the nature of the vul-
nerability, of course, but it does give you an idea of how many other people might know about it. If
the report comes from one of the project's own developers, you can breathe a little easier (but only a
little), because you can trust them not to have told anyone else about it. On the other hand, if it came
in an email from anonymous14@globalhackerz.net, then you'd better act as fast as you can.
The person did you a favor by informing you of the problem at all, but you have no idea how many
other people she's told, or how long she'll wait before exploiting the vulnerability on live installa-
tions.

Note that the difference we're talking about here is often just a narrow range between urgent and ex-
tremely urgent. Even when the report comes from a known, friendly source, there could be other people

Communications

117

on the Net who discovered the bug long ago and just haven't reported it. The only time things aren't ur-
gent is when the bug inherently does not compromise security very severely.

The "anonymous14@globalhackerz.net" example is not facetious, by the way. You really
may get bug reports from identity-cloaked people who, by their words and behavior, never quite clarify
whether they're on your side or not. It doesn't matter: if they've reported the security hole to you, they'll
feel they've done you a good turn, and you should respond in kind. Thank them for the report, give them
a date on or before which you plan to release a public fix, and keep them in the loop. Sometimes they
may give you a date—that is, an implicit threat to publicize the bug on a certain date, whether you're
ready or not. This may feel like a bullying power play, but it's more likely a preëmptive action result-
ing from past disappointment with unresponsive software producers who didn't take security reports se-
riously enough. Either way, you can't afford to tick this person off. After all, if the bug is severe, he has
knowledge that could cause your users big problems. Treat such reporters well, and hope that they treat
you well.

Another frequent reporter of security bugs is the security professional, someone who audits code for a
living and keeps up on the latest news of software vulnerabilities. These people usually have experience
on both sides of the fence—they've both received and sent reports, probably more than most developers
in your project have. They too will usually give a deadline for fixing a vulnerability before going public.
The deadline may be somewhat negotiable, but that's up to the reporter; deadlines have become recog-
nized among security professionals as pretty much the only reliable way to get organizations to address
security problems promptly. So don't treat the deadline as rude; it's a time-honored tradition, and there
are good reasons for it.

Once you know the severity and urgency, you can start working on a fix. There is sometimes a tradeoff
between doing a fix elegantly and doing it speedily; this is why you must agree on the urgency before
you start. Keep discussion of the fix restricted to the security list members, of course, plus the original
reporter (if she wants to be involved) and any developers who need to be brought in for technical rea-
sons.

Do not commit the fix to the repository. Keep it in patch form until the go-public date. If you were
to commit it, even with an innocent-looking log message, someone might notice and understand the
change. You never know who is watching your repository and why they might be interested. Turning off
commit emails wouldn't help; first of all, the gap in the commit mail sequence would itself look suspi-
cious, and anyway, the data would still be in the repository. Just do all development in a patch and keep
the patch in some private place, perhaps a separate, private repository known only to the people already
aware of the bug. (If you use a decentralized version control system like Arch or SVK, you can do the
work under full version control, and just keep that repository inaccessible to outsiders.)

CAN/CVE numbers

You may have seen a CAN number or a CVE number associated with security problems. These numbers
usually look like "CAN-2004-0397" or "CVE-2002-0092", for example.

Both kinds of numbers represent the same type of entity: an entry in the list of "Common Vulnerabili-
ties and Exposures" list maintained at cve.mitre.org [http://cve.mitre.org/]. The purpose of the list is to
provide standardized names for all known security problems, so that everyone has a unique, canonical
name to use when discussing one, and a central place to go to find out more information. The only dif-
ference between a "CAN" number and a "CVE" number is that the former represents a candidate entry,
not yet approved for inclusion in the official list by the CVE Editorial Board, and the latter represents an
approved entry. However, both types of entries are visible to the public, and an entry's number does not
change when it is approved—the "CAN" prefix is simply replaced with "CVE".

A CAN/CVE entry does not itself contain a full description of the bug and how to protect against it.
Instead, it contains a brief summary, and a list of references to external resources (such as mailing list

http://cve.mitre.org/
http://cve.mitre.org/

Communications

118

archives) where people can go to get more detailed information. The real purpose of cve.mitre.org
[http://cve.mitre.org/] is to provide a well-organized space in which every vulnerability can have a
name and a clear route to more data. See cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092 [http://
cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092] for an example of an entry. Note that the refer-
ences can be very terse, with sources appearing as cryptic abbreviations. A key to those abbreviations is
at cve.mitre.org/data/refs/refkey.html [http://cve.mitre.org/data/refs/refkey.html].

If your vulnerability meets the CVE criteria, you may wish to acquire it a CAN number. The process
for doing so is deliberately gated: basically, you have to know someone, or know someone who knows
someone. This is not as crazy as it might sound. In order for the CVE Editorial Board to avoid being
overwhelmed with spurious or poorly written submissions, they take submissions only from sources they
already know and trust. In order to get your vulnerability listed, therefore, you need to find a path of ac-
quaintance from your project to the CVE Editorial Board. Ask around among your developers; one of
them will probably know someone else who has either done the CAN process before, or knows someone
who has, etc. The advantage of doing it this way is also that somewhere along the chain, someone may
know enough to tell you that a) it wouldn't count as a vulnerability or exposure according to MITRE's
criteria, so there is no point submitting it, or b) the vulnerability already has a CAN or CVE number.
The latter can happen if the bug has already been published on another security advisory list, for exam-
ple at www.cert.org [http://www.cert.org/] or on the BugTraq mailing list at www.securityfocus.com
[http://www.securityfocus.com/]. (If that happened without your project hearing about it, then you
should worry what else might be going on that you don't know about.)

If you get a CAN/CVE number at all, you usually want to get it in the early stages of your bug investiga-
tion, so that all further communications can refer to that number. CAN entries are embargoed until the
go-public date; the entry will exist as an empty placeholder (so you don't lose the name), but it won't re-
veal any information about the vulnerability until the date on which you will be announcing the bug and
the fix.

More information about the CAN/CVE process may be found at cve.mitre.org/cve/identi-
fiers/candidates_explained.html [http://cve.mitre.org/cve/identifiers/candidates_explained.html], and a
particularly clear exposition of one open source project's use of CAN/CVE numbers is at debian.org/se-
curity/cve-compatibility [http://www.debian.org/security/cve-compatibility].

Pre-notification

Once your security response team (that is, those developers who are on the security mailing list, or who
have been brought in to deal with a particular report) has a fix ready, you need to decide how to distrib-
ute it.

If you simply commit the fix to your repository, or otherwise announce it to the world, you effectively
force everyone using your software to upgrade immediately or risk being hacked. It is sometimes appro-
priate, therefore, to do pre-notification for certain important users. This is particularly true with client/
server software, where there may be well-known servers that are tempting targets for attackers. Those
servers' administrators would appreciate having an extra day or two to do the upgrade, so that they are
already protected by the time the exploit becomes public knowledge.

Pre-notification simply means sending mails to those administrators before the go-public date, telling
them of the vulnerability and how to fix it. You should send pre-notification only to people you trust to
be discreet with the information. That is, the qualification for receiving pre-notification is twofold: the
recipient must run a large, important server where a compromise would be a serious matter, and the re-
cipient must be known to be someone who won't blab about the security problem before the go-public
date.

Send each pre-notification mail individually (one at a time) to each recipient. Do not send to the entire
list of recipients at once, because then they would see each others' names—meaning that you would es-

http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092
http://cve.mitre.org/data/refs/refkey.html
http://cve.mitre.org/data/refs/refkey.html
http://www.cert.org/
http://www.cert.org/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://cve.mitre.org/cve/identifiers/candidates_explained.html
http://cve.mitre.org/cve/identifiers/candidates_explained.html
http://cve.mitre.org/cve/identifiers/candidates_explained.html
http://www.debian.org/security/cve-compatibility
http://www.debian.org/security/cve-compatibility
http://www.debian.org/security/cve-compatibility

Communications

119

sentially be alerting each recipient to the fact that each other recipient may have a security hole in her
server. Sending it to them all via blind CC (BCC) isn't a good solution either, because some admins pro-
tect their inboxes with spam filters that either block or reduce the priority of BCC'd mail, since so much
spam is sent via BCC these days.

Here's a sample pre-notification mail:

From: Your Name Here
To: admin@large-famous-server.com
Reply-to: Your Name Here (not the security list's address)
Subject: Confidential Scanley vulnerability notification.

This email is a confidential pre-notification of a security alert
in the Scanley server.

Please *do not forward* any part of this mail to anyone. The public
announcement is not until May 19th, and we'd like to keep the
information embargoed until then.

You are receiving this mail because (we think) you run a Scanley
server, and would want to have it patched before this security hole is
made public on May 19th.

References:
===========

 CAN-2004-1771: Scanley stack overflow in queries

Vulnerability:
==============

 The server can be made to run arbitrary commands if the server's
 locale is misconfigured and the client sends a malformed query.

Severity:
=========

 Very severe, can involve arbitrary code execution on the server.

Workarounds:
============

 Setting the 'natural-language-processing' option to 'off' in
 scanley.conf closes this vulnerability.

Patch:
======

 The patch below applies to Scanley 3.0, 3.1, and 3.2.

 A new public release (Scanley 3.2.1) will be made on or just before
 May 19th, so that it is available at the same time as this

Communications

120

 vulnerability is made public. You can patch now, or just wait for
 the public release. The only difference between 3.2 and 3.2.1 will
 be this patch.

[...patch goes here...]

If you have a CAN number, include it in the pre-notification (as shown above), even though the infor-
mation is still embargoed and therefore the MITRE page will show nothing. Including the CAN num-
ber allows the recipient to know with certainty that the bug they were pre-notified about is the same one
they later hear about through public channels, so they don't have to worry whether further action is nec-
essary or not, which is precisely the point of CAN/CVE numbers.

Distribute the fix publicly

The last step in handling a security bug is to distribute the fix publicly. In a single, comprehensive an-
nouncement, you should describe the problem, give the CAN/CVE number if any, describe how to work
around it, and how to permanently fix it. Usually "fix" means upgrading to a new version of the soft-
ware, though sometimes it can mean applying a patch, particularly if the software is normally run in
source form anyway. If you do make a new release, it should differ from some existing release by ex-
actly the security patch. That way, conservative admins can upgrade without worrying about what else
they might be affecting; they also don't have to worry about future upgrades, because the security fix
will be in all future releases as a matter of course. (Details of release procedures are discussed in the sec-
tion called “Security Releases” in Chapter 7, Packaging, Releasing, and Daily Development.)

Whether or not the public fix involves a new release, do the announcement with roughly the same prior-
ity as you would a new release: send a mail to the project's announce list, make a new press release,
update the Freecode entry, etc. While you should never try to play down the existence of a security bug
out of concern for the project's reputation, you may certainly set the tone and prominence of a security
announcement to match the actual severity of the problem. If the security hole is just a minor informa-
tion exposure, not an exploit that allows the user's entire computer to be taken over, then it may not war-
rant a lot of fuss. You may even decide not to distract the announce list with it. After all, if the project
cries wolf every time, users might end up thinking the software is less secure than it actually is, and al-
so might not believe you when you have a really big problem to announce. See cve.mitre.org/about/
terminology.html [http://cve.mitre.org/about/terminology.html] for a good introduction to the problem
of judging severity.

In general, if you're unsure how to treat a security problem, find someone with experience and talk to
them about it. Assessing and handling vulnerabilities is very much an acquired skill, and it's easy to
make missteps the first few times.

See also the Apache Software Foundation guidelines on handling security vulnerabilities at apache.org/
security/committers.html [http://www.apache.org/security/committers.html]. They are an excellent
checklist you can compare against to see if you're doing everything carefully.

http://cve.mitre.org/about/terminology.html
http://cve.mitre.org/about/terminology.html
http://cve.mitre.org/about/terminology.html
http://www.apache.org/security/committers.html
http://www.apache.org/security/committers.html
http://www.apache.org/security/committers.html

121

Chapter 7. Packaging, Releasing, and
Daily Development

This chapter is about how free software projects package and release their software, and how overall de-
velopment patterns organize around those goals.

A major difference between open source projects and proprietary ones is the lack of centralized control
over the development team. When a new release is being prepared, this difference is especially stark:
a corporation can ask its entire development team to focus on an upcoming release, putting aside new
feature development and non-critical bug fixing until the release is done. Volunteer groups are not so
monolithic. People work on the project for all sorts of reasons, and those not interested in helping with
a given release still want to continue regular development work while the release is going on. Because
development doesn't stop, open source release processes tend to take longer, but be less disruptive, than
commercial release processes. It's a bit like highway repair. There are two ways to fix a road: you can
shut it down completely, so that a repair crew can swarm all over it at full capacity until the problem
is solved, or you can work on a couple of lanes at a time, while leaving the others open to traffic. The
first way is very efficient for the repair crew, but not for anyone else—the road is entirely shut down un-
til the job is done. The second way involves much more time and trouble for the repair crew (now they
have to work with fewer people and less equipment, in cramped conditions, with flaggers to slow and di-
rect traffic, etc.), but at least the road remains useable, albeit not at full capacity.

Open source projects tend to work the second way. In fact, for a mature piece of software with several
different release lines being maintained simultaneously, the project is sort of in a permanent state of mi-
nor road repair. There are always a couple of lanes closed; a consistent but low level of background in-
convenience is always being tolerated by the development group as a whole, so that releases get made
on a regular schedule.

The model that makes this possible generalizes to more than just releases. It's the principle of paralleliz-
ing tasks that are not mutually interdependent—a principle that is by no means unique to open source
development, of course, but one which open source projects implement in their own particular way.
They cannot afford to annoy either the roadwork crew or the regular traffic too much, but they also can-
not afford to have people dedicated to standing by the orange cones and flagging traffic along. Thus they
gravitate toward processes that have flat, constant levels of administrative overhead, rather than peaks
and valleys. Volunteers are generally willing to work with small but consistent amounts of inconve-
nience; the predictability allows them to come and go without worrying about whether their schedule
will clash with what's happening in the project. But if the project were subject to a master schedule in
which some activities excluded other activities, the result would be a lot of developers sitting idle a lot
of the time—which would be not only inefficient but boring, and therefore dangerous, in that a bored de-
veloper is likely to soon be an ex-developer.

Release work is usually the most noticeable non-development task that happens in parallel with devel-
opment, so the methods described in the following sections are geared mostly toward enabling releases.
However, note that they also apply to other parallelizable tasks, such as translations and internationaliza-
tion, broad API changes made gradually across the entire code base, etc.

Release Numbering
Before we talk about how to make a release, let's look at how to name releases, which requires knowing
what releases actually mean to users. A release means that:

• Old bugs have been fixed. This is probably the one thing users can count on being true of every re-
lease.

Packaging, Releasing,
and Daily Development

122

• New bugs have been added. This too can usually be counted on, except sometimes in the case of secu-
rity releases or other one-offs (see the section called “Security Releases” later in this chapter).

• New features may have been added.

• New configuration options may have been added, or the meanings of old options may have changed
subtly. The installation procedures may have changed slightly since the last release too, though one
always hopes not.

• Incompatible changes may have been introduced, such that the data formats used by older versions of
the software are no longer useable without undergoing some sort of (possibly manual) one-way con-
version step.

As you can see, not all of these are good things. This is why experienced users approach new releases
with some trepidation, especially when the software is mature and was already mostly doing what they
wanted (or thought they wanted). Even the arrival of new features is a mixed blessing, in that it may
mean the software will now behave in unexpected ways.

The purpose of release numbering, therefore, is twofold: obviously the numbers should unambiguous-
ly communicate the ordering of releases (i.e., by looking at any two releases' numbers, one can know
which came later), but also they should indicate as compactly as possible the degree and nature of the
changes in the release.

All that in a number? Well, more or less, yes. Release numbering strategies are one of the oldest
bikeshed discussions around (see the section called “The Softer the Topic, the Longer the Debate” in
Chapter 6, Communications), and the world is unlikely to settle on a single, complete standard anytime
soon. However, a few good strategies have emerged, along with one universally agreed-on principle: be
consistent. Pick a numbering scheme, document it, and stick with it. Your users will thank you.

Release Number Components
TODO (possv2) 30 December 2013: semver.org [http://semver.org/] has apparently formalized the rec-
ommendations that this chapter also makes. A pointer to their site should be incorporated in here some-
where. (See producingoss.com/v2.html [http://producingoss.com/v2.html] for more about the book up-
date for which this note is a TODO item.)

This section describes the formal conventions of release numbering in detail, and assumes very little pri-
or knowledge. It is intended mainly as a reference. If you're already familiar with these conventions, you
can skip this section.

Release numbers are groups of digits separated by dots:

Scanley 2.3
Singer 5.11.4

...and so on. The dots are not decimal points, they are merely separators; "5.3.9" would be followed by
"5.3.10". A few projects have occasionally hinted otherwise, most famously the Linux kernel with its
"0.95", "0.96"... "0.99" sequence leading up to Linux 1.0, but the convention that the dots are not deci-
mals is now firmly established and should be considered a standard. There is no limit to the number of
components (digit portions containing no dots), but most projects do not go beyond three or four. The
reasons why will become clear later.

In addition to the numeric components, projects sometimes tack on a descriptive label such as "Alpha"
or "Beta" (see Alpha and Beta), for example:

Scanley 2.3.0 (Alpha)
Singer 5.11.4 (Beta)

http://semver.org/
http://semver.org/
http://producingoss.com/v2.html
http://producingoss.com/v2.html

Packaging, Releasing,
and Daily Development

123

An Alpha or Beta qualifier means that this release precedes a future release that will have the same num-
ber without the qualifier. Thus, "2.3.0 (Alpha)" leads eventually to "2.3.0". In order to allow several
such candidate releases in a row, the qualifiers themselves can have meta-qualifiers. For example, here
is a series of releases in the order that they would be made available to the public:

Scanley 2.3.0 (Alpha 1)
Scanley 2.3.0 (Alpha 2)
Scanley 2.3.0 (Beta 1)
Scanley 2.3.0 (Beta 2)
Scanley 2.3.0 (Beta 3)
Scanley 2.3.0

Notice that when it has the "Alpha" qualifier, Scanley "2.3" is written as "2.3.0". The two numbers are
equivalent—trailing all-zero components can always be dropped for brevity—but when a qualifier is
present, brevity is out the window anyway, so one might as well go for completeness instead.

Other qualifiers in semi-regular use include "Stable", "Unstable", "Development", and "RC" (for "Re-
lease Candidate"). The most widely used ones are still "Alpha" and "Beta", with "RC" running a close
third place, but note that "RC" always includes a numeric meta-qualifier. That is, you don't release
"Scanley 2.3.0 (RC)", you release "Scanley 2.3.0 (RC 1)", followed by RC2, etc.

Those three labels, "Alpha", "Beta", and "RC", are pretty widely known now, and I don't recommend us-
ing any of the others, even though the others might at first glance seem like better choices because they
are normal words, not jargon. But people who install software from releases are already familiar with
the big three, and there's no reason to do things gratuitously differently from the way everyone else does
them.

Although the dots in release numbers are not decimal points, they do indicate place-value significance.
All "0.X.Y" releases precede "1.0" (which is equivalent to "1.0.0", of course). "3.14.158" immediately
precedes "3.14.159", and non-immediately precedes "3.14.160" as well as "3.15.anything", and so.

A consistent release numbering policy enables a user to look at two release numbers for the same piece
of software and tell, just from the numbers, the important differences between those two releases. In
a typical three-component system, the first component is the major number, the second is the minor-
 number, and the third is the micro number. For example, release "2.10.17" is the seventeenth micro re-
lease in the tenth minor release line within the second major release series. The words "line" and "series"
are used informally here, but they mean what one would expect. A major series is simply all the releas-
es that share the same major number, and a minor series (or minor line) consists of all the releases that
share the same minor and major number. That is, "2.4.0" and "3.4.1" are not in the same minor series,
even though they both have "4" for their minor number; on the other hand, "2.4.0" and "2.4.2" are in the
same minor line, though they are not adjacent if "2.4.1" was released between them.

The meanings of these numbers are exactly what you'd expect: an increment of the major number indi-
cates that major changes happened; an increment of the minor number indicates minor changes; and an
increment of the micro number indicates really trivial changes. Some projects add a fourth component,
usually called the patch number, for especially fine-grained control over the differences between their
releases (confusingly, other projects use "patch" as a synonym for "micro" in a three-component sys-
tem). There are also projects that use the last component as a build number, incremented every time the
software is built and representing no change other than that build. This helps the project link every bug
report with a specific build, and is probably most useful when binary packages are the default method of
distribution.

Although there are many different conventions for how many components to use, and what the compo-
nents mean, the differences tend to be minor—you get a little leeway, but not a lot. The next two sec-
tions discuss some of the most widely used conventions.

Packaging, Releasing,
and Daily Development

124

The Simple Strategy
Most projects have rules about what kinds of changes are allowed into a release if one is only increment-
ing the micro number, different rules for the minor number, and still different ones for the major num-
ber. There is no set standard for these rules yet, but here I will describe a policy that has been used suc-
cessfully by multiple projects. You may want to just adopt this policy in your own project, but even if
you don't, it's still a good example of the kind of information release numbers should convey. This pol-
icy is adapted from the numbering system used by the APR project, see apr.apache.org/versioning.html
[http://apr.apache.org/versioning.html].

1. Changes to the micro number only (that is, changes within the same minor line) must be both for-
ward- and backward-compatible. That is, the changes should be bug fixes only, or very small en-
hancements to existing features. New features should not be introduced in a micro release.

2. Changes to the minor number (that is, within the same major line) must be backward-compatible, but
not necessarily forward-compatible. It's normal to introduce new features in a minor release, but usu-
ally not too many new features at once.

3. Changes to the major number mark compatibility boundaries. A new major release can be forward-
and backward-incompatible. A major release is expected to have new features, and may even have
entire new feature sets.

What backward-compatible and forward-compatible mean, exactly, depends on what your software
does, but in context they are usually not open to much interpretation. For example, if your project is a
client/server application, then "backward-compatible" means that upgrading the server to 2.6.0 should
not cause any existing 2.5.4 clients to lose functionality or behave differently than they did before (ex-
cept for bugs that were fixed, of course). On the other hand, upgrading one of those clients to 2.6.0,
along with the server, might make new functionality available for that client, functionality that 2.5.4
clients don't know how to take advantage of. If that happens, then the upgrade is not "forward-compat-
ible": clearly you can't now downgrade that client back to 2.5.4 and keep all the functionality it had at
2.6.0, since some of that functionality was new in 2.6.0.

This is why micro releases are essentially for bug fixes only. They must remain compatible in both di-
rections: if you upgrade from 2.5.3 to 2.5.4, then change your mind and downgrade back to 2.5.3, no
functionality should be lost. Of course, the bugs fixed in 2.5.4 would reappear after the downgrade, but
you wouldn't lose any features, except insofar as the restored bugs prevent the use of some existing fea-
tures.

Client/server protocols are just one of many possible compatibility domains. Another is data formats:
does the software write data to permanent storage? If so, the formats it reads and writes need to follow
the compatibility guidelines promised by the release number policy. Version 2.6.0 needs to be able to
read the files written by 2.5.4, but may silently upgrade the format to something that 2.5.4 cannot read,
because the ability to downgrade is not required across a minor number boundary. If your project dis-
tributes code libraries for other programs to use, then APIs are a compatibility domain too: you must
make sure that source and binary compatibility rules are spelled out in such a way that the informed user
need never wonder whether or not it's safe to upgrade in place. She will be able to look at the numbers
and know instantly.

In this system, you don't get a chance for a fresh start until you increment the major number. This can
often be a real inconvenience: there may be features you wish to add, or protocols that you wish to re-
design, that simply cannot be done while maintaining compatibility. There's no magic solution to this,
except to try to design things in an extensible way in the first place (a topic easily worth its own book,
and certainly outside the scope of this one). But publishing a release compatibility policy, and adhering
to it, is an inescapable part of distributing software. One nasty surprise can alienate a lot of users. The

http://apr.apache.org/versioning.html
http://apr.apache.org/versioning.html

Packaging, Releasing,
and Daily Development

125

policy just described is good partly because it's already quite widespread, but also because it's easy to
explain and to remember, even for those not already familiar with it.

It is generally understood that these rules do not apply to pre-1.0 releases (although your release policy
should probably state so explicitly, just to be clear). A project that is still in initial development can re-
lease 0.1, 0.2, 0.3, and so on in sequence, until it's ready for 1.0, and the differences between those re-
leases can be arbitrarily large. Micro numbers in pre-1.0 releases are optional. Depending on the nature
of your project and the differences between the releases, you might find it useful to have 0.1.0, 0.1.1,
etc., or you might not. Conventions for pre-1.0 release numbers are fairly loose, mainly because peo-
ple understand that strong compatibility constraints would hamper early development too much, and be-
cause early adopters tend to be forgiving anyway.

Remember that all these injunctions only apply to this particular three-component system. Your project
could easily come up with a different three-component system, or even decide it doesn't need such fine
granularity and use a two-component system instead. The important thing is to decide early, publish ex-
actly what the components mean, and stick to it.

The Even/Odd Strategy
Some projects use the parity of the minor number component to indicate the stability of the software:
even means stable, odd means unstable. This applies only to the minor number, not the major and micro
numbers. Increments in the micro number still indicate bug fixes (no new features), and increments in
the major number still indicate big changes, new feature sets, etc.

The advantage of the even/odd system, which has been used by the Linux kernel project among others,
is that it offers a way to release new functionality for testing without subjecting production users to po-
tentially unstable code. People can see from the numbers that "2.4.21" is okay to install on their live web
server, but that "2.5.1" should probably stay confined to home workstation experiments. The develop-
ment team handles the bug reports that come in from the unstable (odd-minor-numbered) series, and
when things start to settle down after some number of micro releases in that series, they increment the
minor number (thus making it even), reset the micro number back to "0", and release a presumably sta-
ble package.

This system preserves, or at least, does not conflict with, the compatibility guidelines given earlier. It
simply overloads the minor number with some extra information. This forces the minor number to be in-
cremented about twice as often as would otherwise be necessary, but there's no great harm in that. The
even/odd system is probably best for projects that have very long release cycles, and which by their na-
ture have a high proportion of conservative users who value stability above new features. It is not the
only way to get new functionality tested in the wild, however. the section called “Stabilizing a Release”
later in this chapter describes another, perhaps more common, method of releasing potentially unstable
code to the public, marked so that people have an idea of the risk/benefit trade-offs immediately on see-
ing the release's name.

Release Branches
From a developer's point of view, a free software project is in a state of continuous release. Developers
usually run the latest available code at all times, because they want to spot bugs, and because they fol-
low the project closely enough to be able to stay away from currently unstable areas of the feature space.
They often update their copy of the software every day, sometimes more than once a day, and when they
check in a change, they can reasonably expect that every other developer will have it within 24 hours.

How, then, should the project make a formal release? Should it simply take a snapshot of the tree at a
moment in time, package it up, and hand it to the world as, say, version "3.5.0"? Common sense says
no. First, there may be no moment in time when the entire development tree is clean and ready for re-

Packaging, Releasing,
and Daily Development

126

lease. Newly-started features could be lying around in various states of completion. Someone might
have checked in a major change to fix a bug, but the change could be controversial and under debate at
the moment the snapshot is taken. If so, it wouldn't work to simply delay the snapshot until the debate
ends, because another, unrelated debate could start in the meantime, and then you'd have wait for that
one to end too. This process is not guaranteed to halt.

In any case, using full-tree snapshots for releases would interfere with ongoing development work, even
if the tree could be put into a releasable state. Say this snapshot is going to be "3.5.0"; presumably, the
next snapshot would be "3.5.1", and would contain mostly fixes for bugs found in the 3.5.0 release. But
if both are snapshots from the same tree, what are the developers supposed to do in the time between
the two releases? They can't be adding new features; the compatibility guidelines prevent that. But not
everyone will be enthusiastic about fixing bugs in the 3.5.0 code. Some people may have new features
they're trying to complete, and will become irate if they are forced to choose between sitting idle and
working on things they're not interested in, just because the project's release processes demand that the
development tree remain unnaturally quiescent.

The solution to these problems is to always use a release branch. A release branch is just a branch in
the version control system (see branch), on which the code destined for this release can be isolated from
mainline development. The concept of release branches is certainly not original to free software; many
commercial development organizations use them too. However, in commercial environments, release
branches are sometimes considered a luxury—a kind of formal "best practice" that can, in the heat of a
major deadline, be dispensed with while everyone on the team scrambles to stabilize the main tree.

Release branches are pretty much required in open source projects, however. I have seen projects do
releases without them, but it has always resulted in some developers sitting idle while others—usual-
ly a minority—work on getting the release out the door. The result is usually bad in several ways. First,
overall development momentum is slowed. Second, the release is of poorer quality than it needed to be,
because there were only a few people working on it, and they were hurrying to finish so everyone else
could get back to work. Third, it divides the development team psychologically, by setting up a situa-
tion in which different types of work interfere with each other unnecessarily. The developers sitting idle
would probably be happy to contribute some of their attention to a release branch, as long as that were
a choice they could make according to their own schedules and interests. But without the branch, their
choice becomes "Do I participate in the project today or not?" instead of "Do I work on the release to-
day, or work on that new feature I've been developing in the mainline code?"

Mechanics of Release Branches
The exact mechanics of creating a release branch depend on your version control system, of course, but
the general concepts are the same in most systems. A branch usually sprouts from another branch or
from the trunk. Traditionally, the trunk is where mainline development goes on, unfettered by release
constraints. The first release branch, the one leading to the "1.0" release, sprouts off the trunk. In CVS,
the branch command would be something like this

$ cd trunk-working-copy
$ cvs tag -b RELEASE_1_0_X

or in Subversion, like this:

$ svn copy http://.../repos/trunk http://.../repos/branches/1.0.x

(All these examples assume a three-component release numbering system. While I can't show the exact
commands for every version control system, I'll give examples in CVS and Subversion and hope that the
corresponding commands in other systems can be deduced from those two.)

Packaging, Releasing,
and Daily Development

127

Notice that we created branch "1.0.x" (with a literal "x") instead of "1.0.0". This is because the same mi-
nor line—i.e., the same branch—will be used for all the micro releases in that line. The actual process
of stabilizing the branch for release is covered in the section called “Stabilizing a Release” later in this
chapter. Here we are concerned just with the interaction between the version control system and the
release process. When the release branch is stabilized and ready, it is time to tag a snapshot from the
branch:

$ cd RELEASE_1_0_X-working-copy
$ cvs tag RELEASE_1_0_0

or

$ svn copy http://.../repos/branches/1.0.x http://.../repos/tags/1.0.0

That tag now represents the exact state of the project's source tree in the 1.0.0 release (this is useful in
case anyone ever needs to get an old version after the packaged distributions and binaries have been tak-
en down). The next micro release in the same line is likewise prepared on the 1.0.x branch, and when it
is ready, a tag is made for 1.0.1. Lather, rinse, repeat for 1.0.2, and so on. When it's time to start thinking
about a 1.1.x release, make a new branch from trunk:

$ cd trunk-working-copy
$ cvs tag -b RELEASE_1_1_X

or

$ svn copy http://.../repos/trunk http://.../repos/branches/1.1.x

Maintenance can continue in parallel along both 1.0.x and 1.1.x, and releases can be made independently
from both lines. In fact, it is not unusual to publish near-simultaneous releases from two different lines.
The older series is recommended for more conservative site administrators, who may not want to make
the big jump to (say) 1.1 without careful preparation. Meanwhile, more adventurous people usually take
the most recent release on the highest line, to make sure they're getting the latest features, even at the
risk of greater instability.

This is not the only release branch strategy, of course. In some circumstances it may not even be the
best, though it's worked out pretty well for projects I've been involved in. Use any strategy that seems to
work, but remember the main points: the purpose of a release branch is to isolate release work from the
fluctuations of daily development, and to give the project a physical entity around which to organize its
release process. That process is described in detail in the next section.

Stabilizing a Release
Stabilization is the process of getting a release branch into a releasable state; that is, of deciding which
changes will be in the release, which will not, and shaping the branch content accordingly.

There's a lot of potential grief contained in that word, "deciding". The last-minute feature rush is a famil-
iar phenomenon in collaborative software projects: as soon as developers see that a release is about to
happen, they scramble to finish their current changes, in order not to miss the boat. This, of course, is the
exact opposite of what you want at release time. It would be much better for people to work on features
at a comfortable pace, and not worry too much about whether their changes make it into this release or
the next one. The more changes one tries to cram into a release at the last minute, the more the code is
destabilized, and (usually) the more new bugs are created.

Packaging, Releasing,
and Daily Development

128

Most software engineers agree in theory on rough criteria for what changes should be allowed into a re-
lease line during its stabilization period. Obviously, fixes for severe bugs can go in, especially for bugs
without workarounds. Documentation updates are fine, as are fixes to error messages (except when they
are considered part of the interface and must remain stable). Many projects also allow certain kinds of
low-risk or non-core changes to go in during stabilization, and may have formal guidelines for measur-
ing risk. But no amount of formalization can obviate the need for human judgement. There will always
be cases where the project simply has to make a decision about whether a given change can go into a re-
lease. The danger is that since each person wants to see their own favorite changes admitted into the re-
lease, then there will be plenty of people motivated to allow changes, and not enough people motivated
to bar them.

Thus, the process of stabilizing a release is mostly about creating mechanisms for saying "no". The trick
for open source projects, in particular, is to come up with ways of saying "no" that won't result in too
many hurt feelings or disappointed developers, and also won't prevent deserving changes from getting
into the release. There are many different ways to do this. It's pretty easy to design systems that satis-
fy these criteria, once the team has focused on them as the important criteria. Here I'll briefly describe
two of the most popular systems, at the extreme ends of the spectrum, but don't let that discourage your
project from being creative. Plenty of other arrangements are possible; these are just two that I've seen
work in practice.

Dictatorship by Release Owner
The group agrees to let one person be the release owner. This person has final say over what changes
make it into the release. Of course, it is normal and expected for there to be discussions and arguments,
but in the end the group must grant the release owner sufficient authority to make final decisions. For
this system to work, it is necessary to choose someone with the technical competence to understand all
the changes, and the social standing and people skills to navigate the discussions leading up to the re-
lease without causing too many hurt feelings.

A common pattern is for the release owner to say "I don't think there's anything wrong with this change,
but we haven't had enough time to test it yet, so it shouldn't go into this release." It helps a lot if the re-
lease owner has broad technical knowledge of the project, and can give reasons why the change could
be potentially destabilizing (for example, its interactions with other parts of the software, or portability
concerns). People will sometimes ask such decisions to be justified, or will argue that a change is not as
risky as it looks. These conversations need not be confrontational, as long as the release owner is able to
consider all the arguments objectively and not reflexively dig in his heels.

Note that the release owner need not be the same person as the project leader (in cases where there is
a project leader at all; see the section called “Benevolent Dictators” in Chapter 4, Social and Political
Infrastructure). In fact, sometimes it's good to make sure they're not the same person. The skills that
make a good development leader are not necessarily the same as those that make a good release owner.
In something as important as the release process, it may be wise to have someone provide a counterbal-
ance to the project leader's judgement.

Contrast the release owner role with the less dictatorial role described in the section called “Release
manager” later in this chapter.

Change Voting
At the opposite extreme from dictatorship by release owner, developers can simply vote on which
changes to include in the release. However, since the most important function of release stabilization
is to exclude changes, it's important to design the voting system in such a way that getting a change in-
to the release involves positive action by multiple developers. Including a change should need more
than just a simple majority (see the section called “Who Votes?” in Chapter 4, Social and Political In-

Packaging, Releasing,
and Daily Development

129

frastructure). Otherwise, one vote for and none against a given change would suffice to get it into the
release, and an unfortunate dynamic would be set up whereby each developer would vote for her own
changes, yet would be reluctant to vote against others' changes, for fear of possible retaliation. To avoid
this, the system should be arranged such that subgroups of developers must act in cooperation to get any
change into the release. This not only means that more people review each change, it also makes any
individual developer less hesitant to vote against a change, because she knows that no particular one
among those who voted for it would take her vote against as a personal affront. The greater the number
of people involved, the more the discussion becomes about the change and less about the individuals.

The system we use in the Subversion project seems to have struck a good balance, so I'll recommend it
here. In order for a change to be applied to the release branch, at least three developers must vote in fa-
vor of it, and none against. A single "no" vote is enough to stop the change from being included; that is,
a "no" vote in a release context is equivalent to a veto (see the section called “Vetoes”). Naturally, any
such vote must be accompanied by a justification, and in theory the veto could be overridden if enough
people feel it is unreasonable and force a special vote over it. In practice, this has never happened, and I
don't expect that it ever will. People are conservative around releases anyway, and when someone feels
strongly enough to veto the inclusion of a change, there's usually a good reason for it.

Because the release procedure is deliberately biased toward conservatism, the justifications offered for
vetoes are sometimes procedural rather than technical. For example, a person may feel that a change is
well-written and unlikely to cause any new bugs, but vote against its inclusion in a micro release simply
because it's too big—perhaps it adds a new feature, or in some subtle way fails to fully follow the com-
patibility guidelines. I've occasionally even seen developers veto something because they simply had a
gut feeling that the change needed more testing, even though they couldn't spot any bugs in it by inspec-
tion. People grumbled a little bit, but the vetoes stood and the change was not included in the release (I
don't remember if any bugs were found in later testing or not, though).

Managing collaborative release stabilization

If your project chooses a change voting system, it is imperative that the physical mechanics of setting up
ballots and casting votes be as convenient as possible. Although there is plenty of open source electron-
ic voting software available, in practice the easiest thing to do is just to set up a text file in the release
branch, called STATUS or VOTES or something like that. This file lists each proposed change—any de-
veloper can propose a change for inclusion—along with all the votes for and against it, plus any notes or
comments. (Proposing a change doesn't necessarily mean voting for it, by the way, although the two of-
ten go together.) An entry in such a file might look like this:

* r2401 (issue #49)
 Prevent client/server handshake from happening twice.
 Justification:
 Avoids extra network turnaround; small change and easy to review.
 Notes:
 This was discussed in http://.../mailing-lists/message-7777.html
 and other messages in that thread.
 Votes:
 +1: jsmith, kimf
 -1: tmartin (breaks compatibility with some pre-1.0 servers;
 admittedly, those servers are buggy, but why be
 incompatible if we don't have to?)

In this case, the change acquired two positive votes, but was vetoed by tmartin, who gave the reason for
the veto in a parenthetical note. The exact format of the entry doesn't matter; whatever your project set-
tles on is fine—perhaps tmartin's explanation for the veto should go up in the "Notes:" section, or per-

Packaging, Releasing,
and Daily Development

130

haps the change description should get a "Description:" header to match the other sections. The impor-
tant thing is that all the information needed to evaluate the change be reachable, and that the mechanism
for casting votes be as lightweight as possible. The proposed change is referred to by its revision num-
ber in the repository (in this case a single revision, r2401, although a proposed change could just as eas-
ily consist of multiple revisions). The revision is assumed to refer to a change made on the trunk; if the
change were already on the release branch, there would be no need to vote on it. If your version control
system doesn't have an obvious syntax for referring to individual changes, then the project should make
one up. For voting to be practical, each change under consideration must be unambiguously identifiable.

Those proposing or voting for a change are responsible for making sure it applies cleanly to the release
branch, that is, applies without conflicts (see conflict). If there are conflicts, then the entry should either
point to an adjusted patch that does apply cleanly, or to a temporary branch that holds an adjusted ver-
sion of the change, for example:

* r13222, r13223, r13232
 Rewrite libsvn_fs_fs's auto-merge algorithm
 Justification:
 unacceptable performance (>50 minutes for a small commit) in
 a repository with 300,000 revisions
 Branch:
 1.1.x-r13222@13517
 Votes:
 +1: epg, ghudson

That example is taken from real life; it comes from the STATUS file for the Subversion 1.1.4 release
process. Notice how it uses the original revisions as canonical handles on the change, even though there
is also a branch with a conflict-adjusted version of the change (the branch also combines the three trunk
revisions into one, r13517, to make it easier to merge the change into the release, should it get approval).
The original revisions are provided because they're still the easiest entity to review, since they have the
original log messages. The temporary branch wouldn't have those log messages; in order to avoid dupli-
cation of information (see the section called “Singularity of information” in Chapter 3, Technical Infras-
tructure), the branch's log message for r13517 should simply say "Adjust r13222, r13223, and r13232
for backport to 1.1.x branch." All other information about the changes can be chased down at their origi-
nal revisions.

Release manager

The actual process of merging (see merge or port) approved changes into the release branch can be per-
formed by any developer. There does not need to be one person whose job it is to merge changes; if
there are a lot of changes, it can be better to spread the burden around.

However, although both voting and merging happen in a decentralized fashion, in practice there are usu-
ally one or two people driving the release process. This role is sometimes formally blessed as release
manager, but it is quite different from a release owner (see the section called “Dictatorship by Release
Owner” earlier in this chapter) who has final say over the changes. Release managers keep track of how
many changes are currently under consideration, how many have been approved, how many seem likely
to be approved, etc. If they sense that important changes are not getting enough attention, and might be
left out of the release for lack of votes, they will gently nag other developers to review and vote. When
a batch of changes are approved, these people will often take it upon themselves to merge them into the
release branch; it's fine if others leave that task to them, as long as everyone understands that they are
not obligated to do all the work unless they have explicitly committed to it. When the time comes to put
the release out the door (see the section called “Testing and Releasing” later in this chapter), the release
managers also take care of the logistics of creating the final release packages, collecting digital signa-
tures, uploading the packages, and making the public announcement.

Packaging, Releasing,
and Daily Development

131

Packaging
The canonical form for distribution of free software is as source code. This is true regardless of whether
the software normally runs in source form (i.e., can be interpreted, like Perl, Python, PHP, etc.) or needs
to be compiled first (like C, C++, Java, etc.). With compiled software, most users will probably not com-
pile the sources themselves, but will instead install from pre-built binary packages (see the section called
“Binary Packages” later in this chapter). However, those binary packages are still derived from a mas-
ter source distribution. The point of the source package is to unambiguously define the release. When
the project distributes "Scanley 2.5.0", what it means, specifically, is "The tree of source code files that,
when compiled (if necessary) and installed, produces Scanley 2.5.0."

There is a fairly strict standard for how source releases should look. One will occasionally see deviations
from this standard, but they are the exception, not the rule. Unless there is a compelling reason to do oth-
erwise, your project should follow this standard too.

Format
The source code should be shipped in the standard formats for transporting directory trees. For Unix and
Unix-like operating systems, the convention is to use TAR format, compressed by compress, gzip, bzip
or bzip2. For MS Windows, the standard method for distributing directory trees is zip format, which
happens to do compression as well, so there is no need to compress the archive after creating it.

TAR Files

TAR stands for "Tape ARchive", because tar format represents a directory tree as a linear data
stream, which makes it ideal for saving directory trees to tape. The same property also makes it
the standard for distributing directory trees as a single file. Producing compressed tar files (or tar-
balls) is pretty easy. On some systems, the tar command can produce a compressed archive itself;
on others, a separate compression program is used.

Name and Layout
The name of the package should consist of the software's name plus the release number, plus the format
suffixes appropriate for the archive type. For example, Scanley 2.5.0, packaged for Unix using GNU Zip
(gzip) compression, would look like this:

scanley-2.5.0.tar.gz

or for Windows using zip compression:

scanley-2.5.0.zip

Either of these archives, when unpacked, should create a single new directory tree named scan-
ley-2.5.0 in the current directory. Underneath the new directory, the source code should be arranged
in a layout ready for compilation (if compilation is needed) and installation. In the top level of new di-
rectory tree, there should be a plain text README file explaining what the software does and what re-
lease this is, and giving pointers to other resources, such as the project's web site, other files of interest,
etc. Among those other files should be an INSTALL file, sibling to the README file, giving instructions
on how to build and install the software for all the operating systems it supports. As mentioned in the
section called “How to Apply a License to Your Software” in Chapter 2, Getting Started, there should
also be a COPYING or LICENSE file, giving the software's terms of distribution.

There should also be a CHANGES file (sometimes called NEWS), explaining what's new in this release.
The CHANGES file accumulates changelists for all releases, in reverse chronological order, so that the

Packaging, Releasing,
and Daily Development

132

list for this release appears at the top of the file. Completing that list is usually the last thing done on a
stabilizing release branch; some projects write the list piecemeal as they're developing, others prefer to
save it all up for the end and have one person write it, getting information by combing the version con-
trol logs. The list looks something like this:

Version 2.5.0
(20 December 2004, from /branches/2.5.x)
http://svn.scanley.org/repos/svn/tags/2.5.0/

 New features, enhancements:
 * Added regular expression queries (issue #53)
 * Added support for UTF-8 and UTF-16 documents
 * Documentation translated into Polish, Russian, Malagasy
 * ...

 Bugfixes:
 * fixed reindexing bug (issue #945)
 * fixed some query bugs (issues #815, #1007, #1008)
 * ...

The list can be as long as necessary, but don't bother to include every little bugfix and feature enhance-
ment. Its purpose is simply to give users an overview of what they would gain by upgrading to the new
release. In fact, the changelist is customarily included in the announcement email (see the section called
“Testing and Releasing” later in this chapter), so write it with that audience in mind.

CHANGES Versus ChangeLog

Traditionally, a file named ChangeLog lists every change ever made to a project—that is, every
revision committed to the version control system. There are various formats for ChangeLog files;
the details of the formats aren't important here, as they all contain the same information: the date
of the change, its author, and a brief summary (or just the log message for that change).

A CHANGES file is different. It too is a list of changes, but only the ones thought important for
a certain audience to see, and often with metadata like the exact date and author stripped off.
To avoid confusion, don't use the terms interchangeably. Some projects use "NEWS" instead of
"CHANGES"; although this avoids the potential for confusion with "ChangeLog", it is a bit of a
misnomer, since the CHANGES file retains change information for all releases, and thus has a lot
of old news in addition to the new news at the top.

ChangeLog files may be slowly disappearing anyway. They were helpful in the days when CVS
was the only choice of version control system, because change data was not easy to extract from
CVS. However, with more recent version control systems, the data that used to be kept in the
ChangeLog can be requested from the version control repository at any time, making it pointless
for the project to keep a static file containing that data—in fact, worse than pointless, since the
ChangeLog would merely duplicate the log messages already stored in the repository.

The actual layout of the source code inside the tree should be the same as, or as similar as possible to,
the source code layout one would get by checking out the project directly from its version control repos-
itory. Usually there are a few differences, for example because the package contains some generated
files needed for configuration and compilation (see the section called “Compilation and Installation” lat-
er in this chapter), or because it includes third-party software that is not maintained by the project, but
that is required and that users are not likely to already have. But even if the distributed tree corresponds
exactly to some development tree in the version control repository, the distribution itself should not be

Packaging, Releasing,
and Daily Development

133

a working copy (see working copy or working files). The release is supposed to represent a static refer-
ence point—a particular, unchangeable configuration of source files. If it were a working copy, the dan-
ger would be that the user might update it, and afterward think that he still has the release when in fact
he has something different.

Remember that the package is the same regardless of the packaging. The release—that is, the precise en-
tity referred to when someone says "Scanley 2.5.0"—is the tree created by unpacking a zip file or tar-
ball. So the project might offer all of these for download:

scanley-2.5.0.tar.bz2
scanley-2.5.0.tar.gz
scanley-2.5.0.zip

...but the source tree created by unpacking them must be the same. That source tree is the distribution;
the form in which it is downloaded is merely a matter of convenience. Certain trivial differences be-
tween source packages are allowable: for example, in the Windows package, text files should have lines
ending with CRLF (Carriage Return and Line Feed), while Unix packages should use just LF. The trees
may be arranged slightly differently between source packages destined for different operating systems,
too, if those operating systems require different sorts of layouts for compilation. However, these are all
basically trivial transformations. The basic source files should be the same across all the packagings of a
given release.

To capitalize or not to capitalize

When referring to a project by name, people generally capitalize it as a proper noun, and capi-
talize acronyms if there are any: "MySQL 5.0", "Scanley 2.5.0", etc. Whether this capitalization
is reproduced in the package name is up to the project. Either Scanley-2.5.0.tar.gz or
scanley-2.5.0.tar.gz would be fine, for example (I personally prefer the latter, because I don't
like to make people hit the shift key, but plenty of projects ship capitalized packages). The important
thing is that the directory created by unpacking the tarball use the same capitalization. There should be
no surprises: the user must be able to predict with perfect accuracy the name of the directory that will be
created when she unpacks a distribution.

Pre-releases

When shipping a pre-release or candidate release, the qualifier is truly a part of the release number, so
include it in the name of the package's name. For example, the ordered sequence of alpha and beta re-
leases given earlier in the section called “Release Number Components” would result in package names
like this:

scanley-2.3.0-alpha1.tar.gz
scanley-2.3.0-alpha2.tar.gz
scanley-2.3.0-beta1.tar.gz
scanley-2.3.0-beta2.tar.gz
scanley-2.3.0-beta3.tar.gz
scanley-2.3.0.tar.gz

The first would unpack into a directory named scanley-2.3.0-alpha1, the second into scan-
ley-2.3.0-alpha2, and so on.

Compilation and Installation
For software requiring compilation or installation from source, there are usually standard procedures that
experienced users expect to be able to follow. For example, for programs written in C, C++, or certain
other compiled languages, the standard under Unix-like systems is for the user to type:

Packaging, Releasing,
and Daily Development

134

 $./configure
 $ make
 # make install

The first command autodetects as much about the environment as it can and prepares for the build
process, the second command builds the software in place (but does not install it), and the last command
installs it on the system. The first two commands are done as a regular user, the third as root. For more
details about setting up this system, see the excellent GNU Autoconf, Automake, and Libtool book by
Vaughan, Elliston, Tromey, and Taylor. It is published as treeware by New Riders, and its content is al-
so freely available online at sources.redhat.com/autobook [http://sources.redhat.com/autobook/].

This is not the only standard, though it is one of the most widespread. The Ant (ant.apache.org [http://
ant.apache.org/]) build system is gaining popularity, especially with projects written in Java, and it has
its own standard procedures for building and installing. Also, certain programming languages, such as
Perl and Python, recommend that the same method be used for most programs written in that language
(for example, Perl modules use the command perl Makefile.PL). If it's not obvious to you what the ap-
plicable standards are for your project, ask an experienced developer; you can safely assume that some
standard applies, even if you don't know what it is at first.

Whatever the appropriate standards for you project are, don't deviate from them unless you absolutely
must. Standard installation procedures are practically spinal reflexes for a lot of system administrators
now. If they see familiar invocations documented in your project's INSTALL file, that instantly raises
their faith that your project is generally aware of conventions, and that it is likely to have gotten other
things right as well. Also, as discussed in the section called “Downloads” in Chapter 2, Getting Started,
having a standard build procedure pleases potential developers.

On Windows, the standards for building and installing are a bit less settled. For projects requiring com-
pilation, the general convention seems to be to ship a tree that can fit into the workspace/project mod-
el of the standard Microsoft development environments (Developer Studio, Visual Studio, VS.NET,
MSVC++, etc.). Depending on the nature of your software, it may be possible to offer a Unix-like build
option on Windows via the Cygwin (cygwin.com [http://www.cygwin.com/]) environment. And of
course, if you're using a language or programming framework that comes with its own build and in-
stall conventions—e.g., Perl or Python—you should simply use whatever the standard method is for that
framework, whether on Windows, Unix, Mac OS X, or any other operating system.

Be willing to put in a lot of extra effort in order to make your project conform to the relevant build or in-
stallation standards. Building and installing is an entry point: it's okay for things to get harder after that,
if they absolutely must, but it would be a shame for the user's or developer's very first interaction with
the software to require unexpected steps.

Binary Packages
Although the formal release is a source code package, most users will install from binary packages, ei-
ther provided by their operating system's software distribution mechanism, or obtained manually from
the project web site or from some third party. Here "binary" doesn't necessarily mean "compiled"; it
just means any pre-configured form of the package that allows a user to install it on his computer with-
out going through the usual source-based build and install procedures. On RedHat GNU/Linux, it is the
RPM system; on Debian GNU/Linux, it is the APT (.deb) system; on MS Windows, it's usually .MSI
files or self-installing .exe files.

Whether these binary packages are assembled by people closely associated with the project, or by dis-
tant third parties, users are going to treat them as equivalent to the project's official releases, and will
file issues in the project's bug tracker based on the behavior of the binary packages. Therefore, it is in

http://sources.redhat.com/autobook/
http://sources.redhat.com/autobook/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://www.cygwin.com/
http://www.cygwin.com/

Packaging, Releasing,
and Daily Development

135

the project's interest to provide packagers with clear guidelines, and work closely with them to see to it
that what they produce represents the software fairly and accurately.

The main thing packagers need to know is that they should always base their binary packages on an of-
ficial source release. Sometimes packagers are tempted to pull a later incarnation of the code from the
repository, or include selected changes that were committed after the release was made, in order to pro-
vide users with certain bug fixes or other improvements. The packager thinks he is doing his users a
favor by giving them the more recent code, but actually this practice can cause a great deal of confu-
sion. Projects are prepared to receive reports of bugs found in released versions, and bugs found in re-
cent trunk and major branch code (that is, found by people who deliberately run bleeding edge code).
When a bug report comes in from these sources, the responder will often be able to confirm that the bug
is known to be present in that snapshot, and perhaps that it has since been fixed and that the user should
upgrade or wait for the next release. If it is a previously unknown bug, having the precise release makes
it easier to reproduce and easier to categorize in the tracker.

Projects are not prepared, however, to receive bug reports based on unspecified intermediate or hybrid
versions. Such bugs can be hard to reproduce; also, they may be due to unexpected interactions in iso-
lated changes pulled in from later development, and thereby cause misbehaviors that the project's devel-
opers should not have to take the blame for. I have even seen dismayingly large amounts of time wasted
because a bug was absent when it should have been present: someone was running a slightly patched up
version, based on (but not identical to) an official release, and when the predicted bug did not happen,
everyone had to dig around a lot to figure out why.

Still, there will sometimes be circumstances when a packager insists that modifications to the source re-
lease are necessary. Packagers should be encouraged to bring this up with the project's developers and
describe their plans. They may get approval, but failing that, they will at least have notified the project
of their intentions, so the project can watch out for unusual bug reports. The developers may respond by
putting a disclaimer on the project's web site, and may ask that the packager do the same thing in the ap-
propriate place, so that users of that binary package know what they are getting is not exactly the same
as what the project officially released. There need be no animosity in such a situation, though unfortu-
nately there often is. It's just that packagers have a slightly different set of goals from developers. The
packagers mainly want the best out-of-the-box experience for their users. The developers want that too,
of course, but they also need to ensure that they know what versions of the software are out there, so
they can receive coherent bug reports and make compatibility guarantees. Sometimes these goals con-
flict. When they do, it's good to keep in mind that the project has no control over the packagers, and that
the bonds of obligation run both ways. It's true that the project is doing the packagers a favor simply
by producing the software. But the packagers are also doing the project a favor, by taking on a mostly
unglamorous job in order to make the software more widely available, often by orders of magnitude. It's
fine to disagree with packagers, but don't flame them; just try to work things out as best you can.

Testing and Releasing
Once the source tarball is produced from the stabilized release branch, the public part of the release
process begins. But before the tarball is made available to the world at large, it should be tested and ap-
proved by some minimum number of developers, usually three or more. Approval is not simply a matter
of inspecting the release for obvious flaws; ideally, the developers download the tarball, build and install
it onto a clean system, run the regression test suite (see the section called “Automated testing”) in Chap-
ter 8, Managing Volunteers, and do some manual testing. Assuming it passes these checks, as well as
any other release checklist criteria the project may have, the developers then digitally sign the tarball us-
ing GnuPG (gnupg.org [http://www.gnupg.org/]), PGP (pgpi.org [http://www.pgpi.org/]), or some other
program capable of producing PGP-compatible signatures.

In most projects, the developers just use their personal digital signatures, instead of a shared project key,
and as many developers as want to may sign (i.e., there is a minimum number, but not a maximum). The

http://www.gnupg.org/
http://www.gnupg.org/
http://www.pgpi.org/
http://www.pgpi.org/

Packaging, Releasing,
and Daily Development

136

more developers sign, the more testing the release undergoes, and also the greater the likelihood that a
security-conscious user can find a digital trust path from herself to the tarball.

Once approved, the release (that is, all tarballs, zip files, and whatever other formats are being dis-
tributed) should be placed into the project's download area, accompanied by the digital signatures,
and by MD5/SHA1 checksums (see en.wikipedia.org/wiki/Cryptographic_hash_function [http://
en.wikipedia.org/wiki/Cryptographic_hash_function]). There are various standards for doing this.
One way is to accompany each released package with a file giving the corresponding digital sig-
natures, and another file giving the checksum. For example, if one of the released packages is
scanley-2.5.0.tar.gz, place in the same directory a file scanley-2.5.0.tar.gz.asc
containing the digital signature for that tarball, another file scanley-2.5.0.tar.gz.md5 contain-
ing its MD5 checksum, and optionally another, scanley-2.5.0.tar.gz.sha1, containing the
SHA1 checksum. A different way to provide checking is to collect all the signatures for all the released
packages into a single file, scanley-2.5.0.sigs; the same may be done with the checksums.

It doesn't really matter which way you do it. Just keep to a simple scheme, describe it clearly, and be
consistent from release to release. The purpose of all this signing and checksumming is to give users a
way to verify that the copy they receive has not been maliciously tampered with. Users are about to run
this code on their computers—if the code has been tampered with, an attacker could suddenly have a
back door to all their data. See the section called “Security Releases” later in this chapter for more about
paranoia.

Candidate Releases
For important releases containing many changes, many projects prefer to put out release candidates
first, e.g., scanley-2.5.0-beta1 before scanley-2.5.0. The purpose of a candidate is to sub-
ject the code to wide testing before blessing it as an official release. If problems are found, they are fixed
on the release branch and a new candidate release is rolled out (scanley-2.5.0-beta2). The cycle
continues until no unacceptable bugs are left, at which point the last candidate release becomes the offi-
cial release—that is, the only difference between the last candidate release and the real release is the re-
moval of the qualifier from the version number.

In most other respects, a candidate release should be treated the same as a real release. The alpha, beta,
or rc qualifier is enough to warn conservative users to wait until the real release, and of course the an-
nouncement emails for the candidate releases should point out that their purpose is to solicit feedback.
Other than that, give candidate releases the same amount of care as regular releases. After all, you want
people to use the candidates, because exposure is the best way to uncover bugs, and also because you
never know which candidate release will end up becoming the official release.

Announcing Releases
Announcing a release is like announcing any other event, and should use the procedures described in the
section called “Publicity” in Chapter 6, Communications. There are a few specific things to do for re-
leases, though.

Whenever you give the URL to the downloadable release tarball, make sure to also give the MD5/SHA1
checksums and pointers to the digital signatures file. Since the announcement happens in multiple fo-
rums (mailing list, news page, etc.), this means users can get the checksums from multiple sources,
which gives the most security-conscious among them extra assurance that the checksums themselves
have not been tampered with. Giving the link to the digital signature files multiple times doesn't make
those signatures more secure, but it does reassure people (especially those who don't follow the project
closely) that the project takes security seriously.

In the announcement email, and on news pages that contain more than just a blurb about the release,
make sure to include the relevant portion of the CHANGES file, so people can see why it might be in

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

Packaging, Releasing,
and Daily Development

137

their interests to upgrade. This is as important with candidate releases as with final releases; the presence
of bugfixes and new features is important in tempting people to try out a candidate release.

Finally, don't forget to thank the development team, the testers, and all the people who took the time to
file good bug reports. Don't single out anyone by name, though, unless there's someone who is individ-
ually responsible for a huge piece of work, the value of which is widely recognized by everyone in the
project. Just be wary of sliding down the slippery slope of credit inflation (see the section called “Cred-
it” in Chapter 8, Managing Volunteers).

Maintaining Multiple Release Lines
Most mature projects maintain multiple release lines in parallel. For example, after 1.0.0 comes out, that
line should continue with micro (bugfix) releases 1.0.1, 1.0.2, etc., until the project explicitly decides to
end the line. Note that merely releasing 1.1.0 is not sufficient reason to end the 1.0.x line. For example,
some users make it a policy never to upgrade to the first release in a new minor or major series—they
let others shake the bugs out of, say 1.1.0, and wait until 1.1.1. This isn't necessarily selfish (remember,
they're forgoing the bugfixes and new features too); it's just that, for whatever reason, they've decided
to be very careful with upgrades. Accordingly, if the project learns of a major bug in 1.0.3 right before
it's about to release 1.1.0, it would be a bit severe to just put the bugfix in 1.1.0 and tell all the old 1.0.x
users they should upgrade. Why not release both 1.1.0 and 1.0.4, so everyone can be happy?

After the 1.1.x line is well under way, you can declare 1.0.x to be at end of life. This should be an-
nounced officially. The announcement could stand alone, or it could be mentioned as part of a 1.1.x re-
lease announcement; however you do it, users need to know that the old line is being phased out, so they
can make upgrade decisions accordingly.

Some projects set a window of time during which they pledge to support the previous release line. In
an open source context, "support" means accepting bug reports against that line, and making mainte-
nance releases when significant bugs are found. Other projects don't give a definite amount of time, but
watch incoming bug reports to gauge how many people are still using the older line. When the percent-
age drops below a certain point, they declare end of life for the line and stop supporting it.

For each release, make sure to have a target version or target milestone available in the bug tracker,
so people filing bugs will be able to do so against the proper release. Don't forget to also have a target
called "development" or "latest" for the most recent development sources, since some people—not only
active developers—will often stay ahead of the official releases.

Security Releases
Most of the details of handling security bugs were covered in the section called “Announcing Security
Vulnerabilities” in Chapter 6, Communications, but there are some special details to discuss for doing
security releases.

A security release is a release made solely to close a security vulnerability. The code that fixes the bug
cannot be made public until the release is available, which means not only that the fixes cannot be com-
mitted to the repository until the day of the release, but also that the release cannot be publicly tested be-
fore it goes out the door. Obviously, the developers can examine the fix among themselves, and test the
release privately, but widespread real-world testing is not possible.

Because of this lack of testing, a security release should always consist of some existing release plus the
fixes for the security bug, with no other changes. This is because the more changes you ship without
testing, the more likely that one of them will cause a new bug, perhaps even a new security bug! This
conservatism is also friendly to administrators who may need to deploy the security fix, but whose up-
grade policy prefers that they not deploy any other changes at the same time.

Packaging, Releasing,
and Daily Development

138

Making a security release sometimes involves some minor deception. For example, the project may have
been working on a 1.1.3 release, with certain bug fixes to 1.1.2 already publicly declared, when a securi-
ty report comes in. Naturally, the developers cannot talk about the security problem until they make the
fix available; until then, they must continue to talk publicly as though 1.1.3 will be what it's always been
planned to be. But when 1.1.3 actually comes out, it will differ from 1.1.2 only in the security fixes, and
all those other fixes will have been deferred to 1.1.4 (which, of course, will now also contain the securi-
ty fix, as will all other future releases).

You could add an extra component to an existing release to indicate that it contains security changes
only. For example, people would be able to tell just from the numbers that 1.1.2.1 is a security release
against 1.1.2, and they would know that any release "higher" than that (e.g., 1.1.3, 1.2.0, etc.) contains
the same security fixes. For those in the know, this system conveys a lot of information. On the other
hand, for those not following the project closely, it can be a bit confusing to see a three-component re-
lease number most of the time with an occasional four-component one thrown in seemingly at random.
Most projects I've looked at choose consistency and simply use the next regularly scheduled number for
security releases, even when it means shifting other planned releases by one.

Releases and Daily Development
Maintaining parallel releases simultaneously has implications for how daily development is done. In
particular, it makes practically mandatory a discipline that would be recommended anyway: have each
commit be a single logical change, and never mix unrelated changes in the same commit. If a change is
too big or too disruptive to do in one commit, break it across N commits, where each commit is a well-
partitioned subset of the overall change, and includes nothing unrelated to the overall change.

Here's an example of an ill-thought-out commit:

--
r6228 | jrandom | 2004-06-30 22:13:07 -0500 (Wed, 30 Jun 2004) | 8 lines

Fix Issue #1729: Make indexing gracefully warn the user when a file
is changing as it is being indexed.

* ui/repl.py
 (ChangingFile): New exception class.
 (DoIndex): Handle new exception.

* indexer/index.py
 (FollowStream): Raise new exception if file changes during indexing.
 (BuildDir): Unrelatedly, remove some obsolete comments, reformat
 some code, and fix the error check when creating a directory.

Other unrelated cleanups:

* www/index.html: Fix some typos, set next release date.
--

The problem with it becomes apparent as soon as someone needs to port the BuildDir error check fix
over to a branch for an upcoming maintenance release. The porter doesn't want any of the other changes
—for example, perhaps the fix to issue #1729 wasn't approved for the maintenance branch at all, and the
index.html tweaks would simply be irrelevant there. But she cannot easily grab just the BuildDir
change via the version control tool's merge functionality, because the version control system was told
that that change is logically grouped with all these other unrelated things. In fact, the problem would be-

Packaging, Releasing,
and Daily Development

139

come apparent even before the merge. Merely listing the change for voting would become problematic:
instead of just giving the revision number, the proposer would have to make a special patch or change
branch just to isolate the portion of the commit being proposed. That would be a lot of work for others
to suffer through, and all because the original committer couldn't be bothered to break things into logical
groups.

In fact, that commit really should have been four separate commits: one to fix issue #1729, another to re-
move obsolete comments and reformat code in BuildDir, another to fix the error check in Build-
Dir, and finally, one to tweak index.html. The third of those commits would be the one proposed
for the maintenance release branch.

Of course, release stabilization is not the only reason why having each commit be one logical change is
desirable. Psychologically, a semantically unified commit is easier to review, and easier to revert if nec-
essary (in some version control systems, reversion is really a special kind of merge anyway). A little up-
front discipline on everyone's part can save the project a lot of headache later.

Planning Releases
One area where open source projects have historically differed from proprietary projects is in release
planning. Proprietary projects usually have firmer deadlines. Sometimes it's because customers were
promised that an upgrade would be available by a certain date, because the new release needs to be coor-
dinated with some other effort for marketing purposes, or because the venture capitalists who invested in
the whole thing need to see some results before they put in any more funding. Free software projects, on
the other hand, were until recently mostly motivated by amateurism in the most literal sense: they were
written for the love of it. No one felt the need to ship before all the features were ready, and why should
they? It wasn't as if anyone's job was on the line.

Nowadays, many open source projects are funded by corporations, and are correspondingly more and
more influenced by deadline-conscious corporate culture. This is in many ways a good thing, but it can
cause conflicts between the priorities of those developers who are being paid and those who are volun-
teering their time. These conflicts often happen around the issue of when and how to schedule releases.
The salaried developers who are under pressure will naturally want to just pick a date when the releases
will occur, and have everyone's activities fall into line. But the volunteers may have other agendas—per-
haps features they want to complete, or some testing they want to have done—that they feel the release
should wait on.

There is no general solution to this problem except discussion and compromise, of course. But you can
minimize the frequency and degree of friction caused, by decoupling the proposed existence of a given
release from the date when it would go out the door. That is, try to steer discussion toward the subject
of which releases the project will be making in the near- to medium-term future, and what features will
be in them, without at first mentioning anything about dates, except for rough guesses with wide mar-
gins of error1. By nailing down feature sets early, you reduce the complexity of the discussion centered
on any individual release, and therefore improve predictability. This also creates a kind of inertial bias
against anyone who proposes to expand the definition of a release by adding new features or other com-
plications. If the release's contents are fairly well defined, the onus is on the proposer to justify the ex-
pansion, even though the date of the release may not have been set yet.

In his multi-volume biography of Thomas Jefferson, Jefferson and His Time, Dumas Malone tells the
story of how Jefferson handled the first meeting held to decide the organization of the future Universi-

1For an alternative approach, you may wish to read Martin Michlmayr's Ph.D. thesis Quality Improvement in Volunteer Free and Open Source
Software Projects: Exploring the Impact of Release Management (cyrius.com/publications/michlmayr-phd.html [http://www.cyrius.com/pub-
lications/michlmayr-phd.html]). It is about using time-based release processes, as opposed to feature-based, in large free software projects.
Michlmayr also gave a talk at Google on the subject, available on Google Video at video.google.com/videoplay?docid=-5503858974016723264
[http://video.google.com/videoplay?docid=-5503858974016723264].

http://www.cyrius.com/publications/michlmayr-phd.html
http://www.cyrius.com/publications/michlmayr-phd.html
http://www.cyrius.com/publications/michlmayr-phd.html
http://video.google.com/videoplay?docid=-5503858974016723264
http://video.google.com/videoplay?docid=-5503858974016723264

Packaging, Releasing,
and Daily Development

140

ty of Virginia. The University had been Jefferson's idea in the first place, but (as is the case everywhere,
not just in open source projects) many other parties had climbed on board quickly, each with their own
interests and agendas. When they gathered at that first meeting to hash things out, Jefferson made sure
to show up with meticulously prepared architectural drawings, detailed budgets for construction and op-
eration, a proposed curriculum, and the names of specific faculty he wanted to import from Europe. No
one else in the room was even remotely as prepared; the group essentially had to capitulate to Jefferson's
vision, and the University was eventually founded more or less in accordance with his plans. The facts
that construction went far over budget, and that many of his ideas did not, for various reasons, work out
in the end, were all things Jefferson probably knew perfectly well would happen. His purpose was strate-
gic: to show up at the meeting with something so substantive that everyone else would have to fall into
the role of simply proposing modifications to it, so that the overall shape, and therefore schedule, of the
project would be roughly as he wanted.

In the case of a free software project, there is no single "meeting", but instead a series of small proposals
made mostly by means of the issue tracker. But if you have some credibility in the project to start with,
and you start assigning various features, enhancements, and bugs to target releases in the issue track-
er, according to some announced overall plan, people will mostly go along with you. Once you've got
things laid out more or less as you want them, the conversations about actual release dates will go much
more smoothly.

It is crucial, of course, to never present any individual decision as written in stone. In the comments as-
sociated with each assignment of an issue to a specific future release, invite discussion, dissent, and be
genuinely willing to be persuaded whenever possible. Never exercise control merely for the sake of ex-
ercising control: the more deeply others participate in the release planning process (see the section called
“Share Management Tasks as Well as Technical Tasks” in Chapter 8, Managing Volunteers), the easier
it will be to persuade them to share your priorities on the issues that really count for you.

The other way the project can lower tensions around release planning is to make releases fairly often.
When there's a long time between releases, the importance of any individual release is magnified in
everyone's minds; people are that much more crushed when their code doesn't make it in, because they
know how long it might be until the next chance. Depending on the complexity of the release process
and the nature of your project, somewhere between every three and six months is usually about the right
gap between releases, though maintenance lines may put out micro releases a bit faster, if there is de-
mand for them.

141

Chapter 8. Managing Volunteers
Getting people to agree on what a project needs, and to work together to achieve it, requires more than
just a genial atmosphere and a lack of obvious dysfunction. It requires someone, or several someones,
consciously managing all the people involved. Managing volunteers may not be a technical craft in the
same sense as computer programming, but it is a craft in the sense that it can be improved through study
and practice.

This chapter is a grab-bag of specific techniques for managing volunteers. It draws, perhaps more heav-
ily than previous chapters, on the Subversion project as a case study, partly because I was working on
that project as I wrote this and had all the primary sources close at hand, and partly because it's more ac-
ceptable to cast critical stones into one's own glass house than into others'. But I have also seen in var-
ious other projects the benefits of applying—and the consequences of not applying—the recommenda-
tions that follow; when it is politically feasible to give examples from some of those other projects, I
will do so.

Speaking of politics, this is as good a time as any to drag that much-maligned word out for a closer look.
Many engineers like to think of politics as something other people engage in. "I'm just advocating the
best course for the project, but she's raising objections for political reasons." I believe this distaste for
politics (or for what is imagined to be politics) is especially strong in engineers because engineers are
bought into the idea that some solutions are objectively superior to others. Thus, when someone acts in
a way that seems motivated by outside considerations—say, the maintenance of his own position of in-
fluence, the lessening of someone else's influence, outright horse-trading, or avoiding hurting someone's
feelings—other participants in the project may get annoyed. Of course, this rarely prevents them from
behaving in the same way when their own vital interests are at stake.

If you consider "politics" a dirty word, and hope to keep your project free of it, give up right now. Poli-
tics are inevitable whenever people have to cooperatively manage a shared resource. It is absolutely ra-
tional that one of the considerations going into each person's decision-making process is the question of
how a given action might affect his own future influence in the project. After all, if you trust your own
judgement and skills, as most programmers do, then the potential loss of future influence has to be con-
sidered a technical result, in a sense. Similar reasoning applies to other behaviors that might seem, on
their face, like "pure" politics. In fact, there is no such thing as pure politics: it is precisely because ac-
tions have multiple real-world consequences that people become politically conscious in the first place.
Politics is, in the end, simply an acknowledgment that all consequences of decisions must be taken into
account. If a particular decision leads to a result that most participants find technically satisfying, but in-
volves a change in power relationships that leaves key people feeling isolated, the latter is just as impor-
tant a result as the former. To ignore it would not be high-minded, but shortsighted.

So as you read the advice that follows, and as you work with your own project, remember that there is
no one who is above politics. Appearing to be above politics is merely one particular political strategy,
and sometimes a very useful one, but it is never the reality. Politics is simply what happens when people
disagree, and successful projects are those that evolve political mechanisms for managing disagreement
constructively.

Getting the Most Out of Volunteers
Why do volunteers work on free software projects?1

1This question was studied in detail, with interesting results, in a paper by Karim Lakhani and Robert G. Wolf, entitled Why Hackers Do What
They Do: Understanding Motivation and Effort in Free/Open Source Software Projects. See freesoftware.mit.edu/papers/lakhaniwolf.pdf [http://
freesoftware.mit.edu/papers/lakhaniwolf.pdf].

http://freesoftware.mit.edu/papers/lakhaniwolf.pdf
http://freesoftware.mit.edu/papers/lakhaniwolf.pdf
http://freesoftware.mit.edu/papers/lakhaniwolf.pdf

Managing Volunteers

142

When asked, many claim they do it because they want to produce good software, or want to be person-
ally involved in fixing the bugs that matter to them. But these reasons are usually not the whole story.
After all, could you imagine a volunteer staying with a project even if no one ever said a word in appre-
ciation of his work, or listened to him in discussions? Of course not. Clearly, people spend time on free
software for reasons beyond just an abstract desire to produce good code. Understanding volunteers' true
motivations will help you arrange things so as to attract and keep them. The desire to produce good soft-
ware may be among those motivations, along with the challenge and educational value of working on
hard problems. But humans also have a built-in desire to work with other humans, and to give and earn
respect through cooperative activities. Groups engaged in cooperative activities must evolve norms of
behavior such that status is acquired and kept through actions that help the group's goals.

Those norms won't always arise by themselves. For example, on some projects—experienced open
source developers can probably name several off the tops of their heads—people apparently feel that
status is acquired by posting frequently and verbosely. They don't come to this conclusion accidentally;
they come to it because they are rewarded with respect for making long, intricate arguments, whether or
not that actually helps the project. Following are some techniques for creating an atmosphere in which
status-acquiring actions are also constructive actions.

Delegation
Delegation is not merely a way to spread the workload around; it is also a political and social tool. Con-
sider all the effects when you ask someone to do something. The most obvious effect is that, if he ac-
cepts, he does the task and you don't. But another effect is that he is made aware that you trusted him to
handle the task. Furthermore, if you made the request in a public forum, then he knows that others in the
group have been made aware of that trust too. He may also feel some pressure to accept, which means
you must ask in a way that allows him to decline gracefully if he doesn't really want the job. If the task
requires coordination with others in the project, you are effectively proposing that he become more in-
volved, form bonds that might not otherwise have been formed, and perhaps become a source of author-
ity in some subdomain of the project. The added involvement may be daunting, or it may lead him to be-
come engaged in other ways as well, from an increased feeling of overall commitment.

Because of all these effects, it often makes sense to ask someone else to do something even when you
know you could do it faster or better yourself. Of course, there is sometimes a strict economic efficien-
cy argument for this anyway: perhaps the opportunity cost of doing it yourself would be too high—there
might be something even more important you could do with that time. But even when the opportuni-
ty cost argument doesn't apply, you may still want to ask someone else to take on the task, because in
the long run you want to draw that person deeper into the project, even if it means spending extra time
watching over them at first. The converse technique also applies: if you occasionally volunteer for work
that someone else doesn't want or have time to do, you will gain his good will and respect. Delegation
and substitution are not just about getting individual tasks done; they're also about drawing people into a
closer committment to the project.

Distinguish clearly between inquiry and assignment

Sometimes it is fair to expect that a person will accept a particular task. For example, if someone writes
a bug into the code, or commits code that fails to comply with project guidelines in some obvious way,
then it is enough to point out the problem and thereafter behave as though you assume the person will
take care of it. But there are other situations where it is by no means clear that you have a right to expect
action. The person may do as you ask, or may not. Since no one likes to be taken for granted, you need
to be sensitive to the difference between these two types of situations, and tailor your requests accord-
ingly.

One thing that almost always causes people instant annoyance is being asked to do something in a way
that implies that you think it is clearly their responsibility to do it, when they feel otherwise. For exam-

Managing Volunteers

143

ple, assignment of incoming issues is particularly fertile ground for this kind of annoyance. The partic-
ipants in a project usually know who is expert in what areas, so when a bug report comes in, there will
often be one or two people whom everyone knows could probably fix it quickly. However, if you assign
the issue over to one of those people without her prior permission, she may feel she has been put into an
uncomfortable position. She senses the pressure of expectation, but also may feel that she is, in effect,
being punished for her expertise. After all, the way one acquires expertise is by fixing bugs, so perhaps
someone else should take this one! (Note that issue trackers that automatically assign issues to particular
people based on information in the bug report are less likely to offend, because everyone knows that the
assignment was made by an automated process, and is not an indication of human expectations.)

While it would be nice to spread the load as evenly as possible, there are certain times when you just
want to encourage the person who can fix a bug the fastest to do so. Given that you can't afford a com-
munications turnaround for every such assignment ("Would you be willing to look at this bug?" "Yes."
"Okay, I'm assigning the issue over to you then." "Okay."), you should simply make the assignment in
the form of an inquiry, conveying no pressure. Virtually all issue trackers allow a comment to be associ-
ated with the assignment of an issue. In that comment, you can say something like this:

Assigning this over to you, jrandom, because you're most familiar with this code. Feel
free to bounce this back if you don't have time to look at it, though. (And let me know
if you'd prefer not to receive such requests in the future.)

This distinguishes clearly between the request for assignment and the recipient's acceptance of that as-
signment. The audience here isn't only the assignee, it's everyone: the entire group sees a public confir-
mation of the assignee's expertise, but the message also makes it clear that the assignee is free to accept
or decline the responsibility.

Follow up after you delegate

When you ask someone to do something, remember that you have done so, and follow up with him no
matter what. Most requests are made in public forums, and are roughly of the form "Can you take care
of X? Let us know either way; no problem if you can't, just need to know." You may or may not get a re-
sponse. If you do, and the response is negative, the loop is closed—you'll need to try some other strate-
gy for dealing with X. If there is a positive response, then keep an eye out for progress on the issue, and
comment on the progress you do or don't see (everyone works better when they know someone else is
appreciating their work). If there is no response after a few days, ask again, or post saying that you got
no response and are looking for someone else to do it. Or just do it yourself, but still make sure to say
that you got no response to the initial inquiry.

The purpose of publicly noting the lack of response is not to humiliate the person, and your remarks
should be phrased so as not to have that effect. The purpose is simply to show that you keep track of
what you have asked for, and that you notice the reactions you get. This makes people more likely to say
yes next time, because they will observe (even if only unconsciously) that you are likely to notice any
work they do, given that you noticed the much less visible event of someone failing to respond.

Notice what people are interested in

Another thing that makes people happy is to have their interests noticed—in general, the more aspects of
someone's personality you notice and remember, the more comfortable he will be, and the more he will
want to work with groups of which you are a part.

For example, there was a sharp distinction in the Subversion project between people who wanted to
reach a definitive 1.0 release (which we eventually did), and people who mainly wanted to add new fea-
tures and work on interesting problems but who didn't much care when 1.0 came out. Neither of these
positions is better or worse than the other; they're just two different kinds of developers, and both kinds

Managing Volunteers

144

do lots of work on the project. But we swiftly learned that it was important to not assume that the excite-
ment of the 1.0 drive was shared by everyone. Electronic media can be very deceptive: you may sense
an atmosphere of shared purpose when, in fact, it's shared only by the people you happen to have been
talking to, while others have completely different priorities.

The more aware you are of what people want out of the project, the more effectively you can make re-
quests of them. Even just demonstrating an understanding of what they want, without making any asso-
ciated request, is useful, in that it confirms to each person that she's not just another particle in an undif-
ferentiated mass.

Praise and Criticism
Praise and criticism are not opposites; in many ways, they are very similar. Both are primarily forms of
attention, and are most effective when specific rather than generic. Both should be deployed with con-
crete goals in mind. Both can be diluted by inflation: praise too much or too often and you will devalue
your praise; the same is true for criticism, though in practice, criticism is usually reactive and therefore a
bit more resistant to devaluation.

An important feature of technical culture is that detailed, dispassionate criticism is often taken as a kind
of praise (as discussed in the section called “Recognizing Rudeness” in Chapter 6, Communications),
because of the implication that the recipient's work is worth the time required to analyze it. However,
both of those conditions—detailed and dispassionate—must be met for this to be true. For example, if
someone makes a sloppy change to the code, it is useless (and actually harmful) to follow up saying sim-
ply "That was sloppy." Sloppiness is ultimately a characteristic of a person, not of their work, and it's
important to keep your reactions focused on the work. It's much more effective to describe all the things
wrong with the change, tactfully and without malice. If this is the third or fourth careless change in a
row by the same person, it's appropriate to say that—again without anger—at the end of your critique, to
make it clear that the pattern has been noticed.

If someone does not improve in response to criticism, the solution is not more or stronger criticism. The
solution is for the group to remove that person from the position of incompetence, in a way that mini-
mizes hurt feelings as much as possible; see the section called “Transitions” later in this chapter for ex-
amples. That is a rare occurrence, however. Most people respond pretty well to criticism that is specific,
detailed, and contains a clear (even if unspoken) expectation of improvement.

Praise won't hurt anyone's feelings, of course, but that doesn't mean it should be used any less carefully
than criticism. Praise is a tool: before you use it, ask yourself why you want to use it. As a rule, it's not a
good idea to praise people for doing what they usually do, or for actions that are a normal and expected
part of participating in the group. If you were to do that, it would be hard to know when to stop: should
you praise everyone for doing the usual things? After all, if you leave some people out, they'll wonder
why. It's much better to express praise and gratitude sparingly, in response to unusual or unexpected ef-
forts, with the intention of encouraging more such efforts. When a participant seems to have moved per-
manently into a state of higher productivity, adjust your praise threshold for that person accordingly. Re-
peated praise for normal behavior gradually becomes meaningless anyway. Instead, that person should
sense that her high level of productivity is now considered normal and natural, and only work that goes
beyond that should be specially noticed.

This is not to say that the person's contributions shouldn't be acknowledged, of course. But remember
that if the project is set up right, everything that person does is already visible anyway, and so the group
will know (and the person will know that the rest of the group knows) everything she does. There are al-
so ways to acknowledge someone's work by means other than direct praise. You could mention in pass-
ing, while discussing a related topic, that she has done a lot of work in the given area and is the resident
expert there; you could publicly consult her on some question about the code; or perhaps most effective-
ly, you could conspicuously make further use of the work she has done, so she sees that others are now

Managing Volunteers

145

comfortable relying on the results of her work. It's probably not necessary to do these things in any cal-
culated way. Someone who regularly makes large contributions in a project will know it, and will occu-
py a position of influence by default. There's usually no need to take explicit steps to ensure this, unless
you sense that, for whatever reason, a contributor is underappreciated.

Prevent Territoriality
Watch out for participants who try to stake out exclusive ownership of certain areas of the project, and
who seem to want to do all the work in those areas, to the extent of aggressively taking over work that
others start. Such behavior may even seem healthy at first. After all, on the surface it looks like the per-
son is taking on more responsibility, and showing increased activity within a given area. But in the long
run, it is destructive. When people sense a "no trespassing" sign, they stay away. This results in reduced
review in that area, and greater fragility, because the lone developer becomes a single point of failure.
Worse, it fractures the cooperative, egalitarian spirit of the project. The theory should always be that any
developer is welcome to help out on any task at any time. Of course, in practice things work a bit differ-
ently: people do have areas where they are more and less influential, and non-experts frequently defer
to experts in certain domains of the project. But the key is that this is all voluntary: informal authority is
granted based on competence and proven judgement, but it should never be actively taken. Even if the
person desiring the authority really is competent, it is still crucial that she hold that authority informally,
through the consensus of the group, and that the authority never cause her to exclude others from work-
ing in that area.

Rejecting or editing someone's work for technical reasons is an entirely different matter, of course.
There, the decisive factor is the content of the work, not who happened to act as gatekeeper. It may be
that the same person happens to do most of the reviewing for a given area, but as long as he never tries
to prevent someone else from doing that work too, things are probably okay.

In order to combat incipient territorialism, or even the appearance of it, many projects have taken the
step of banning the inclusion of author names or designated maintainer names in source files. I whole-
heartedly agree with this practice: we follow it in the Subversion project, and it is more or less official
policy at the Apache Software Foundation. ASF member Sander Striker puts it this way:

At the Apache Software foundation we discourage the use of author tags in source
code. There are various reasons for this, apart from the legal ramifications. Collabo-
rative development is about working on projects as a group and caring for the project
as a group. Giving credit is good, and should be done, but in a way that does not al-
low for false attribution, even by implication. There is no clear line for when to add
or remove an author tag. Do you add your name when you change a comment? When
you put in a one-line fix? Do you remove other author tags when you refactor the code
and it looks 95% different? What do you do about people who go about touching every
file, changing just enough to make the virtual author tag quota, so that their name will
be everywhere?

There are better ways to give credit, and our preference is to use those. From a tech-
nical standpoint author tags are unnecessary; if you wish to find out who wrote a par-
ticular piece of code, the version control system can be consulted to figure that out.
Author tags also tend to get out of date. Do you really wish to be contacted in private
about a piece of code you wrote five years ago and were glad to have forgotten?

A software project's source code files are the core of its identity. They should reflect the fact that the de-
veloper community as a whole is responsible for them, and not be divided up into little fiefdoms.

People sometimes argue in favor of author or maintainer tags in source files on the grounds that this
gives visible credit to those who have done the most work there. There are two problems with this argu-

Managing Volunteers

146

ment. First, the tags inevitably raise the awkward question of how much work one must do to get one's
own name listed there too. Second, they conflate the issue of credit with that of authority: having done
work in the past does not imply ownership of the area where the work was done, but it's difficult if not
impossible to avoid such an implication when individual names are listed at the tops of source files. In
any case, credit information can already be obtained from the version control logs and other out-of-band
mechanisms like mailing list archives, so no information is lost by banning it from the source files them-
selves.2

If your project decides to ban individual names from source files, make sure not to go overboard. For in-
stance, many projects have a contrib/ area where small tools and helper scripts are kept, often writ-
ten by people who are otherwise not associated with the project. It's fine for those files to contain author
names, because they are not really maintained by the project as a whole. On the other hand, if a con-
tributed tool starts getting hacked on by other people in the project, eventually you may want to move it
to a less isolated location and, assuming the original author approves, remove the author's name, so that
the code looks like any other community-maintained resource. If the author is sensitive about this, com-
promise solutions are acceptable, for example:

indexclean.py: Remove old data from a Scanley index.
#
Original Author: K. Maru <kobayashi@yetanotheremailservice.com>
Now Maintained By: The Scanley Project <http://www.scanley.org/>
and K. Maru.

...

But it's better to avoid such compromises, if possible, and most authors are willing to be persuaded, be-
cause they're happy that their contribution is being made a more integral part of the project.

The important thing is to remember that there is a continuum between the core and the periphery of any
project. The main source code files for the software are clearly part of the core, and should be consid-
ered as maintained by the community. On the other hand, companion tools or pieces of documentation
may be the work of single individuals, who maintain them essentially alone, even though the works may
be associated with, and even distributed with, the project. There is no need to apply a one-size-fits-all
rule to every file, as long as the principle that community-maintained resources are not allowed to be-
come individual territories is upheld.

The Automation Ratio
Try not to let humans do what machines could do instead. As a rule of thumb, automating a common
task is worth at least ten times the effort a developer would spend doing that task manually one time. For
very frequent or very complex tasks, that ratio could easily go up to twenty or even higher.

Thinking of yourself as a "project manager", rather than just another developer, may be a useful attitude
here. Sometimes individual developers are too wrapped up in low-level work to see the big picture and
realize that everyone is wasting a lot of effort performing automatable tasks manually. Even those who
do realize it may not take the time to solve the problem: because each individual performance of the task
does not feel like a huge burden, no one ever gets annoyed enough to do anything about it. What makes

2But see the mailing list thread entitled "having authors names in .py files" at groups.google.com/group/sage-devel/browse_thread/thread/
e207ce2206f0beee [http://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee] for a good counterargument, particular-
ly the post from William Stein. The key in that case, I think, is that many of the authors come from a culture (the academic mathematics commu-
nity) where crediting directly at the source is the norm and is highly valued. In such circumstances, it may be preferable to put author names in-
to the source files, along with precise descriptions of what each author did, since the majority of potential contributors will expect that style of ac-
knowledgement.

http://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee
http://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee
http://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee

Managing Volunteers

147

automation compelling is that the small burden is multiplied by the number of times each developer in-
curs it, and then that number is multiplied by the number of developers.

Here, I am using the term "automation" broadly, to mean not only repeated actions where one or two
variables change each time, but any sort of technical infrastructure that assists humans. The minimum
standard automation required to run a project these days was described in Chapter 3, Technical Infras-
tructure, but each project may have its own special problems too. For example, a group working on doc-
umentation might want to have a web site displaying the most up-to-date versions of the documents at
all times. Since documentation is often written in a markup language like XML, there may be a compila-
tion step, often quite intricate, involved in creating displayable or downloadable documents. Arranging a
web site where such compilation happens automatically on every commit can be complicated and time-
consuming—but it is worth it, even if it costs you a day or more to set up. The overall benefits of hav-
ing up-to-date pages available at all times are huge, even though the cost of not having them might seem
like only a small annoyance at any single moment, to any single developer.

Taking such steps eliminates not merely wasted time, but the griping and frustration that ensue when
humans make missteps (as they inevitably will) in trying to perform complicated procedures manually.
Multi-step, deterministic operations are exactly what computers were invented for; save your humans for
more interesting things.

Automated testing

Automated test runs are helpful for any software project, but especially so for open source projects, be-
cause automated testing (especially regression testing) allows developers to feel comfortable chang-
ing code in areas they are unfamiliar with, and thus encourages exploratory development. Since de-
tecting breakage is so hard to do by hand—one essentially has to guess where one might have broken
something, and try various experiments to prove that one didn't—having automated ways to detect such
breakage saves the project a lot of time. It also makes people much more relaxed about refactoring large
swaths of code, and therefore contributes to the software's long-term maintainability.

Regression Testing

Regression testing means testing for the reappearance of already-fixed bugs. The purpose of re-
gression testing is to reduce the chances that code changes will break the software in unexpected
ways. As a software project gets bigger and more complicated, the chances of such unexpected
side effects increase steadily. Good design can reduce the rate at which the chances increase, but
it cannot eliminate the problem entirely.

As a result, many projects have a test suite, a separate program that invokes the project's software
in ways that have been known in the past to stimulate specific bugs. If the test suite succeeds in
making one of these bugs happen, this is known as a regression, meaning that someone's change
unexpectedly unfixed a previously-fixed bug.

See also en.wikipedia.org/wiki/Regression_testing [http://en.wikipedia.org/wi-
ki/Regression_testing].

Regression testing is not a panacea. For one thing, it works best for programs with batch-style interfaces.
Software that is operated primarily through graphical user interfaces is much harder to drive program-
matically. Another problem is that the regression test suite framework itself can often be quite complex,
with a learning curve and maintenance burden all its own. Reducing this complexity is one of the most
useful things you can do, even though it may take a considerable amount of time. The easier it is to add
new tests to the suite, the more developers will do so, and the fewer bugs will survive to release. Any ef-
fort spent making tests easier to write will be paid back manyfold over the lifetime of the project.

http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Regression_testing

Managing Volunteers

148

Many projects have a "Don't break the build!" rule, meaning: don't commit a change that makes the soft-
ware unable to compile or run. Being the person who broke the build is usually cause for mild embar-
rassment and ribbing. Projects with regression test suites often have a corollary rule: don't commit any
change that causes tests to fail. Such failures are easiest to spot if there are automatic nightly runs of the
entire test suite, with the results mailed out to the development list or to a dedicated test-results mailing
list; that's another example of a worthwhile automation.

Most volunteer developers are willing to take the extra time to write regression tests, when the test sys-
tem is comprehensible and easy to work with. Accompanying changes with tests is understood to be the
responsible thing to do, and it's also an easy opportunity for collaboration: often two developers will di-
vide up the work for a bugfix, with one writing the fix itself, and the other writing the test. The latter de-
veloper may often end up with more work, and since writing a test is already less satisfying than actually
fixing the bug, it is imperative that the test suite not make the experience more painful than it has to be.

Some projects go even further, requiring that a new test accompany every bugfix or new feature.
Whether this is a good idea or not depends on many factors: the nature of the software, the makeup
of the development team, and the difficulty of writing new tests. The CVS (cvs.nongnu.org/ [http://
cvs.nongnu.org/]) project has long had such a rule. It is a good policy in theory, since CVS is version
control software and therefore very risk-averse about the possibility of munging or mishandling the
user's data. The problem in practice is that CVS's regression test suite is a single huge shell script (amus-
ingly named sanity.sh), hard to read and hard to modify or extend. The difficulty of adding new
tests, combined with the requirement that patches be accompanied by new tests, means that CVS ef-
fectively discourages patches. When I used to work on CVS, I sometimes saw people start on and even
complete a patch to CVS's own code, but give up when told of the requirement to add a new test to
sanity.sh.

It is normal to spend more time writing a new regression test than on fixing the original bug. But CVS
carried this phenomenon to an extreme: one might spend hours trying to design one's test properly, and
still get it wrong, because there are just too many unpredictable complexities involved in changing a
35,000-line Bourne shell script. Even longtime CVS developers often grumbled when they had to add a
new test.

This situation was due to a failure on all our parts to consider the automation ratio. It is true that switch-
ing to a real test framework—whether custom-built or off-the-shelf—would have been a major effort.3

But neglecting to do so has cost the project much more, over the years. How many bugfixes and new
features are not in CVS today, because of the impediment of an awkward test suite? We cannot know
the exact number, but it is surely many times greater than the number of bugfixes or new features the de-
velopers might forgo in order to develop a new test system (or integrate an off-the-shelf system). That
task would only take a finite amount of time, while the penalty of using the current test suite will contin-
ue forever if nothing is done.

The point is not that having strict requirements to write tests is bad, nor that writing your test system as
a Bourne shell script is necessarily bad. It might work fine, depending on how you design it and what it
needs to test. The point is simply that when the test system becomes a significant impediment to devel-
opment, something must be done. The same is true for any routine process that turns into a barrier or a
bottleneck.

Treat Every User as a Potential Volunteer
Each interaction with a user is an opportunity to get a new volunteer. When a user takes the time to post
to one of the project's mailing lists, or to file a bug report, he has already tagged himself as having more
potential for involvement than most users (from whom the project will never hear at all). Follow up on

3Note that there would be no need to convert all the existing tests to the new framework; the two could happily exist side by side, with old tests
converted over only as they needed to be changed.

http://cvs.nongnu.org/
http://cvs.nongnu.org/
http://cvs.nongnu.org/

Managing Volunteers

149

that potential: if he described a bug, thank him for the report and ask him if he wants to try fixing it. If
he wrote to say that an important question was missing from the FAQ, or that the program's documenta-
tion was deficient in some way, then freely acknowledge the problem (assuming it really exists) and ask
if he's interested in writing the missing material himself. Naturally, much of the time the user will de-
mur. But it doesn't cost much to ask, and every time you do, it reminds the other listeners in that forum
that getting involved in the project is something anyone can do.

Don't limit your goals to acquiring new developers and documentation writers. For example, even train-
ing people to write good bug reports pays off in the long run, if you don't spend too much time per per-
son, and if they go on to submit more bug reports in the future—which they are more likely to do if they
got a constructive reaction to their first report. A constructive reaction need not be a fix for the bug, al-
though that's always the ideal; it can also be a solicitation for more information, or even just a confir-
mation that the behavior is a bug. People want to be listened to. Secondarily, they want their bugs fixed.
You may not always be able to give them the latter in a timely fashion, but you (or rather, the project as
a whole) can give them the former.

A corollary of this is that developers should not express anger at people who file well-intended but
vague bug reports. This is one of my personal pet peeves; I see developers do it all the time on various
open source mailing lists, and the harm it does is palpable. Some hapless newbie will post a useless re-
port:

Hi, I can't get Scanley to run. Every time I start it up, it just errors. Is anyone else see-
ing this problem?

Some developer—who has seen this kind of report a thousand times, and hasn't stopped to think that the
newbie has not—will respond like this:

What are we supposed to do with so little information? Sheesh. Give us at least some
details, like the version of Scanley, your operating system, and the error.

This developer has failed to see things from the user's point of view, and also failed to consider the ef-
fect such a reaction might have on all the other people watching the exchange. Naturally a user who has
no programming experience, and no prior experience reporting bugs, will not know how to write a bug
report. What is the right way to handle such a person? Educate them! And do it in such a way that they
come back for more:

Sorry you're having trouble. We'll need more information in order to figure out what's
happening here. Please tell us the version of Scanley, your operating system, and the
exact text of the error. The very best thing you can do is send a transcript showing the
exact commands you ran, and the output they produced. See http://www.scanley.org/
how_to_report_a_bug.html for more.

This way of responding is far more effective at extracting the needed information from the user, be-
cause it is written to the user's point of view. First, it expresses sympathy: You had a problem; we feel
your pain. (This is not necessary in every bug report response; it depends on the severity of the prob-
lem and how upset the user seemed.) Second, instead of belittling her for not knowing how to report a
bug, it tells her how, and in enough detail to be actually useful—for example, many users don't realize
that "show us the error" means "show us the exact text of the error, with no omissions or abridgements."
The first time you work with such a user, you need to be specific about that. Finally, it offers a pointer
to much more detailed and complete instructions for reporting bugs. If you have successfully engaged
with the user, she will often take the time to read that document and do what it says. This means, of
course, that you have to have the document prepared in advance. It should give clear instructions about
what kind of information your development team wants to see in every bug report. Ideally, it should al-
so evolve over time in response to the particular sorts of omissions and misreports users tend to make for
your project.

Managing Volunteers

150

The Subversion project's bug reporting instructions are a fairly standard example of the form (see Ap-
pendix E, Example Instructions for Reporting Bugs). Notice how they close with an invitation to pro-
vide a patch to fix the bug. This is not because such an invitation will lead to a greater patch/report ra-
tio—most users who are capable of fixing bugs already know that a patch would be welcome, and don't
need to be told. The invitation's real purpose is to emphasize to all readers, especially those new to the
project or new to free software in general, that the project runs on volunteer contributions. In a sense, the
project's current developers are no more responsible for fixing the bug than is the person who reported
it. This is an important point that many new users will not be familiar with. Once they realize it, they're
more likely to help make the fix happen, if not by contributing code then by providing a more thorough
reproduction recipe, or by offering to test fixes that other people post. The goal is to make every user re-
alize that there is no innate difference between herself and the people who work on the project—that it's
a question of how much time and effort one puts in, not a question of who one is.

The admonition against responding angrily does not apply to rude users. Occasionally people post bug
reports or complaints that, regardless of their informational content, show a sneering contempt at the
project for some failing. Often such people are alternately insulting and flattering, such as the person
who posted this to a Subversion mailing list:

Why is it that after almost 6 days there still aren't any binaries posted for the windows
platform?!? It's the same story every time and it's pretty frustrating. Why aren't these
things automated so that they could be available immediately?? When you post an
"RC" build, I think the idea is that you want users to test the build, but yet you don't
provide any way of doing so. Why even have a soak period if you provide no means of
testing??

Initial response to this rather inflammatory post was surprisingly restrained: people pointed out that the
project had a published policy of not providing official binaries, and said, with varying degrees of an-
noyance, that he ought to volunteer to produce them himself if they were so important to him. Believe it
or not, his next post started with these lines:

First of all, let me say that I think Subversion is awesome and I really appreciate the
efforts of everyone involved. [...]

...and then he went on to berate the project again for not providing binaries, while still not volunteer-
ing to do anything about it. After that, about 50 people just jumped all over him, and I can't say I real-
ly minded. The "zero-tolerance" policy toward rudeness advocated in the section called “Nip Rudeness
in the Bud” in Chapter 2, Getting Started applies to people with whom the project has (or would like to
have) a sustained interaction. But when someone makes it clear from the start that he is going to be a
fountain of bile, there is no point making him feel welcome.

Such situations are fortunately quite rare, and they are noticeably rarer in projects that make an effort to
engage users constructively and courteously from their very first interaction.

Meeting In Person (Conferences, Hackfests, Code-a-
Thons, Code Sprints, Retreats)

24 March 2013: If you're reading this note, then you've encountered this section while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 tbd

Some examples to use: Ubuntu community sprints, Adam Hyde's flossmanuals doc sprints, and the
Danese/Noel-style public hackathons. Distinguish between purely dev events and dev+user+funder+en-
terprise events — all are useful, but don't confuse audiences.

http://producingoss.com/v2.html
http://producingoss.com/v2.html

Managing Volunteers

151

Share Management Tasks as Well as Technical
Tasks

Share the management burden as well as the technical burden of running the project. As a project be-
comes more complex, more and more of the work is about managing people and information flow.
There is no reason not to share that burden, and sharing it does not necessarily require a top-down hier-
archy either—what happens in practice tends to be more of a peer-to-peer network topology than a mili-
tary-style command structure.

Sometimes management roles are formalized, and sometimes they happen spontaneously. In the Subver-
sion project, we have a patch manager, a translation manager, documentation managers, issue managers
(albeit unofficial), and a release manager. Some of these roles we made a conscious decision to initiate,
others just happened by themselves; as the project grows, I expect more roles to be added. Below we'll
examine these roles, and a couple of others, in detail (except for release manager, which was already
covered in the section called “Release manager” and the section called “Dictatorship by Release Owner”
earlier in this chapter).

As you read the role descriptions, notice that none of them requires exclusive control over the domain
in question. The issue manager does not prevent other people from making changes in the issues data-
base, the FAQ manager does not insist on being the only person to edit the FAQ, and so on. These roles
are all about responsibility without monopoly. An important part of each domain manager's job is to no-
tice when other people are working in that domain, and train them to do the things the way the manager
does, so that the multiple efforts reinforce rather than conflict. Domain managers should also document
the processes by which they do their work, so that when one leaves, someone else can pick up the slack
right away.

Sometimes there is a conflict: two or more people want the same role. There is no one right way to han-
dle this. You could suggest that each volunteer post a proposal (an "application") and have all the com-
mitters vote on which is best. But this is cumbersome and potentially awkward. I find that a better tech-
nique is just to ask the multiple candidates to settle it among themselves. They usually will, and will be
more satisfied with the result than if a decision had been imposed on them from the outside.

Patch Manager
In a free software project that receives a lot of patches, keeping track of which patches have arrived and
what has been decided about them can be a nightmare, especially if done in a decentralized way. Most
patches arrive as posts to the project's development mailing list (though some may appear first in the is-
sue tracker, or on external web sites), and there are a number of different routes a patch can take after ar-
rival.

Sometimes someone reviews the patch, finds problems, and bounces it back to the original author for
cleanup. This usually leads to an iterative process—all visible on the mailing list—in which the origi-
nal author posts revised versions of the patch until the reviewer has nothing more to criticize. It is not al-
ways easy to tell when this process is done: if the reviewer commits the patch, then clearly the cycle is
complete. But if she does not, it might be because she simply didn't have time, or doesn't have commit
access herself and couldn't rope any of the other developers into doing it.

Another frequent response to a patch is a freewheeling discussion, not necessarily about the patch itself,
but about whether the concept behind the patch is good. For example, the patch may fix a bug, but the
project prefers to fix that bug in another way, as part of solving a more general class of problems. Often
this is not known in advance, and it is the patch that stimulates the discovery.

Occasionally, a posted patch is met with utter silence. Usually this is due to no developer having time
at that moment to review the patch, so each hopes that someone else will do it. Since there's no particu-

Managing Volunteers

152

lar limit to how long each person waits for someone else to pick up the ball, and meanwhile other priori-
ties are always coming up, it's very easy for a patch to slip through the cracks without any single person
intending for that to happen. The project might miss out on a useful patch this way, and there are oth-
er harmful side effects as well: it is discouraging to the author, who invested work in the patch, and it
makes the project as a whole look a bit out of touch, especially to others considering writing patches.

The patch manager's job is to make sure that patches don't "slip through the cracks." This is done by fol-
lowing every patch through to some sort of stable state. The patch manager watches every mailing list
thread that results from a patch posting. If it ends in a commit of the patch, he does nothing. If it goes
into a review/revise iteration, ending with a final version of the patch but no commit, he files an issue
pointing to the final version, and to the mailing list thread around it, so that there is a permanent record
for developers to follow up on later. If the patch addresses an existing issue, he annotates that issue with
the relevant information, instead of opening a new issue.

When a patch gets no reaction at all, the patch manager waits a few days, then follows up asking if any-
one is going to review it. This usually gets a reaction: a developer may explain that she doesn't think the
patch should be applied, and give the reasons why, or she may review it, in which case one of the previ-
ously described paths is taken. If there is still no response, the patch manager may or may not file an is-
sue for the patch, at his discretion, but at least the original submitter got some reaction.

Having a patch manager has saved the Subversion development team a lot of time and mental energy.
Without a designated person to take responsibility, every developer would constantly have to worry "If I
don't have time to respond to this patch right now, can I count on someone else doing it? Should I try to
keep an eye on it? But if other people are also keeping an eye on it, for the same reasons, then we'd have
needlessly duplicated effort." The patch manager removes the second-guessing from the situation. Each
developer can make the decision that is right for her at the moment she first sees the patch. If she wants
to follow up with a review, she can do that—the patch manager will adjust his behavior accordingly. If
she wants to ignore the patch completely, that's fine too; the patch manager will make sure it isn't forgot-
ten.

Because this system works only if people can depend on the patch manager being there without fail, the
role should be held formally. In Subversion, we advertised for it on the development and users mailing
lists, got several volunteers, and took the first one who replied. When that person had to step down (see
the section called “Transitions” later in this chapter), we did the same thing again. We've never tried
having multiple people share the role, because of the communications overhead that would be required
between them; but perhaps at very high volumes of patch submission, a multiheaded patch manager
might make sense.

Translation Manager
In software projects, "translation" can refer to two very different things. It can mean translating the
software's documentation into other languages, or it can mean translating the software itself—that is,
having the program display errors and help messages in the user's preferred language. Both are complex
tasks, but once the right infrastructure is in place, they are largely separable from other development.
Because the tasks are similar in some ways, it may make sense (depending on your project) to have a
single translation manager handle both, or it may be better to have two different managers.

In the Subversion project, we have one translation manager handle both. He does not actually write the
translations himself, of course—he may help out on one or two, but as of this writing, he would need
to speak ten languages (twelve counting dialects) in order to work on all of them! Instead, he manages
teams of volunteer translators: he helps them coordinate among each other, and he coordinates between
the teams and the rest of the project.

Part of the reason the translation manager is necessary is that translators are a different demographic
from developers. They sometimes have little or no experience working in a version control repository,

Managing Volunteers

153

or indeed with working as part of a distributed volunteer team at all. But in other respects they are often
the best kind of volunteer: people with specific domain knowledge who saw a need and chose to get in-
volved. They are usually willing to learn, and enthusiastic to get to work. All they need is someone to
tell them how. The translation manager makes sure that the translations happen in a way that does not
interfere unnecessarily with regular development. He also serves as a sort of representative of the trans-
lators as a unified body, whenever the developers must be informed of technical changes required to
support the translation effort.

Thus, the position's most important skills are diplomatic, not technical. For example, in Subversion we
have a policy that all translations should have at least two people working on them, because otherwise
there is no way for the text to be reviewed. When a new volunteer shows up offering to translate Sub-
version to, say, Malagasy, the translation manager has to either hook him up with someone who post-
ed six months ago expressing interest in doing a Malagasy translation, or else politely ask the volunteer
to go find another Malagasy translator to work with as a partner. Once enough people are available, the
manager sets them up with the proper kind of commit access, informs them of the project's conventions
(such as how to write log messages), and then keeps an eye out to make sure they adhere to those con-
ventions.

Conversations between the translation manager and the developers, or between the translation manag-
er and translation teams, are usually held in the project's original language—that is, the language from
which all the translations are being made. For most free software projects, this is English, but it doesn't
matter what it is as long as the project agrees on it. (English is probably best for projects that want to at-
tract a broad international development community, though.)

Conversations within a particular translation team usually happen in their shared language, however, and
one of the other tasks of the translation manager is to set up a dedicated mailing list for each team. That
way the translators can discuss their work freely, without distracting people on the project's main lists,
most of whom would not be able to understand the translation language anyway.

Internationalization Versus Localization

Internationalization (I18N) and localization (L10N) both refer to the process of adapting a pro-
gram to work in linguistic and cultural environments other than the one for which it was original-
ly written. The terms are often treated as interchangeable, but in fact they are not quite the same
thing. As en.wikipedia.org/wiki/G11n [http://en.wikipedia.org/wiki/G11n] writes:

The distinction between them is subtle but important: Internationalization is the
adaptation of products for potential use virtually everywhere, while localization
is the addition of special features for use in a specific locale.

For example, changing your software to losslessly handle Unicode (en.wikipedia.org/wiki/Uni-
code [http://en.wikipedia.org/wiki/Unicode]) text encodings is an internationalization move, since
it's not about a particular language, but rather about accepting text from any of a number of lan-
guages. On the other hand, making your software print all error messages in Slovenian, when it
detects that it is running in a Slovenian environment, is a localization move.

Thus, the translation manager's task is principally about localization, not internationalization.

Documentation Manager
Keeping software documentation up-to-date is a never-ending task. Every new feature or enhancement
that goes into the code has the potential to cause a change in the documentation. Also, once the project's
documentation reaches a certain level of completeness, you will find that a lot of the patches people send

http://en.wikipedia.org/wiki/G11n
http://en.wikipedia.org/wiki/G11n
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode

Managing Volunteers

154

in are for the documentation, not for the code. This is because there are many more people competent to
fix bugs in prose than in code: all users are readers, but only a few are programmers.

Documentation patches are usually much easier to review and apply than code patches. There is little
or no testing to be done, and the quality of the change can be evaluated quickly just by review. Since
the quantity is high, but the review burden fairly low, the ratio of administrative overhead to productive
work is greater for documentation patches than for code patches. Furthermore, most of the patches will
probably need some sort of adjustment, in order to maintain a consistent authorial voice in the documen-
tation. In many cases, patches will overlap with or affect other patches, and need to be adjusted with re-
spect to each other before being committed.

Given the exigencies of handling documentation patches, and the fact that the code base needs to be con-
stantly monitored so the documentation can be kept up-to-date, it makes sense to have one person, or a
small team, dedicated to the task. They can keep a record of exactly where and how the documentation
lags behind the software, and they can have practiced procedures for handling large quantities of patches
in an integrated way.

Of course, this does not preclude other people in the project from applying documentation patches on
the fly, especially small ones, as time permits. And the same patch manager (see the section called
“Patch Manager” earlier in this chapter) can track both code and documentation patches, filing them
wherever the development and documentation teams want them, respectively. (If the total quantity of
patches ever exceeds one human's capacity to track, though, switching to separate patch managers for
code and documentation is probably a good first step.) The point of a documentation team is to have
people who think of themselves as responsible for keeping the documentation organized, up-to-date, and
consistent with itself. In practice, this means knowing the documentation intimately, watching the code
base, watching the changes others commit to the documentation, watching for incoming documentation
patches, and using all these information sources to do whatever is necessary to keep the documentation
healthy.

Issue Manager
The number of issues in a project's bug tracker grows in proportion to the number of people using the
software. Therefore, even as you fix bugs and ship an increasingly robust program, you should still ex-
pect the number of open issues to grow essentially without bound. The frequency of duplicate issues will
also increase, as will the frequency of incomplete or poorly described issues.

Issue managers help alleviate these problems by watching what goes into the database, and periodically
sweeping through it looking for specific problems. Their most common action is probably to fix up in-
coming issues, either because the reporter didn't set some of the form fields correctly, or because the is-
sue is a duplicate of one already in the database. Obviously, the more familiar an issue manager is with
the project's bug database, the more efficiently she will be able to detect duplicate issues—this is one of
the main advantages of having a few people specialize in the bug database, instead of everyone trying
to do it ad hoc. When the group tries to do it in a decentralized manner, no single individual acquires a
deep expertise in the content of the database.

Issue managers can also help map between issues and individual developers. When there are a lot of bug
reports coming in, not every developer may read the issue notification mailing list with equal attention.
However, if someone who knows the development team is keeping an eye on all incoming issues, then
she can discreetly direct certain developers' attention to specific bugs when appropriate. Of course, this
has to be done with a sensitivity to everything else going on in development, and to the recipient's de-
sires and temperament. Therefore, it is often best for issue managers to be developers themselves.

Depending on how your project uses the issue tracker, issue managers can also shape the database to re-
flect the project's priorities. For example, in Subversion we schedule issues into specific future releas-
es, so that when someone asks "When will bug X be fixed?" we can say "Two releases from now," even

Managing Volunteers

155

if we can't give an exact date. The releases are represented in the issue tracker as target milestones, a
field available in IssueZilla.4 As a rule, every Subversion release has one major new feature and a list of
specific bug fixes. We assign the appropriate target milestone to all the issues planned for that release
(including the new feature—it gets an issue too), so that people can view the bug database through the
lens of release scheduling. These targets rarely remain static, however. As new bugs come in, priorities
sometimes get shifted around, and issues must be moved from one milestone to another so that each re-
lease remains manageable. This, again, is best done by people who have an overall sense of what's in the
database, and how various issues relate to each other.

Another thing issue managers do is notice when issues become obsolete. Sometimes a bug is fixed acci-
dentally as part of an unrelated change to the software, or sometimes the project changes its mind about
whether a certain behavior is buggy. Finding obsoleted issues is not easy: the only way to do it systemat-
ically is by making a sweep over all the issues in the database. Full sweeps become less and less feasible
over time, however, as the number of issues grows. After a certain point, the only way to keep the data-
base sane is to use a divide-and-conquer approach: categorize issues immediately on arrival and direct
them to the appropriate developer's or team's attention. The recipient then takes charge of the issue for
the rest of its lifetime, shepherding it to resolution or oblivion as necessary. When the database is that
large, the issue manager becomes more of an overall coordinator, spending less time looking at each is-
sue herself and more time getting it into the right person's hands.

FAQ Manager
FAQ maintenance is a surprisingly difficult problem. Unlike most other documents in a project, whose
content is planned out in advance by the authors, a FAQ is a wholly reactive document (see Maintaining
a FAQ in Chapter 2, Getting Started). No matter how big it gets, you still never know what the next ad-
dition will be. And because it is always added to piecemeal, it is very easy for the document as a whole
to become incoherent and disorganized, and even to contain duplicate or semi-duplicate entries. Even
when it does not have any obvious problems like that, there are often unnoticed interdependencies be-
tween items—links that should be made but aren't—because the related items were added a year apart.

The role of a FAQ manager is twofold. First, she maintains the overall quality of the FAQ by staying fa-
miliar with at least the topics of all the questions in it, so that when people add new items that are dupli-
cates of, or related to, existing items, the appropriate adjustments can be made. Second, she watches the
project mailing lists and other forums for recurring problems or questions, and to write new FAQ entries
based on this input. This latter task can be quite complex: one must be able to follow a thread, recognize
the core questions raised in it, post a proposed FAQ entry, incorporate comments from others (since it's
impossible for the FAQ manager to be an expert in every topic covered by the FAQ), and sense when
the process is finished so the item can at last be added.

The FAQ manager usually also becomes the default expert in FAQ formatting. There are a lot of little
details involved in keeping a FAQ in shape (see the section called “Treat all resources like archives” in
Chapter 6, Communications); when random people edit the FAQ, they will sometimes forget some of
these details. That's okay, as long as the FAQ manager is there to clean up after them.

Various free software is available to help with the process of FAQ maintenance. It's fine to use it, as
long as it doesn't compromise the quality of the FAQ, but beware of over-automation. Some projects
try to fully automate the process of FAQ maintenance, allowing everyone to contribute and edit FAQ
items in a manner similar to a wiki (see the section called “Wikis” in Chapter 3, Technical Infras-
tructure). I've seen this happen particularly with Faq-O-Matic (faqomatic.sourceforge.net [http://
faqomatic.sourceforge.net/]), though it may be that the cases I saw were simply abuses that went beyond
what Faq-O-Matic was originally intended for. In any case, while complete decentralization of FAQ
maintenance does reduce the workload for the project, it also results in a poorer FAQ. There's no one
person with a broad view of the entire FAQ, no one to notice when certain items need updating or be-

4IssueZilla is the issue tracker we use; it is a descendant of BugZilla.

http://faqomatic.sourceforge.net/
http://faqomatic.sourceforge.net/
http://faqomatic.sourceforge.net/

Managing Volunteers

156

come obsolete entirely, and no one keeping watch for interdependencies between items. The result is a
FAQ that often fails to provide users what they were looking for, and in the worst cases misleads them.
Use whatever tools you need to maintain your project's FAQ, but never let the convenience of the tools
seduce you into compromising the quality of the FAQ.

See Sean Michael Kerner's article, The FAQs on FAQs, at osdir.com/Article1722.phtml [http://
osdir.com/Article1722.phtml], for descriptions and evaluations of open source FAQ maintenance tools.

Transitions
From time to time, a volunteer in a position of ongoing responsibility (e.g., patch manager, translation
manager, etc.) will become unable to perform the duties of the position. It may be because the job turned
out to be more work than he anticipated, or it may be due to completely external factors: marriage, a
new baby, a new employer, or whatever.

When a volunteer gets swamped like this, he usually doesn't notice it right away. It happens by slow de-
grees, and there's no point at which he consciously realizes that he can no longer fulfill the duties of the
role. Instead, the rest of the project just doesn't hear much from him for a while. Then there will sudden-
ly be a flurry of activity, as he feels guilty for neglecting the project for so long and sets aside a night to
catch up. Then you won't hear from him for a while longer, and then there might or might not be another
flurry. But there's rarely an unsolicited formal resignation. The volunteer was doing the job in his spare
time, so resigning would mean openly acknowledging to himself that his spare time is permanently re-
duced. People are often reluctant to do that.

Therefore, it's up to you and the others in the project to notice what's happening—or rather, not hap-
pening—and to ask the volunteer what's going on. The inquiry should be friendly and 100% guilt-free.
Your purpose is to find out a piece of information, not to make the person feel bad. Generally, the in-
quiry should be visible to the rest of the project, but if you know of some special reason why a private
inquiry would be better, that's fine too. The main reason to do it publicly is so that if the volunteer re-
sponds by saying that he won't be able to do the job anymore, there's a context established for your next
public post: a request for a new volunteer to fill that role.

Sometimes, a volunteer is unable to do the job he's taken on, but is either unaware or unwilling to admit
that fact. Of course, anyone may have trouble at first, especially if the responsibility is complex. Howev-
er, if someone just isn't working out in the task he's taken on, even after everyone else has given all the
help and suggestions they can, then the only solution is for him to step aside and let someone new have
a try. And if the person doesn't see this himself, he'll need to be told. There's basically only one way to
handle this, I think, but it's a multistep process and each step is important.

First, make sure you're not crazy. Privately talk to others in the project to see if they agree that the prob-
lem is as serious as you think it is. Even if you're already positive, this serves the purpose of letting oth-
ers know that you're considering asking the person to step aside. Usually no one will object to that—
they'll just be happy you're taking on the awkward task, so they don't have to!

Next, privately contact the volunteer in question and tell him, kindly but directly, about the problems
you see. Be specific, giving as many examples as possible. Make sure to point out how people had tried
to help, but that the problems persisted without improving. You should expect this email to take a long
time to write, but with this sort of message, if you don't back up what you're saying, you shouldn't say
it at all. Say that you would like to find a new volunteer to fill the role, but also point out that there are
many other ways to contribute to the project. At this stage, don't say that you've talked to others about it;
nobody likes to be told that people were conspiring behind his back.

There are a few different ways things can go after that. The most likely reaction is that he'll agree with
you, or at any rate not want to argue, and be willing to step down. In that case, suggest that he make the
announcement himself, and then you can follow up with a post seeking a replacement.

http://osdir.com/Article1722.phtml
http://osdir.com/Article1722.phtml
http://osdir.com/Article1722.phtml

Managing Volunteers

157

Or, he may agree that there have been problems, but ask for a little more time (or for one more chance,
in the case of discrete-task roles like release manager). How you react to that is a judgement call, but
whatever you do, don't agree to it just because you feel like you can't refuse such a reasonable request.
That would prolong the agony, not lessen it. There is often a very good reason to refuse the request,
namely, that there have already been plenty of chances, and that's how things got to where they are now.
Here's how I put it in a mail to someone who was filling the release manager role but was not really suit-
ed for it:

> If you wish to replace me with some one else, I will gracefully
> pass on the role to who comes next. I have one request, which
> I hope is not unreasonable. I would like to attempt one more
> release in an effort to prove myself.

I totally understand the desire (been there myself!), but in
this case, we shouldn't do the "one more try" thing.

This isn't the first or second release, it's the sixth or
seventh... And for all of those, I know you've been dissatisfied
with the results too (because we've talked about it before). So
we've effectively already been down the one-more-try route.
Eventually, one of the tries has to be the last one... I think
[this past release] should be it.

In the worst case, the volunteer may disagree outright. Then you have to accept that things are going
to be awkward and plow ahead anyway. Now is the time to say that you talked to other people about it
(but still don't say who until you have their permission, since those conversations were confidential), and
that you don't think it's good for the project to continue as things are. Be insistent, but never threatening.
Keep in mind that with most roles, the transition really happens the moment someone new starts doing
the job, not the moment the old person stops doing it. For example, if the contention is over the role of,
say, issue manager, at any point you and other influential people in the project can solicit for a new issue
manager. It's not actually necessary that the person who was previously doing it stop doing it, as long as
he does not sabotage (deliberately or otherwise) the efforts of the new volunteer.

Which leads to a tempting thought: instead of asking the person to resign, why not just frame it as a mat-
ter of getting him some help? Why not just have two issue managers, or patch managers, or whatever the
role is?

Although that may sound nice in theory, it is generally not a good idea. What makes the manager roles
work—what makes them useful, in fact—is their centralization. Those things that can be done in a de-
centralized fashion are usually already being done that way. Having two people fill one managerial role
introduces communications overhead between those two people, as well as the potential for slippery dis-
placement of responsibility ("I thought you brought the first aid kit!" "Me? No, I thought you brought
the first aid kit!"). Of course, there are exceptions. Sometimes two people work extremely well togeth-
er, or the nature of the role is such that it can easily be spread across multiple people. But these are not
likely to be of much use when you see someone flailing in a role he is not suited for. If he'd appreciated
the problem in the first place, he would have sought such help before now. In any case, it would be dis-
respectful to let someone waste time continuing to do a job no one will pay attention to.

The most important factor in asking someone to step down is privacy: giving him the space to make a
decision without feeling like others are watching and waiting. I once made the mistake—an obvious
mistake, in retrospect—of mailing all three parties at once in order to ask Subversion's release manag-
er to step aside in favor of two other volunteers. I'd already talked to the two new people privately, and
knew that they were willing to take on the responsibility. So I thought, naïvely and somewhat insensi-
tively, that I'd save some time and hassle by sending one mail to all of them to initiate the transition. I

Managing Volunteers

158

assumed that the current release manager was already fully aware of the problems and would see the
reasonableness of my point immediately.

I was wrong. The current release manager was very offended, and rightly so. It's one thing to be asked to
hand off the job; it's another thing to be asked that in front of the people you'll hand it off to. Once I got
it through my head why he was offended, I apologized. He eventually did step aside gracefully, and con-
tinues to be involved with the project today. But his feelings were hurt, and needless to say, this was not
the most auspicious of beginnings for the new volunteers either.

Committers
poss todo: 2 February 2014: If you're reading this note, then you've encountered this section while it's
undergoing substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for
details. The particular change that needs to happen here is that this section needs to make a terminolo-
gy point: that "committer" in this context really means "maintainer". That is, the footnote below proba-
bly needs to be brought out into its own paragraph, and early on. This is because the term "commit" is
used slightly differently in decentralized version control systems than in centralized ones (and it certain-
ly won't work to call that class of people "pushers", ahem). Interestingly, the term "committer" is still
widely used even in decentralized systems to mean "someone who can put changes in the socially-ac-
cepted master repository".

As the only formally distinct class of people found in all open source projects, committers deserve spe-
cial attention here. Committers are an unavoidable concession to discrimination in a system which is
otherwise as non-discriminatory as possible. But "discrimination" is not meant as a pejorative here. The
function committers perform is utterly necessary, and I do not think a project could succeed without
it. Quality control requires, well, control. There are always many people who feel competent to make
changes to a program, and some smaller number who actually are. The project cannot rely on people's
own judgement; it must impose standards and grant commit access only to those who meet them5. On
the other hand, having people who can commit changes directly working side-by-side with people who
cannot sets up an obvious power dynamic. That dynamic must be managed so that it does not harm the
project.

In the section called “Who Votes?” in Chapter 4, Social and Political Infrastructure, we already dis-
cussed the mechanics of considering new committers. Here we will look at the standards by which po-
tential new committers should be judged, and how this process should be presented to the larger commu-
nity.

Choosing Committers
In the Subversion project, we choose committers primarily on the Hippocratic Principle: first, do no
harm. Our main criterion is not technical skill or even knowledge of the code, but merely that the com-
mitter show good judgement. Judgement can mean simply knowing what not to take on. A person might
post only small patches, fixing fairly simple problems in the code; but if the patches apply cleanly, do
not contain bugs, and are mostly in accord with the project's log message and coding conventions, and
there are enough patches to show a clear pattern, then an existing committer will usually propose that
person for commit access. If at least three people say yes, and no one objects, then the offer is made.
True, we might have no evidence that the person is able to solve complex problems in all areas of the
code base, but that does not matter: the person has made it clear that he is capable of at least judging

5Note that the commit access means something a bit different in decentralized version control systems, where anyone can set up a repository that
is linked into the project, and give themselves commit access to that repository. Nevertheless, the concept of commit access still applies: "com-
mit access" is shorthand for "the right to make changes to the code that will ship in the group's next release of the software." In centralized ver-
sion control systems, this means having direct commit access; in decentralized ones, it means having one's changes pulled into the main distribu-
tion by default. It is the same idea either way; the mechanics by which it is realized are not terribly important.

http://producingoss.com/v2.html
http://producingoss.com/v2.html

Managing Volunteers

159

his own abilities. Technical skills can be learned (and taught), but judgement, for the most part, cannot.
Therefore, it is the one thing you want to make sure a person has before you give him commit access.

When a new committer proposal does provoke a discussion, it is usually not about technical ability, but
rather about the person's behavior on the mailing lists or in IRC. Sometimes someone shows techni-
cal skill and an ability to work within the project's formal guidelines, yet is also consistently belliger-
ent or uncooperative in public forums. That's a serious concern; if the person doesn't seem to shape up
over time, even in response to hints, then we won't add him as a committer no matter how skilled he is.
In a volunteer group, social skills, or the ability to "play well in the sandbox", are as important as raw
technical ability. Because everything is under version control, the penalty for adding a committer you
shouldn't have is not so much the problems it could cause in the code (review would spot those quickly
anyway), but that it might eventually force the project to revoke the person's commit access—an action
that is never pleasant and can sometimes be confrontational.

Many projects insist that the potential committer demonstrate a certain level of technical expertise and
persistence, by submitting some number of nontrivial patches—that is, not only do these projects want
to know that the person will do no harm, they want to know that she is likely to do good across the code
base. This is fine, but be careful that it doesn't start to turn committership into a matter of membership in
an exclusive club. The question to keep in everyone's mind should be "What will bring the best results
for the code?" not "Will we devalue the social status associated with committership by admitting this
person?" The point of commit access is not to reinforce people's self-worth, it's to allow good changes to
enter the code with a minimum of fuss. If you have 100 committers, 10 of whom make large changes on
a regular basis, and the other 90 of whom just fix typos and small bugs a few times a year, that's still bet-
ter than having only the 10.

Revoking Commit Access
The first thing to be said about revoking commit access is: try not to be in that situation in the first place.
Depending on whose access is being revoked, and why, the discussions around such an action can be
very divisive. Even when not divisive, they will be a time-consuming distraction from productive work.

However, if you must do it, the discussion should be had privately among the same people who would
be in a position to vote for granting that person whatever flavor of commit access they currently have.
The person herself should not be included. This contradicts the usual injunction against secrecy, but in
this case it's necessary. First, no one would be able to speak freely otherwise. Second, if the motion fails,
you don't necessarily want the person to know it was ever considered, because that could open up ques-
tions ("Who was on my side? Who was against me?") that lead to the worst sort of factionalism. In cer-
tain rare circumstances, the group may want someone to know that revocation of commit access is or
was being considered, as a warning, but this openness should be a decision the group makes. No one
should ever, on her own initiative, reveal information from a discussion and ballot that others assumed
were secret.

Once someone's access is revoked, that fact is unavoidably public (see the section called “Avoid Mys-
tery” later in this chapter), so try to be as tactful as you can in how it is presented to the outside world.

Partial Commit Access
Some projects offer gradations of commit access. For example, there might be contributors whose com-
mit access gives them free rein in the documentation, but who do not commit to the code itself. Common
areas for partial commit access include documentation, translations, binding code to other programming
languages, specification files for packaging (e.g., RedHat RPM spec files, etc.), and other places where a
mistake will not result in a problem for the core project.

Since commit access is not only about committing, but about being part of an electorate (see the section
called “Who Votes?” in Chapter 4, Social and Political Infrastructure), the question naturally arises:

Managing Volunteers

160

what can the partial committers vote on? There is no one right answer; it depends on what sorts of par-
tial commit domains your project has. In Subversion we've kept things fairly simple: a partial commit-
ter can vote on matters confined exclusively to that committer's domain, and not on anything else. Im-
portantly, we do have a mechanism for casting advisory votes (essentially, the committer writes "+0" or
"+1 (non-binding)" instead of just "+1" on the ballot). There's no reason to silence people entirely just
because their vote isn't formally binding.

Full committers can vote on anything, just as they can commit anywhere, and only full committers vote
on adding new committers of any kind. In practice, though, the ability to add new partial committers is
usually delegated: any full committer can "sponsor" a new partial committer, and partial committers in a
domain can often essentially choose new committers for that same domain (this is especially helpful in
making translation work run smoothly).

Your project may need a slightly different arrangement, depending on the nature of the work, but the
same general principles apply to all projects. Each committer should be able to vote on matters that fall
within the scope of her commit access, and not on matters outside that, and votes on procedural ques-
tions should default to the full committers, unless there's some reason (as decided by the full commit-
ters) to widen the electorate.

Regarding enforcement of partial commit access: it's often best not to have the version control system
enforce partial commit domains, even if it can. See the section called “Authorization” in Chapter 3,
Technical Infrastructure for the reasons why.

Dormant Committers
Some projects automatically remove people's commit access if they go a certain amount of time (say, a
year) without committing anything. I think this is usually unhelpful and even counterproductive, for two
reasons.

First, it may tempt some people into committing acceptable but unnecessary changes, just to prevent
their commit access from expiring. Second, it doesn't really serve any purpose. If the main criterion for
granting commit access is good judgement, then why assume someone's judgement would deteriorate
just because he's away from the project for a while? Even if he completely vanishes for years, not look-
ing at the code or following development discussions, when he reappears he'll know how out of touch
he is, and act accordingly. You trusted his judgement before, so why not trust it always? If high school
diplomas do not expire, then commit access certainly shouldn't.

Sometimes a committer may ask to be removed, or to be explicitly marked as dormant in the list of
committers (see the section called “Avoid Mystery” below for more about that list). In these cases, the
project should accede to the person's wishes, of course.

Avoid Mystery
Although the discussions around adding any particular new committer must be confidential, the rules
and procedures themselves need not be secret. In fact, it's best to publish them, so people realize that the
committers are not some mysterious Star Chamber, closed off to mere mortals, but that anyone can join
simply by posting good patches and knowing how to handle herself in the community. In the Subversion
project, we put this information right in the developer guidelines document, since the people most likely
to be interested in how commit access is granted are those thinking of contributing code to the project.

In addition to publishing the procedures, publish the actual list of committers. The traditional place for
this is a file called MAINTAINERS or COMMITTERS in the top level of the project's source code tree. It
should list all the full committers first, followed by the various partial commit domains and the members
of each domain. Each person should be listed by name and email address, though the address can be en-

Managing Volunteers

161

coded to prevent spam (see the section called “Address hiding in archives” in Chapter 3, Technical In-
frastructure) if the person prefers that.

Since the distinction between full commit and partial commit access is obvious and well defined, it is
proper for the list to make that distinction too. Beyond that, the list should not try to indicate the infor-
mal distinctions that inevitably arise in a project, such as who is particularly influential and how. It is a
public record, not an acknowledgments file. List committers either in alphabetical order, or in the order
in which they arrived.

Credit
Credit is the primary currency of the free software world. Whatever people may say about their motiva-
tions for participating in a project, I don't know any developers who would be happy doing all their work
anonymously, or under someone else's name. There are tangible reasons for this: one's reputation in a
project roughly governs how much influence one has, and participation in an open source project can al-
so indirectly have monetary value, because some employers now look for it on resumés. There are also
intangible reasons, perhaps even more powerful: people simply want to be appreciated, and instinctive-
ly look for signs that their work was recognized by others. The promise of credit is therefore one of best
motivators the project has. When small contributions are acknowledged, people come back to do more.

One of the most important features of collaborative development software (see Chapter 3, Technical In-
frastructure) is that it keeps accurate records of who did what, when. Wherever possible, use these ex-
isting mechanisms to make sure that credit is distributed accurately, and be specific about the nature of
the contribution. Don't just write "Thanks to J. Random <jrandom@example.com>" if instead you can
write "Thanks to J. Random <jrandom@example.com> for the bug report and reproduction recipe" in a
log message.

In Subversion, we have an informal but consistent policy of crediting the reporter of a bug in either the
issue filed, if there is one, or the log message of the commit that fixes the bug, if not. A quick survey
of Subversion commit logs up to commit number 14525 shows that about 10% of commits give credit
to someone by name and email address, usually the person who reported or analyzed the bug fixed by
that commit. Note that this person is different from the developer who actually made the commit, whose
name is already recorded automatically by the version control system. Of the 80-odd full and partial
committers Subversion has today, 55 were credited in the commit logs (usually multiple times) before
they became committers themselves. This does not, of course, prove that being credited was a factor in
their continued involvement, but it at least sets up an atmosphere in which people know they can count
on their contributions being acknowledged.

It is important to distinguish between routine acknowledgment and special thanks. When discussing a
particular piece of code, or some other contribution someone made, it is fine to acknowledge their work.
For example, saying "Daniel's recent changes to the delta code mean we can now implement feature X"
simultaneously helps people identify which changes you're talking about and acknowledges Daniel's
work. On the other hand, posting solely to thank Daniel for the delta code changes serves no immedi-
ate practical purpose. It doesn't add any information, since the version control system and other mecha-
nisms have already recorded the fact that he made the changes. Thanking everyone for everything would
be distracting and ultimately information-free, since thanks are effective largely by how much they stand
out from the default, background level of favorable comment going on all the time. This does not mean,
of course, that you should never thank people. Just make sure to do it in ways that tend not to lead to
credit inflation. Following these guidelines will help:

• The more ephemeral the forum, the more free you should feel to express thanks there. For example,
thanking someone for their bugfix in passing during an IRC conversation is fine, as is an aside in an
email devoted mainly to other topics. But don't post an email solely to thank someone, unless it's for a
truly unusual feat. Likewise, don't clutter the project's web pages with expressions of gratitude. Once

Managing Volunteers

162

you start that, it'll never be clear when or where to stop. And never put thanks into comments in the
code; that would only be a distraction from the primary purpose of comments, which is to help the
reader understand the code.

• The less involved someone is in the project, the more appropriate it is to thank her for something she
did. This may sound counterintuitive, but it fits with the attitude that expressing thanks is something
you do when someone contributes even more than you thought she would. Thus, to constantly thank
regular contributors for doing what they normally do would be to express a lower expectation of them
than they have of themselves. If anything, you want to aim for the opposite effect!

There are occasional exceptions to this rule. It's acceptable to thank someone for fulfilling his expect-
ed role when that role involves temporary, intense efforts from time to time. The canonical example is
the release manager, who goes into high gear around the time of each release, but otherwise lies dor-
mant (dormant as a release manager, in any case—he may also be an active developer, but that's a dif-
ferent matter).

• As with criticism and crediting, gratitude should be specific. Don't thank people just for being great,
even if they are. Thank them for something they did that was out of the ordinary, and for bonus
points, say exactly why what they did was so great.

In general, there is always a tension between making sure that people's individual contributions are rec-
ognized, and making sure the project is a group effort rather than a collection of individual glories. Just
remain aware of this tension and try to err on the side of group, and things won't get out of hand.

Forks
In the section called “Forkability” in Chapter 4, Social and Political Infrastructure, we saw how the po-
tential to fork has important effects on how projects are governed. But what happens when a fork actu-
ally occurs? How should you handle it, and what effects can you expect it to have? Conversely, when
should you initiate a fork?

The answers depend on what kind of fork it is. Some forks are due to amicable but irreconcilable dis-
agreements about the direction of the project; perhaps more are due to both technical disagreements
and interpersonal conflicts. Of course, it's not always possible to tell the difference between the two, as
technical arguments may involve personal elements as well. What all forks have in common is that one
group of developers (or sometimes even just one developer) has decided that the costs of working with
some or all of the others now outweigh the benefits.

Once a project forks, there is no definitive answer to the question of which fork is the "true" or "origi-
nal" project. People will colloquially talk of fork F coming out of project P, as though P is continuing
unchanged down some natural path while F diverges into new territory, but this is, in effect, a decla-
ration of how that particular observer feels about it. It is fundamentally a matter of perception: when a
large enough percentage of observers agree, the assertion starts to become true. It is not the case that
there is an objective truth from the outset, one that we are only imperfectly able to perceive at first.
Rather, the perceptions are the objective truth, since ultimately a project—or a fork—is an entity that
exists only in people's minds anyway.

If those initiating the fork feel that they are sprouting a new branch off the main project, the perception
question is resolved immediately and easily. Everyone, both developers and users, will treat the fork as
a new project, with a new name (perhaps based on the old name, but easily distinguishable from it), a
separate web site, and a separate philosophy or goal. Things get messier, however, when both sides feel
they are the legitimate guardians of the original project and therefore have the right to continue using
the original name. If there is some organization with trademark rights to the name, or legal control over
the domain or web pages, that usually resolves the issue by fiat: that organization will decide who is

Managing Volunteers

163

the project and who is the fork, because it holds all the cards in a public relations war. Naturally, things
rarely get that far: since everyone already knows what the power dynamics are, they will avoid fighting
a battle whose outcome is known in advance, and just jump straight to the end.

Fortunately, in most cases there is little doubt as to which is the project and which is the fork, because
a fork is, in essence, a vote of confidence. If more than half of the developers are in favor of whatever
course the fork proposes to take, usually there is no need to fork—the project can simply go that way it-
self, unless it is run as a dictatorship with a particularly stubborn dictator. On the other hand, if fewer
than half of the developers are in favor, the fork is a clearly minority rebellion, and both courtesy and
common sense indicate that it should think of itself as the divergent branch rather than the main line.

Handling a Fork
If someone threatens a fork in your project, keep calm and remember your long-term goals. The mere
existence of a fork isn't what hurts a project; rather, it's the loss of developers and users. Your real aim,
therefore, is not to squelch the fork, but to minimize these harmful effects. You may be mad, you may
feel that the fork was unjust and uncalled for, but expressing that publicly can only alienate undecided
developers. Instead, don't force people to make exclusive choices, and be as cooperative as is practicable
with the fork. To start with, don't remove someone's commit access in your project just because he de-
cided to work on the fork. Work on the fork doesn't mean that person has suddenly lost his competence
to work on the original project; committers before should remain committers afterward. Beyond that,
you should express your desire to remain as compatible as possible with the fork, and say that you hope
developers will port changes between the two whenever appropriate. If you have administrative access
to the project's servers, publicly offer the forkers infrastructure help at startup time. For example, offer
them a complete, deep-history copy of the version control repository, if there's no other way for them to
get it, so that they don't have to start off without historical data (this may not be necessary depending on
the version control system). Ask them if there's anything else they need, and provide it if you can. Bend
over backward to show that you are not standing in the way, and that you want the fork to succeed or fail
on its own merits and nothing else.

The reason to do all this—and do it publicly—is not to actually help the fork, but to persuade developers
that your side is a safe bet, by appearing as non-vindictive as possible. In war it sometimes makes sense
(strategic sense, if not human sense) to force people to choose sides, but in free software it almost never
does. In fact, after a fork some developers often openly work on both projects, and do their best to keep
the two compatible. These developers help keep the lines of communication open after the fork. They al-
low your project to benefit from interesting new features in the fork (yes, the fork may have things you
want), and also increase the chances of a merger down the road.

Sometimes a fork becomes so successful that, even though it was regarded even by its own instigators
as a fork at the outset, it becomes the version everybody prefers, and eventually supplants the original
by popular demand. A famous instance of this was the GCC/EGCS fork. The GNU Compiler Collec-
tion (GCC, formerly the GNU C Compiler) is the most popular open source native-code compiler, and
also one of the most portable compilers in the world. Due to disagreements between the GCC's official
maintainers and Cygnus Software,6 one of GCC's most active developer groups, Cygnus created a fork
of GCC called EGCS. The fork was deliberately non-adversarial: the EGCS developers did not, at any
point, try to portray their version of GCC as a new official version. Instead, they concentrated on mak-
ing EGCS as good as possible, incorporating patches at a faster rate than the official GCC maintainers.
EGCS gained in popularity, and eventually some major operating system distributors decided to pack-
age EGCS as their default compiler instead of GCC. At this point, it became clear to the GCC maintain-
ers that holding on to the "GCC" name while everyone switched to the EGCS fork would burden every-
one with a needless name change, yet do nothing to prevent the switchover. So GCC adopted the EGCS
codebase, and there is once again a single GCC, but greatly improved because of the fork.

6Now part of RedHat (redhat.com [http://www.redhat.com/]).

http://www.redhat.com/
http://www.redhat.com/

Managing Volunteers

164

This example shows why you cannot always regard a fork as an unadulteratedly bad thing. A fork may
be painful and unwelcome at the time, but you cannot necessarily know whether it will succeed. There-
fore, you and the rest of the project should keep an eye on it, and be prepared not only to absorb fea-
tures and code where possible, but in the most extreme case to even join the fork if it gains the bulk of
the project's mindshare. Of course, you will often be able to predict a fork's likelihood of success by see-
ing who joins it. If the fork is started by the project's biggest complainer and joined by a handful of dis-
gruntled developers who weren't behaving constructively anyway, they've essentially solved a problem
for you by forking, and you probably don't need to worry about the fork taking momentum away from
the original project. But if you see influential and respected developers supporting the fork, you should
ask yourself why. Perhaps the project was being overly restrictive, and the best solution is to adopt into
the mainline project some or all of the actions contemplated by the fork—in essence, to avoid the fork
by becoming it.

Initiating a Fork
All the advice here assumes that you are forking as a last resort. Exhaust all other possibilities before
starting a fork. Forking almost always means losing developers, with only an uncertain promise of gain-
ing new ones later. It also means starting out with competition for users' attention: everyone who's about
to download the software has to ask themselves: "Hmm, do I want that one or the other one?" Whichev-
er one you are, the situation is messy, because a question has been introduced that wasn't there before.
Some people maintain that forks are healthy for the software ecosystem as a whole, by a standard natural
selection argument: the fittest will survive, which means that, in the end, everyone gets better software.
This may be true from the ecosystem's point of view, but it's not true from the point of view of any indi-
vidual project. Most forks do not succeed, and most projects are not happy to be forked.

A corollary is that you should not use the threat of a fork as an extremist debating technique—"Do
things my way or I'll fork the project!"—because everyone is aware that a fork that fails to attract devel-
opers away from the original project is unlikely to survive long. All observers—not just developers, but
users and operating system packagers too—will make their own judgement about which side to choose.
You should therefore appear extremely reluctant to fork, so that if you finally do it, you can credibly
claim it was the only route left.

Do not neglect to take all factors into account in evaluating the potential success of your fork. For ex-
ample, if many of the developers on a project have the same employer, then even if they are disgruntled
and privately in favor of a fork, they are unlikely to say so out loud if they know that their employer is
against it. Many free software programmers like to think that having a free license on the code means no
one company can dominate development. It is true that the license is, in an ultimate sense, a guarantor of
freedom—if others want badly enough to fork the project, and have the resources to do so, they can. But
in practice, some projects' development teams are mostly funded by one entity, and there is no point pre-
tending that the entity's support doesn't matter. If it is opposed to the fork, its developers are unlikely to
take part, even if they secretly want to.

If you still conclude that you must fork, line up support privately first, then announce the fork in a non-
hostile tone. Even if you are angry at, or disappointed with, the current maintainers, don't say that in the
message. Just dispassionately state what led you to the decision to fork, and that you mean no ill will
toward the project from which you're forking. Assuming that you do consider it a fork (as opposed to
an emergency preservation of the original project), emphasize that you're forking the code and not the
name, and choose a name that does not conflict with the project's name. You can use a name that con-
tains or refers to the original name, as long as it does not open the door to identity confusion. Of course
it's fine to explain prominently on the fork's home page that it descends from the original program, and
even that it hopes to supplant it. Just don't make users' lives harder by forcing them to untangle an iden-
tity dispute.

Finally, you can get things started on the right foot by automatically granting all committers of the orig-
inal project commit access to the fork, including even those who openly disagreed with the need for a

Managing Volunteers

165

fork. Even if they never use the access, your message is clear: there are disagreements here, but no ene-
mies, and you welcome code contributions from any competent source.

166

Chapter 9. Governments and Open
Source

24 March 2013: If you're reading this note, then you've encountered this chapter while it's undergoing
substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

NOTES: poss2: mil-oss, Gunnar's timeline, procurement & the question of where expertise should re-
side; how to write a contract; liability; ownership; where to host; use vs creation; be open source from
day one. Mention ORM, CfA, CivComs. What other orgs? Open source policies, open data policies.

This chapter is mainly about government agencies producing new open source software, and participat-
ing in existing open source projects; I'll also look at government usage of open source software, to the
extent that it overlaps with those main topics.

Since the first edition of this book in 2005, I've worked with various U.S. government agencies, at the
federal, state, and municipal levels, to help them release open source software. I've also been lucky
enough to observe, and in a few cases work with, some government agencies outside the U.S. These ex-
periences have convinced me of one thing: government is different. If you work at a government agency
and the material in this book so far has made you shake your head and think "Sure, but it'll never work
here", you don't have to convince me — I already know what you mean. Governments differ from indi-
viduals and from private-sector organizations in some fundamental ways:

• Governments often aren't trying to retain technical expertise in-house (that's what contractors are for).

• Governments have labyrinthine and in certain ways inflexible procurement and employment poli-
cies. These policies can make it difficult for a government agency to be nimbly responsive in an open
source development community.

• Government agencies tend to be unusually risk-averse. Somewhere at the top there's an elected offi-
cial who, reasonably, sees an open source project as just one more surface area for opponents to at-
tack. After all, when development happens in public, the inevitable false starts and wrong turns are al-
so public; if development were internal, no one else would know about it when those things happen.

• Government officials hunger for well-timed and well-controlled publicity events. This has certain
benefits, but it can sometimes come at the expense of overall project health. This need for publicity is
the complement of being risk-averse: elected officials and those who work for them understand that
most people aren't paying much attention most of the time — therefore, those who work in govern-
ment want to ensure that in the few moments when people are paying attention, they see something
good. This is understandable, but it can cause them to delay certain actions — or, in some cases, do
them too soon — based on external publicity implications rather than on what's best for the project
technically and socially.

There are good reasons for all of these things; they've been true for decades if not centuries, and they're
not going to change. So if you're a government agency and you want to start a successful open source
project, certain adjustments will be necessary to compensate for the structural idiosyncracies above. The
advice that follows is most applicable to the U.S. and countries with similar systems of government and
civil service.

http://producingoss.com/v2.html
http://producingoss.com/v2.html

Governments and Open Source

167

Being Open Source From Day One is Especial-
ly Important for Government Projects

In ??? in Chapter 2, Getting Started, I explained why it's best for an open source project to be run in the
open from the very beginning. That advice, particularly the section called “Waiting Just Creates an Ex-
posure Event”, is if anything even more true for government code.

Government projects have greater potential to be harmed by a needless exposure event than private-sec-
tor projects have. Elected officials and those who work for them are understandably sensitive to nega-
tive public comments. Thus even for the most conscientious team, a worrying cloud of uncertainty will
surround everything by the time you're ready to open up hitherto closed code. How can you ever know
you've got it all cleaned up? You do your best, but you can never be totally sure some hawk-eyed hacker
out there won't spot something embarrassing after the release. The team worries, and worry is an energy
drain: it causes them to spend time chasing down ghosts, and at the same time can cause them to uncon-
sciously avoid steps that might risk revealing real problems.

This concern doesn't only apply to government software, of course. But in the private sector, business-
es sometimes have competitive reasons to stay behind the curtain until their first release, even if they in-
tend for the project to be open source in the long run. Government projects should not have that motiva-
tion to start out closed, at least in theory, and they have even more to lose.

Review Your RFI, RFP and Contract Language
(poss2: make sure you own copyrights (ref ch10). There are some good examples out there of RFI/RFP
language; what about contracts? Also, look at how RFP-EZ project is doing.)

Get the Lawyers Involved Very Early or Very
Late

tbd

Dispel Myths Within Your Organization
(poss2: note that government agencies are targets of heavy sales attention from vendors of proprietary
services. Myths you'll need to dispel: insecure; no support; OSS is cheaper; if it's open that means any-
one can change our code; if it's open that means we'll have to spend a lot of resources interacting with
outside developers; if it's open then we'll have to release all our other stuff as open source too; develop-
ers will devote attention to this just because we released it; other cities will pick this up and use it right
away. Note that many of these could/should be referenced from other places, like chapter 5.)

Foster Pools of Expertise in Multiple Places
(poss2: foster concentrations of expertise in the software outside the contractor who is writing it. This is
not because you don't want to use them for future maintenance; it's so that you'll have a better bargaining
position and not be locked in. Ref hackathons section, licensing section.

Governments and Open Source

168

Decouple Publicity Events from Project
Progress

poss2: tbd

Establish Contact Early with Relevant External
Communities

poss2: pre-announce; ask for help not admiration; use contracts (e.g., security audits) to establish bona
fides, etc

Have a Plan to Handle Negative Reactions
poss2: anticipate reactions re licensing, code, APIs, documentation, choice of hosting platform, etc.
Don't let them catch you by surprise.

The Open Government / Open Data Community
poss2: there's a community of people now who talk to each other, read and write for overlapping publi-
cations, go to conferences, etc. You don't need to do anything special to find them, but be aware that re-
actions can balloon in there and then take you by surprise.

169

Chapter 10. Licenses, Copyrights, and
Patents

The license you select probably won't have a major impact on the adoption of your project, as long as
the license is open source. Users generally choose software based on quality and features, not on the de-
tails of the license. Nevertheless, you still need a basic understanding of free software licensing issues,
both to ensure that the project's license is compatible with its goals, and to be able to discuss licensing
decisions with other people. Please note, however, that I am not a lawyer, and that nothing in this chap-
ter should be construed as formal legal advice. For that, you'll need to hire a lawyer or be one.

Terminology
In any discussion of open source licensing, the first thing that becomes apparent is that there seem to be
many different words for the same thing: free software, open source, FOSS, F/OSS, and FLOSS. Let's
start by sorting those out, along with a few other terms.

free software
Software that can be freely shared and modified, including in source code form. The term was first
coined by Richard Stallman, who codified it in the GNU General Public License (GPL), and who
founded the Free Software Foundation (fsf.org [http://www.fsf.org/]) to promote the concept.

Although "free software" covers almost exactly the same range of software as "open source", the
FSF, among others, prefers the former term because it emphasizes the idea of freedom, and the con-
cept of freely redistributable software as primarily a social movement rather than a technical one.
The FSF acknowledges that the term is ambiguous—it could mean "free" as in "zero-cost", instead
of "free" as in "freedom"—but feels that it's still the best term, all things considered, and that the
other possibilities in English have their own ambiguities. (Throughout this book, "free" is used in
the "freedom" sense, not the "zero-cost" sense.)

open source software
Free software under another name. But the different name reflects an important philosophical
difference: "open source" was coined by the Open Source Initiative (opensource.org [http://
www.opensource.org/]) as a deliberate alternative to "free software," in order to make such software
a more palatable choice for corporations, by presenting it as a development methodology rather than
a political movement. They may also have wanted to overcome another stigma: that anything "free"
must be low quality.

While any license that is free is also open source, and vice versa (with a few minor exceptions),
people tend to pick one term and stick with it. In general, those who prefer "free software" are more
likely to have a philosophical or moral stance on the issue, while those who prefer "open source"
either don't view it as a matter of freedom, or are not interested in advertising the fact that they do.
See the section called “"Free" Versus "Open Source"” in Chapter 1, Introduction for a more detailed
history of this schism.

The Free Software Foundation has an excellent—utterly unobjective, but nuanced and quite fair
—exegesis of the two terms, at www.fsf.org/licensing/essays/free-software-for-freedom.html
[http://www.fsf.org/licensing/essays/free-software-for-freedom.html]. The Open Source Initiative's
take on it is (or was, in 2002) spread across two pages: web.archive.org/web/20021204155022/
http://www.opensource.org/advocacy/case_for_hackers.php#marketing [http://web.archive.org/
web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing]

http://www.fsf.org/
http://www.fsf.org/
http://www.opensource.org/
http://www.opensource.org/
http://www.opensource.org/
http://www.fsf.org/licensing/essays/free-software-for-freedom.html
http://www.fsf.org/licensing/essays/free-software-for-freedom.html
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing

Licenses, Copyrights, and Patents

170

and web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/free-notfree.php
[http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/free-
notfree.php] [sic].

FOSS, F/OSS, FLOSS
Where there are two of anything, there will soon be three, and that is exactly what is happening with
terms for free software. The academic world, perhaps wanting precision and inclusiveness over ele-
gance, seems to have settled on FOSS, or sometimes F/OSS, standing for "Free / Open Source Soft-
ware". Another variant gaining momentum is FLOSS, which stands for "Free / Libre Open Source
Software" (libre is familiar in many languages and does not suffer from the ambiguities of "free";
see en.wikipedia.org/wiki/FLOSS [http://en.wikipedia.org/wiki/FLOSS] for more).

All these terms mean essentially the same thing: software that can be modified and redistributed by
everyone, sometimes—but not always—with the requirement that derivative works be freely redis-
tributable under the same terms.

DFSG-compliant
Compliant with the Debian Free Software Guidelines (debian.org/social_contract#guidelines [http://
www.debian.org/social_contract#guidelines]). This is a widely-used test for whether a given license
is truly open source (free, libre, etc.). The Debian Project's mission is to maintain an entirely free
operating system, such that someone installing it need never doubt that she has the right to modify
and redistribute any or all of the system. The Debian Free Software Guidelines are the requirements
that a software package's license must meet in order to be included in Debian. Because the Debian
Project spent a good deal of time thinking about how to construct such a test, the guidelines they
came up with have proven very robust (see en.wikipedia.org/wiki/DFSG [http://en.wikipedia.org/
wiki/DFSG]), and as far as I'm aware, no serious objection to them has been raised either by the
Free Software Foundation or the Open Source Initiative. If you know that a given license is DFSG-
compliant, you know that it guarantees all the important freedoms (such as forkability even against
the original author's wishes) required to sustain the dynamics of an open source project. All of the
licenses discussed in this chapter are DFSG-compliant.

OSI-approved
Approved by the Open Source Initiative. This is another widely-used test of whether a license per-
mits all the necessary freedoms. The OSI's definition of open source software is based on the De-
bian Free Software Guidelines, and any license that meets one definition almost always meets the
other. There have been a few exceptions over the years, but only involving niche licenses and none
of any relevance here. Unlike the Debian Project, the OSI maintains a list of all licenses it has ever
approved, at opensource.org/licenses/ [http://www.opensource.org/licenses/], so that being "OSI-ap-
proved" is an unambiguous state: a license either is or isn't on the list.

The Free Software Foundation also maintains a list of licenses at fsf.org/licensing/licenses/li-
cense-list.html [http://www.fsf.org/licensing/licenses/license-list.html]. The FSF categorizes licens-
es not only by whether they are free, but whether they are compatible with the GNU General Public
License. GPL compatibility is an important topic, covered in the section called “The GPL and Li-
cense Compatibility” later in this chapter.

proprietary, closed-source
The opposite of "free" or "open source." It means software distributed under traditional, royal-
ty-based licensing terms, where users pay per copy, or under any other terms sufficiently restrictive
to prevent open source dynamics from operating. Even software distributed at no charge can still be
proprietary, if its license does not permit free redistribution and modification.

Generally "proprietary" and "closed-source" are synonyms. However, "closed-source" addition-
ally implies that the source code cannot even be seen. Since the source code cannot be seen with
most proprietary software, this is normally a distinction without a difference. However, occasional-

http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/free-notfree.php
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/free-notfree.php
http://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/free-notfree.php
http://en.wikipedia.org/wiki/FLOSS
http://en.wikipedia.org/wiki/FLOSS
http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://en.wikipedia.org/wiki/DFSG
http://en.wikipedia.org/wiki/DFSG
http://en.wikipedia.org/wiki/DFSG
http://www.opensource.org/licenses/
http://www.opensource.org/licenses/
http://www.fsf.org/licensing/licenses/license-list.html
http://www.fsf.org/licensing/licenses/license-list.html
http://www.fsf.org/licensing/licenses/license-list.html

Licenses, Copyrights, and Patents

171

ly someone releases proprietary software under a license that allows others to view the source code.
Confusingly, they sometimes call this "open source" or "nearly open source," etc., but that's mis-
leading. The visibility of the source code is not the issue; the important question is what you're al-
lowed to do with it. Thus, the difference between proprietary and closed-source is mostly irrelevant,
and the two can be treated as synonyms.

Sometimes commercial is used as a synonym for "proprietary," but properly speaking, the two are
not the same thing. Free software can be commercial software. After all, free software can be sold,
as long as the buyers are not restricted from giving away copies themselves. It can be commercial-
ized in other ways as well, for example by selling support, services, and certification. There are
multimillion dollar companies built on free software today, so it is clearly neither inherently an-
ti-commercial nor anti-corporate. On the other hand, it is anti-proprietary by its nature, and this is
the key way in which it differs from traditional per-copy license models.

public domain
Having no copyright holder, meaning that there is no one who has the right to restrict copying of
the work. Being in the public domain is not the same as having no author. Everything has an author,
and even if a work's author or authors choose to put it in the public domain, that doesn't change the
fact that they wrote it.

When a work is in the public domain, material from it can be incorporated into a copyrighted work,
and thereafter that copy of the material is covered under the same copyright as the whole work. But
this does not affect the availability of the original work, which remains in the public domain. Thus,
releasing something into the public domain is technically one way to make it "free," according to
the guidelines of most free software certifying organizations. However, there are usually good rea-
sons to use a license instead of just releasing into the public domain: even with free software, cer-
tain restrictions can be useful, not only to the copyright holder but even to recipients as well, as the
next section makes clear.

copyleft
A license that uses copyright law to achieve a result opposite to traditional copyright, by granting
the freedoms under discussion here and furthermore requiring that those freedoms apply to deriv-
ative works. While some people still use this term for any license that simply permits those free-
doms, whether or not it also requires them for derivative works, these days the term is mostly used
in the stricter sense: licenses that not only permit those freedoms but enforce them by stipulating
that the freedoms must travel with the work. The Free Software Foundation has been instrumen-
tal in this linguistic shift, using the second definition exclusively. However, as you get further from
software and technology circles, usage becomes looser—there are still journalists who use the first
definition. (Often when people use the term in that sense, they're also not aware that there is a dis-
tinction to be made.

The canonical example of the narrower, stricter definition is the GNU General Public License,
which stipulates that any derivative works must also be licensed under the GPL; see the section
called “The GPL and License Compatibility” later in this chapter for more.

non-copyleft or permissive
A license that grants the freedoms under discussion here but does not have a clause requiring that
they apply to derivative works as well.

Two early and popular examples of permissive licenses are the BSD and MIT licenses (see the
section called “The MIT / X Window System License” and the section called “What About The
BSD License?” elsewhere in this chapter), but the more recent Apache Software License version
2 (apache.org/licenses/LICENSE-2.0 [http://www.apache.org/licenses/LICENSE-2.0]) is also very
popular—increasingly so—and somewhat better adapted to the legal landscape of modern open
source software development.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Licenses, Copyrights, and Patents

172

Aspects of Licenses
Although there are many different free software licenses available, in the important respects they all say
the same things: that anyone can modify the code, that anyone can redistribute it both in original and
modified form, and that the copyright holders and authors provide no warranties whatsoever (avoiding
liability is especially important given that people might run modified versions without even knowing it).
The differences between licences boil down to a few oft-recurring issues:

compatibility with proprietary licenses
Some free licenses allow the covered code to be used in proprietary programs. This does not af-
fect the licensing terms of the proprietary program: it is still as proprietary as ever, it just happens
to contain some code from a non-proprietary source. The Apache License, X Consortium License,
BSD-style license, and the MIT-style license are all examples of proprietary-compatible licenses.

compatibility with other free licenses
Most free licenses are compatible with each other, meaning that code under one license can be com-
bined with code under another, and the result distributed under either license without violating the
terms of the other. The major exception to this is the GNU General Public License, which requires
that any work using GPLed code be itself distributed under the GPL, and without adding any further
restrictions beyond what the GPL requires. The GPL is compatible with some free licenses, but not
with others. This is discussed in more detail in the section called “The GPL and License Compati-
bility” later in this chapter.

enforcement of crediting
Some free licenses stipulate that any use of the covered code be accompanied by a notice, whose
placement and display is usually specified, giving credit to the authors or copyright holders of the
code. These licenses are often still proprietary-compatible: they do not necessarily demand that the
derivative work be free, merely that credit be given to the free code.

protection of trademark
A variant of credit enforcement. Trademark-protecting licenses specify that the name of the origi-
nal software (or its copyright holders, or their institution, etc.) may not be used by derivative works
without prior written permission. Although credit enforcement insists that a certain name be used,
and trademark protection insists that it not be used, they are both expressions of the same desire:
that the original code's reputation be preserved and transmitted, but not tarnished by association.

patent snapback
Both the GNU General Public License version 3 and the Apache License version 2 contain language
designed to prevent people from using patent law to take away the rights granted (under copyright
law) by the licenses. They require contributors to grant patent licenses along with their contribution,
covering any patents licenseable by the contributor that would be infringed by their contribution (or
by the incorporation of their contribution into the work as a whole). Then they go further: if some-
one using software under the license initiates patent litigation against another party, claiming that
the covered work infringes, the initiator automatically loses all the patent grants otherwise provided
for that work by the license, and in the case of the GPLv3 loses their right to distribute under the li-
cense altogether.

protection of "artistic integrity"
Some licenses (the Artistic License, used for the most popular implementation of the Perl program-
ming language, and Donald Knuth's TeX license, for example) require that modification and redis-
tribution be done in a manner that distinguishes clearly between the pristine original version of the
code and any modifications. They permit essentially the same freedoms as other free license, but
impose certain requirements that make the integrity of the original code easy to verify. These licens-
es have not caught on much beyond the specific programs they were made for, and will not be dis-
cussed in this chapter; they are mentioned here only for the sake of completeness.

Licenses, Copyrights, and Patents

173

Most of these stipulations are not mutually exclusive, and some licenses include several. The common
thread among them is that they place demands on the recipient in exchange for the recipient's right to
use and/or redistribute the code. For example, some projects want their name and reputation to be trans-
mitted along with the code, and this is worth imposing the extra burden of a credit or trademark clause;
depending on its onerousness, that burden may result in some users choosing a package with a less de-
manding license.

The GPL and License Compatibility
By far the sharpest dividing line in licensing is that between proprietary-incompatible and propri-
etary-compatible licenses, that is, between the GNU General Public License and everything else. Be-
cause the primary goal of the GPL's authors is the promotion of free software, they deliberately craft-
ed the license to make it impossible to mix GPLed code into proprietary programs. Specifically, among
the GPL's requirements (see fsf.org/licensing/licenses/gpl.html [http://www.fsf.org/licensing/licens-
es/gpl.html] for its full text) are these two:

1. Any derivative work—that is, any work containing a nontrivial amount of GPLed code—must itself
be distributed under the GPL.

2. No additional restrictions may be placed on the redistribution of either the original work or a deriva-
tive work. (The exact language is: "You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License.")

With these conditions, the GPL succeeds in making freedom contagious. Once a program is copyrighted
under the GPL, its terms of redistribution are viral—they are passed on to anything else the code gets in-
corporated into, making it effectively impossible to use GPLed code in closed-source programs. Howev-
er, these same clauses also make the GPL incompatible with certain other free licenses. The usual way
this happens is that the other license imposes a requirement—for example, a credit clause requiring the
original authors to be mentioned in some way—that is incompatible with the GPL's "You may not im-
pose any further restrictions..." language. From the point of view of the Free Software Foundation, these
second-order consequences are desirable, or at least not regrettable. The GPL not only keeps your soft-
ware free, but effectively makes your software an agent in pushing other software to enforce freedom as
well.

The question of whether or not this is a good way to promote free software is one of the most persistent
holy wars on the Internet (see the section called “Avoid Holy Wars” in Chapter 6, Communications),
and we won't investigate it here. What's important for our purposes is that GPL compatibility is an im-
portant issue when choosing a license. The GPL is by far the most popular open source license; at one
point Freecode had it at 68%, with the next highest license at 6% 1. If you want your code to be able to
be mixed freely with GPLed code—and there's a lot of GPLed code out there—then you should pick a
GPL-compatible license. Most of the GPL-compatible open source licenses are also proprietary-compat-
ible: that is, code under such a license can be used in a GPLed program, and it can be used in a propri-
etary program. Of course, the results of these mixings would not be compatible with each other, since
one would be under the GPL and the other would be under a closed-source license. But that concern ap-
plies only to the derivative works, not to the code you distribute in the first place.

Fortunately, the Free Software Foundation maintains a list showing which licenses are compatible
with the GPL and which are not, at gnu.org/licenses/license-list.html [http://www.gnu.org/licenses/li-
cense-list.html]. All of the licenses discussed in this chapter are present on that list, on one side or the
other.

1License statistics used to be available from Freecode.com, back when it was called Freshmeat.net, but in 2008 they switched to a freeform
method of tagging projects that made it harder to generate reliable license statistics. See help.freecode.com/discussions/questions/187-where-did-
the-license-statistics-page-go [http://help.freecode.com/discussions/questions/187-where-did-the-license-statistics-page-go] for a discussion of
possible restoration of those stats.

http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://help.freecode.com/discussions/questions/187-where-did-the-license-statistics-page-go
http://help.freecode.com/discussions/questions/187-where-did-the-license-statistics-page-go
http://help.freecode.com/discussions/questions/187-where-did-the-license-statistics-page-go

Licenses, Copyrights, and Patents

174

Choosing a License
When choosing a license to apply to your project, if at all possible use an existing license instead of
making up a new one. There are two reasons why existing licenses are better:

• Familiarity. If you use one of the three or four most popular licenses, people won't feel they have to
read the legalese in order to use your code, because they'll have already done so for that license a long
time ago.

• Quality. Unless you have a team of lawyers at your disposal, you are unlikely to come up with a legal-
ly solid license. The licenses mentioned here are the products of much thought and experience; unless
your project has truly unusual needs, it is unlikely you would do better.

To apply one of these licenses to your project, see the section called “How to Apply a License to Your
Software” in Chapter 2, Getting Started.

The MIT / X Window System License
If your goal is that your code be accessible by the greatest possible number of developers and derivative
works, and you do not mind the code being used in proprietary programs, choose the MIT / X Window
System license (so named because it is the license under which the Massachusetts Institute of Technol-
ogy released the original X Window System code). This license's basic message is "You are free to use
this code however you want." It is compatible with the GNU GPL, and it is short, simple, and easy to
understand:

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

(Taken from opensource.org/licenses/mit-license.php [http://www.opensource.org/licenses/mit-
license.php].)

The GNU General Public License
29 August 2013: If you're reading this note, then you've encountered this subsection while it's undergo-
ing revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details. TODO: men-

http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://producingoss.com/v2.html
http://producingoss.com/v2.html

Licenses, Copyrights, and Patents

175

tion the "or (at your option) any later version" clause early in this section, both so that the AGPL dis-
cussion later makes more sense, and so that people who jumped here here from license-quickstart-gpl in
chapter 2 see that advice early on.

If you prefer that your project's code not be used in proprietary programs, or if you at least don't care
whether or not it can be used in proprietary programs, choose the GNU General Public License (fsf.org/
licensing/licenses/gpl.html [http://www.fsf.org/licensing/licenses/gpl.html]). The GPL is probably the
most widely-used free software license in the world today; this instant recognizability is itself one of the
GPL's major advantages.

When writing a code library that is meant mainly to be used as part of other programs, consider care-
fully whether the restrictions imposed by the GPL are in line with your project's goals. In some cases—
for example, when you're trying to unseat a competing, proprietary library that does the same thing—
it may make more strategic sense to license your code in such a way that it can be mixed into propri-
etary programs, even though you would otherwise not wish this. The Free Software Foundation even
fashioned an alternative to the GPL for such circumstances: the GNU Library GPL, later renamed to the
GNU Lesser GPL (most people just use the acronym LGPL, in any case). The LGPL has looser restric-
tions than the GPL, and can be mixed more easily with non-free code. However, it's also a bit complex
and takes some time to understand, so if you're not going to use the GPL, I recommend just using the
MIT/X-style license.

The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code

In 2007, the Free Software Foundation released a variant of the GPL called the GNU Affero GPL
(fsf.org/licensing/licenses/agpl.html [http://www.fsf.org/licensing/licenses/agpl.html])2. Its pur-
pose is to enforce GPL-like sharing provisions on the growing number of companies that offered
hosted services—software that runs on their servers, that users interact with only over the net-
work, and that therefore is never directly distributed to users as executable or source code. Many
such services had been using GPL'd software, often with modifications, yet didn't have to share
their changes with the world because they weren't distributing any code.

The GNU AGPLv3's solution to this was to take the regular GPL and add a "Remote Network In-
teraction" clause, stating "...if you modify the Program, your modified version must prominently
offer all users interacting with it remotely through a computer network ... an opportunity to re-
ceive the Corresponding Source of your version ... at no charge, through some standard or cus-
tomary means of facilitating copying of software." This expanded the GPL's enforcement powers
into the new world of application service providers. The Free Software Foundation recommends
that the GNU AGPLv3 be used for any software that will commonly be run over a network.

Note that the AGPLv3 is not directly compatible with GPLv2 (though it is compatible with
GPLv3, of course). However, most software licensed under the GPLv2 includes the "or any lat-
er version" clause anyway, so you can just shift it to GPLv3 if and when you need to mix it with
AGPLv3 code. However, if you need to mix with programs licensed strictly under the GPLv2
(that is, without the "or any later version" clause), then the AGPLv3 won't work.

Although the history of the AGPLv3 is a bit complicated, the license itself is simple: it's just the
GPLv3 with one extra clause about network interaction. The Wikipedia article on the AGPLv3
is excellent: en.wikipedia.org/wiki/Affero_General_Public_License [http://en.wikipedia.org/wi-
ki/Affero_General_Public_License]

2 The history of the license and its name is a bit complicated. The first version of the license was originally released by Affero, Inc, who based it
on the GNU GPL version 2. This was commonly referred to as the AGPL. Later, the Free Software Foundation decided to adopt the idea, but by
then they had released version 3 of their GNU GPL, so they based their new Affero-ized license on that and called it the "GNU AGPL". The old
Affero license is more or less deprecated now. If you want Affero-like provisions, you should use the GNU version. To avoid ambiguity, call it
the "AGPLv3", the "GNU AGPL", or for maximum precision, "GNU AGPLv3".

http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/agpl.html
http://www.fsf.org/licensing/licenses/agpl.html
http://en.wikipedia.org/wiki/Affero_General_Public_License
http://en.wikipedia.org/wiki/Affero_General_Public_License
http://en.wikipedia.org/wiki/Affero_General_Public_License

Licenses, Copyrights, and Patents

176

Is the GPL free or not free?

One consequence of choosing the GPL is the possibility—small, but not infinitely small—of finding
yourself or your project embroiled in a dispute about whether or not the GPL is truly "free", given that
it places some restrictions on what you can do with the code—namely, the restriction that the code can-
not be distributed under any other license. For some people, the existence of this restriction means the
GPL is "less free" than more permissive licenses such as the MIT/X license. Where this argument usual-
ly goes, of course, is that since "more free" must be better than "less free" (after all, who's not in favor of
freedom?), it follows that those licenses are better than the GPL.

This debate is another popular holy war (see the section called “Avoid Holy Wars” in Chapter 6, Com-
munications). Avoid participating in it, at least in project forums. Don't attempt to prove that the GPL is
less free, as free, or more free than other licenses. Instead, emphasize the specific reasons your project
chose the GPL. If the recognizability of license was a reason, say that. If the enforcement of a free li-
cense on derivative works was also a reason, say that too, but refuse to be drawn into discussion about
whether this makes the code more or less "free". Freedom is a complex topic, and there is little point
talking about it if terminology is going to be used as a stalking horse for substance.

Since this is a book and not a mailing list thread, however, I will admit that I've never understood the
"GPL is not free" argument. The only restriction the GPL imposes is that it prevents people from impos-
ing further restrictions. To say that this results in less freedom has always seemed to me like saying that
outlawing slavery reduces freedom, because it prevents some people from owning slaves.

(Oh, and if you do get drawn into a debate about it, don't raise the stakes by making inflammatory analo-
gies.)

What About The BSD License?
A fair amount of open source software is distributed under a BSD license (or sometimes a BSD-style li-
cense). The original BSD license was used for the Berkeley Software Distribution, in which the Uni-
versity of California released important portions of a Unix implementation. This license (the exact text
may be seen in section 2.2.2 of xfree86.org/3.3.6/COPYRIGHT2.html#6 [http://www.xfree86.org/3.3.6/
COPYRIGHT2.html#6]) was similar in spirit to the MIT/X license, except for one clause:

All advertising materials mentioning features or use of this software must display the
following acknowledgement: This product includes software developed by the Univer-
sity of California, Lawrence Berkeley Laboratory.

The presence of that clause not only made the original BSD license GPL-incompatible, it also set a dan-
gerous precedent: as other organizations put similar advertising clauses into their free software—substi-
tuting their own organization's name in place of "the University of California, Lawrence Berkeley Lab-
oratory"—software redistributors faced an ever-increasing burden in what they were required to dis-
play. Fortunately, many of the projects that used this license became aware of the problem, and simply
dropped the advertising clause. In 1999, even the University of California did so.

The result is the revised BSD license, which is simply the original BSD license with the advertising
clause removed. However, this history makes the phrase "BSD license" a bit ambiguous: does it refer to
the original, or the revised version? This is why I prefer the MIT/X license, which is essentially equiva-
lent, and which does not suffer from any ambiguity. However, there is perhaps one reason to prefer the
revised BSD license to the MIT/X license, which is that the BSD includes this clause:

Neither the name of the <ORGANIZATION> nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6
http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6
http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6

Licenses, Copyrights, and Patents

177

It's not clear that without such a clause, a recipient of the software would have had the right to use the
licensor's name anyway, but the clause removes any possible doubt. For organizations worried about
trademark control, therefore, the revised BSD license may be slightly preferable to MIT/X. In general,
however, a liberal copyright license does not imply that recipients have any right to use or dilute your
trademarks — copyright law and trademark law are two different beasts.

If you wish to use the most recent revised BSD license, a template is available at opensource.org/licens-
es/BSD-2-Clause [http://www.opensource.org/licenses/BSD-2-Clause].

Contributor Agreements
possv2 22 July 2013: If you're reading this note, then you've encountered this section while it's undergo-
ing substantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

There are three ways to handle copyright ownership for free code and documentation that were con-
tributed to by many people. The first is to ignore the issue of copyright entirely (I don't recommend
this). The second is to collect a contributor license agreement (CLA) from each person who works on
the project, explicitly granting the project the right to use that person's contributions. This is usually
enough for most projects, and the nice thing is that in some jurisdictions, CLAs can be sent in by email.
The third way is to get actual copyright assignments from contributors, so that the project (i.e., some le-
gal entity, usually a nonprofit) is the copyright owner for everything. This is the most legally airtight
way, but it's also the most burdensome for contributors; only a few projects insist on it.3

Note that even under centralized copyright ownership, the code4 remains free, because open source li-
censes do not give the copyright holder the right to retroactively proprietize all copies of the code. So
even if the project, as a legal entity, were to suddenly turn around and started distributing all the code
under a restrictive license, that wouldn't cause a problem for the public community. The other develop-
ers would simply start a fork based on the latest free copy of the code, and continue as if nothing had
happened. Because they know they can do this, most contributors cooperate when asked to sign a CLA
or an assignment of copyright.

Doing Nothing
Most projects never collect CLAs or copyright assignments from their contributors. Instead, they ac-
cept code whenever it seems reasonably clear that the contributor intended it to be incorporated into the
project.

Under normal circumstances, this is okay. But every now and then, someone may decide to sue for
copyright infringement, alleging that they are the true owner of the code in question and that they never
agreed to its being distributed by the project under an open source license. For example, the SCO Group
did something like this to the Linux project, see en.wikipedia.org/wiki/SCO-Linux_controversies [http://
en.wikipedia.org/wiki/SCO-Linux_controversies] for details. When this happens, the project will have
no documentation showing that the contributor formally granted the right to use the code, which could
make some legal defenses more difficult.

Contributor License Agreements
CLAs probably offer the best tradeoff between safety and convenience. A CLA is typically an electron-
ic form that a developer fills out and sends in to the project. In many jurisdictions, email submission is

3Also, actual copyright transferral is subject to national law, and licenses designed for the United States may encounter problems elsewhere (e.g.,
in Germany, where it's apparently not possible to transfer copyright).
4I'll use "code" to refer to both code and documentation, from now on.

http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-2-Clause
http://producingoss.com/v2.html
http://producingoss.com/v2.html
http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://en.wikipedia.org/wiki/SCO-Linux_controversies

Licenses, Copyrights, and Patents

178

enough. A secure digital signature may or may not be required; consult a lawyer to find out what method
would be best for your project.

Most projects use two slightly different CLAs, one for individuals, and one for corporate contributors.
But in both types, the core language is the same: the contributor grants the project "...perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare de-
rivative works of, publicly display, publicly perform, sublicense, and distribute [the] Contributions and
such derivative works." Again, you should have a lawyer approve any CLA, but if you get all those ad-
jectives into it, you're probably fine.

When you request CLAs from contributors, make sure to emphasize that you are not asking for actual
copyright assignment. In fact, many CLAs start out by reminding the reader of this:

This is a license agreement only; it does not transfer copyright ownership and does
not change your rights to use your own Contributions for any other purpose.

Here are some examples:

• Individual contributor CLAs:

• apache.org/licenses/icla.txt [http://apache.org/licenses/icla.txt]

• code.google.com/legal/individual-cla-v1.0.html [http://code.google.com/legal/individual-cla-
v1.0.html]

• Corporate contributor CLAs:

• apache.org/licenses/cla-corporate.txt [http://apache.org/licenses/cla-corporate.txt]

• code.google.com/legal/corporate-cla-v1.0.html [http://code.google.com/legal/corporate-cla-
v1.0.html]

Transfer of Copyright
Copyright transfer means that the contributor assigns to the project copyright ownership on her contribu-
tions. Ideally, this is done on paper and either faxed or snail-mailed to the project.

Some projects insist on full assignment because having a single legal entity own the copyright on the en-
tire code base can make enforcement of the license terms somewhat more convenient, if they ever need
to be enforced in court. Different organizations apply different amounts of rigor to the task of collect-
ing assignments. Some simply get an informal statement from a contributor on a public list mailing list
—something to the effect of "I hereby assign copyright in this code to the project, to be licensed under
the same terms as the rest of the code." At least one lawyer I've talked to says that's really enough, pre-
sumably because it happens in a context where copyright assignment is normal and expected anyway,
and because it represents a bona fide effort on the project's part to ascertain the developer's true inten-
tions. On the other hand, the Free Software Foundation goes to the opposite extreme: they require con-
tributors to physically sign and mail in (or fax) a piece of paper containing a formal statement of copy-
right assignment, sometimes for just one contribution, sometimes for current and future contributions. If
the developer is employed, the FSF asks that the employer sign it too.

The FSF's paranoia is understandable. If someone violates the terms of the GPL by incorporating some
of their software into a proprietary program, the FSF will need to fight that in court, and they want their
copyrights to be as airtight as possible when that happens. Since the FSF is copyright holder for a lot
of popular software, they view this as a real possibility. Whether your organization needs to be similar-
ly scrupulous is something only you can decide, in consultation with lawyers. In general, unless there's

http://apache.org/licenses/icla.txt
http://apache.org/licenses/icla.txt
http://code.google.com/legal/individual-cla-v1.0.html
http://code.google.com/legal/individual-cla-v1.0.html
http://code.google.com/legal/individual-cla-v1.0.html
http://apache.org/licenses/cla-corporate.txt
http://apache.org/licenses/cla-corporate.txt
http://code.google.com/legal/corporate-cla-v1.0.html
http://code.google.com/legal/corporate-cla-v1.0.html
http://code.google.com/legal/corporate-cla-v1.0.html

Licenses, Copyrights, and Patents

179

some specific reason why your project needs full copyright assignment, just go with CLAs; they're easi-
er for everyone.

Dual Licensing Schemes
Some projects try to fund themselves by using a dual licensing scheme, in which proprietary derivative
works may pay the copyright holder for the right to use the code, but the code still remains free for use
by open source projects. This tends to work better with code libraries than with standalone applications,
naturally. The exact terms differ from case to case. Usually the license for the free side is the GNU GPL,
since it already bars others from incorporating the covered code into their proprietary product without
permission from the copyright holder. An example is the MySQL license, described at mysql.com/com-
pany/legal/licensing [http://www.mysql.com/company/legal/licensing/].

15 June 2013: If you're reading this note, then you've encountered this section while it's undergoing sub-
stantial revision; see producingoss.com/v2.html [http://producingoss.com/v2.html] for details.

poss2 todo: Note how that page, and so many other dual-licensing pages, refer to the proprietary license
as "commercial". Need a subsection here about why it's important not to call it that.

You might be wondering: how can the copyright holder offer proprietary licensing for a mandatory fee if
the terms of the GNU GPL stipulate that the code must be available under less restrictive terms? The an-
swer is that the GPL's terms are something the copyright holder imposes on everyone else; the owner is
therefore free to decide not to apply those terms to itself. A good way to think of it is to imagine that the
copyright owner has an infinite number of copies of the software stored in a bucket. Each time it takes
one out of the bucket to send into the world, it can decide what license to put on it: GPL, proprietary, or
something else. Its right to do this is not tied to the GPL or any other open source license; it is simply a
power granted by copyright law.

The attractiveness of dual licensing is that, at its best, it provides a way for a free software project to get
a reliable income stream. Unfortunately, it can also interfere with the normal dynamics of open source
projects. The problem is that any volunteer who makes a code contribution is now contributing to two
distinct entities: the free version of the code and the proprietary version. While the contributor will be
comfortable contributing to the free version, since that's the norm in open source projects, she may feel
funny about contributing to someone else's semi-proprietary revenue stream. The awkwardness is ex-
acerbated by the fact that in dual licensing, the copyright owner really needs to gather formal, signed
copyright assignments from all contributors, in order to protect itself from a disgruntled contributor lat-
er claiming a percentage of royalties from the proprietary stream. The process of collecting these assign-
ment papers means that contributors are starkly confronted with the fact that they are doing work that
makes money for someone else.

Not all volunteers will be bothered by this; after all, their contributions go into the open source edition
as well, and that may be where their main interest lies. Nevertheless, dual licensing is an instance of the
copyright holder assigning itself a special right that others in the project do not have, and is thus bound
to raise tensions at some point, at least with some volunteers.

What seems to happen in practice is that companies based on dual licensed software do not have tru-
ly egalitarian development communities. They get small-scale bug fixes and cleanup patches from ex-
ternal sources, but end up doing most of the hard work with internal resources. For example, Zack Ur-
locker, then vice president of marketing at MySQL, told me that the company generally ends up hiring
the most active volunteers anyway. Thus, although the product itself is open source, licensed under the
GPL, its development is more or less controlled by the company, albeit with the (extremely unlikely)
possibility that someone truly dissatisfied with the company's handling of the software could fork the
project. To what degree this threat preëmptively shapes the company's policies I don't know, but at any
rate, MySQL does not seem to be having acceptance problems either in the open source world or be-
yond.

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://producingoss.com/v2.html
http://producingoss.com/v2.html

Licenses, Copyrights, and Patents

180

Patents
Software patents are the lightning rod issue of the moment in free software, because they pose the on-
ly real threat against which the free software community cannot defend itself. Copyright and trademark
problems can always be gotten around. If part of your code looks like it may infringe on someone else's
copyright, you can just rewrite that part. If it turns out someone has a trademark on your project's name,
at the very worst you can just rename the project. Although changing names would be a temporary in-
convenience, it wouldn't matter in the long run, since the code itself would still do what it always did.

But a patent is a blanket injunction against implementing a certain idea. It doesn't matter who writes the
code, nor even what programming language is used. Once someone has accused a free software project
of infringing a patent, the project must either stop implementing that particular feature, or face an ex-
pensive and time-consuming lawsuit. Since the instigators of such lawsuits are usually corporations with
deep pockets—that's who has the resources and inclination to acquire patents in the first place—most
free software projects cannot afford the latter possibility, and must capitulate immediately even if they
think it highly likely that the patent would be unenforceable in court. To avoid getting into such a situ-
ation in the first place, free software projects are starting to code defensively, avoiding patented algo-
rithms in advance even when they are the best or only available solution to a programming problem.5

Surveys and anecdotal evidence show that not only the vast majority of open source programmers, but
a majority of all programmers, think that software patents should be abolished entirely.6 Open source
programmers tend to feel particularly strongly about it, and may refuse to work on projects that are too
closely associated with the collection or enforcement of software patents. If your organization collects
software patents, then make it clear, in a public and irrevocable way, that the patents would never be en-
forced on open source projects, and that they are only to be used as a defense in case some other par-
ty initiates an infringement suit against your organization. This is not only the right thing to do, it's also
good open source public relations.7

Unfortunately, collecting patents for defensive purposes is a rational action. The current patent sys-
tem, at least in the United States, is by its nature an arms race: if your competitors have acquired a lot
of patents, then your best defense is to acquire a lot of patents yourself, so that if you're ever hit with a
patent infringement suit you can respond with a similar threat—then the two parties usually sit down and
work out a cross-licensing deal so that neither of them has to pay anything, except to their intellectual
property lawyers of course.

The harm done to free software by software patents is more insidious than just direct threats to code de-
velopment, however. Software patents encourage an atmosphere of secrecy among firmware designers,
who justifiably worry that by publishing details of their interfaces they will be giving technical help to
competitors seeking to slap them with patent infringement suits. This is not just a theoretical danger; it
has apparently been happening for a long time in the video card industry, for example. Many video card
manufacturers are reluctant to release the detailed programming specifications needed to produce high-
performance open source drivers for their cards, thus making it impossible for free operating systems to
support those cards to their full potential. Why would the manufacturers do this? It doesn't make sense
for them to work against software support; after all, compatibility with more operating systems can on-
ly mean more card sales. But it turns out that, behind the design room door, these shops are all violat-
ing one another's patents, sometimes knowingly and sometimes accidentally. The patents are so unpre-

5Sun Microsystems and IBM have also made at least a gesture at the problem from the other direction, by freeing large numbers of software
patents—1600 and 500 respectively—for use by the open source community. I am not a lawyer and thus can't evaluate the real utility of these
grants, but even if they are all important patents, and the terms of the grants make them truly free for use by any open source project, it would still
be only a drop in the bucket.
6See groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html [http://groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html] for one
such survey.
7For example, RedHat has pledged that open source projects are safe from its patents, see redhat.com/legal/patent_policy.html [http://
www.redhat.com/legal/patent_policy.html].

http://groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html
http://groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html
http://www.redhat.com/legal/patent_policy.html
http://www.redhat.com/legal/patent_policy.html
http://www.redhat.com/legal/patent_policy.html

Licenses, Copyrights, and Patents

181

dictable and so potentially broad that no card manufacturer can ever be certain it's safe, even after doing
a patent search. Thus, manufacturers dare not publish their full interface specifications, since that would
make it much easier for competitors to figure out whether any patents are being infringed. (Of course,
the nature of this situation is such that you will not find a written admission from a primary source that it
is going on; I learned it through a personal communication.)

Some free software licenses have special clauses to combat, or at least discourage, software patents. The
GNU GPL, for example, contains this language:

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

[...]

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

The Apache License, Version 2.0 (apache.org/licenses/LICENSE-2.0 [http://www.apache.org/licens-
es/LICENSE-2.0]) also contains anti-patent requirements. First, it stipulates that anyone distributing
code under the license must implicitly include a royalty-free patent license for any patents they might
hold that could apply to the code. Second, and most ingeniously, it punishes anyone who initiates a
patent infringement claim on the covered work, by automatically terminating their implicit patent license
the moment such a claim is made:

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except
as stated in this section) patent license to make, have made, use,
offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s)
alone or by combination of their Contribution(s) with the Work to
which such Contribution(s) was submitted. If You institute patent
litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Licenses, Copyrights, and Patents

182

within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this
License for that Work shall terminate as of the date such litigation
is filed.

Although it is useful, both legally and politically, to build patent defenses into free software licenses
this way, in the end these steps will not be enough to dispel the chilling effect that the threat of patent
lawsuits has on free software. Only changes in the substance or interpretation of international patent
law will do that. To learn more about the problem, and how it's being fought, go to endsoftpatents.org/
[http://endsoftpatents.org/]. The Wikipedia article en.wikipedia.org/wiki/Software_patent [http://
en.wikipedia.org/wiki/Software_patent] also has a lot of useful information on software patents. I've also
written a blog post summarizing the arguments against software patents, at www.rants.org/2007/05/01/
how-to-tell-that-software-patents-are-a-bad-idea/ [http://www.rants.org/2007/05/01/how-to-tell-that-
software-patents-are-a-bad-idea/].

Further Resources
This chapter has only been an introduction to free software licensing issues. Although I hope it contains
enough information to get you started on your own open source project, any serious investigation of li-
censing issues will quickly exhaust what this book can provide. Here is a list of further resources on
open source licensing:

• Understanding Open Source and Free Software Licensing by Andrew M. St. Laurent. Published by
O'Reilly Media, first edition August 2004, ISBN: 0-596-00581-4.

This is a full-length book on open source licensing in all its complexity, including many topics omit-
ted from this chapter. See oreilly.com/catalog/osfreesoft/ [http://www.oreilly.com/catalog/osfreesoft/]
for details.

• Make Your Open Source Software GPL-Compatible. Or Else. by David A. Wheeler, at dwheeler.com/
essays/gpl-compatible.html [http://www.dwheeler.com/essays/gpl-compatible.html].

This is a detailed and well-written article on why it is important to use a GPL-compatible license even
if you don't use the GPL itself. The article also touches on many other licensing questions, and has a
high density of excellent links.

• creativecommons.org [http://creativecommons.org/]

Creative Commons is an organization that promotes a range of more flexible and liberal copyrights
than traditional copyright practice encourages. They offer licenses not just for software, but for text,
art, and music as well, all accessible via a user-friendly license selector; some of the licenses are
copylefts, some are non-copyleft but still free, others are simply traditional copyrights but with some
restrictions relaxed. The Creative Commons web site gives extremely clear explanations of what it's
about. If I had to pick one site to demonstrate the broader philosophical implications of the free soft-
ware movement, this would be it.

http://endsoftpatents.org/
http://endsoftpatents.org/
http://en.wikipedia.org/wiki/Software_patent
http://en.wikipedia.org/wiki/Software_patent
http://en.wikipedia.org/wiki/Software_patent
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/
http://www.oreilly.com/catalog/osfreesoft/
http://www.oreilly.com/catalog/osfreesoft/
http://www.dwheeler.com/essays/gpl-compatible.html
http://www.dwheeler.com/essays/gpl-compatible.html
http://www.dwheeler.com/essays/gpl-compatible.html
http://creativecommons.org/
http://creativecommons.org/

183

Appendix A. Canned Hosting Sites
These are all the credible, well-established canned hosting sites that I know about as of early 2013.
As noted in the section called “Canned Hosting”, each site imposes its own particular restrictions
in exchange for the convenience of hosting your open source project's collaboration infrastructure:
each one supports only particular version control systems, bug trackers, etc. Again, en.wikipedia.org/
wiki/Comparison_of_open_source_software_hosting_facilities [http://en.wikipedia.org/wi-
ki/Comparison_of_open_source_software_hosting_facilities] has a good comparison of canned hosting
sites.

This is not a complete list (the Wikipedia page above comes closer). Instead, this appendix describes the
canned hosting sites that I see being used most often by open source projects. I include both proprietary
sites, i.e., sites for which the source code behind the service is proprietary, and open source ones, i.e.,
those for which full source code is available under a free license. In both cases the services themselves
are zero-cost to open source projects; however, the open source sites enable others to replicate the ser-
vice on their own servers (though in practice it would take some effort to do so).

In general, new open source projects should choose one of the sites below, unless they have some spe-
cial reason to use a different site (e.g., Debian GNU/Linux projects might prefer alioth.debian.org
[http://alioth.debian.org/], and Free Software Foundation projects might choose savannah.gnu.org
[http://savannah.gnu.org/]).

GitHub — http://github.com/
TBD (mention the interesting visibility-not-oss-per-se requirement of github)

Google Code Hosting — http://code.google.com/hosting/
TBD

SourceForge — http://sourceforge.net/
TBD

Launchpad.net — https://launchpad.net/
TBD

Gitorious — http://gitorious.org/
TBD

fooo — http://fooo.com/
TBD

fooo — http://fooo.com/
TBD

http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://alioth.debian.org/
http://alioth.debian.org/
http://savannah.gnu.org/
http://savannah.gnu.org/
http://github.com/
http://code.google.com/hosting/
http://sourceforge.net/
https://launchpad.net/
http://gitorious.org/
http://fooo.com/
http://fooo.com/

Canned Hosting Sites

184

TBD — http://example.com/
TBD

http://example.com/

185

Appendix B. Free Version Control
Systems

These are all the open source version control systems I was aware of as of mid-2007, plus a few that I
added in late 2011. The ones I use on a regular basis are Subversion and Git, and I have used Bazaar and
CVS extensively as well. The others I have little or no experience with, and the information here is taken
from their web sites. See also http://en.wikipedia.org/wiki/List_of_revision_control_software.

Subversion — http://subversion.tigris.org/
Subversion was written first and foremost to be a replacement for CVS—that is, to approach version
control in roughly the same way CVS does, but without the problems and feature omissions that most
frequently annoy users of CVS. One of Subversion's goals is for people already accustomed to CVS
to find the transition to Subversion relatively smooth. There is not space here to go into detail about
Subversion's features; see its web site for more information. [Disclaimer: I am involved in Subversion
development, and it is the only one of these systems that I use on a regular basis.]

GIT — http://git.or.cz/
GIT is a project started by Linus Torvalds to manage the Linux kernel source tree. At first GIT was
rather narrowly focused on the needs of kernel development, but it has expanded beyond that and is now
used by projects other than the Linux kernel. Its home page says it is "...designed to handle very large
projects with speed and efficiency; it is used mainly for various open source projects, most notably the
Linux kernel. Git falls in the category of distributed source code management tools, similar to e.g. GNU
Arch or Monotone (or BitKeeper in the proprietary world). Every Git working directory is a full-fledged
repository with full revision tracking capabilities, not dependent on network access or a central server."

Mercurial — http://www.selenic.com/mercurial/
Mercurial is a distributed version control system that offers, among other things, "complete cross-in-
dexing of files and changesets; bandwidth and CPU efficient HTTP and SSH sync protocols; arbitrary
merging between developer branches; integrated stand-alone web interface; [portability to] UNIX, Ma-
cOS X, and Windows" and more (the preceding feature list was paraphrased from the Mercurial web
site).

Bazaar — http://bazaar-vcs.org/
Bazaar (or bzr) is a distributed version control system that concentrates on ease-of-use and having a
flexible data model. It is an official GNU project, and is the native version control system for the free
software project-hosting site Launchpad.net. Bazaar does fully distributed version control: all work takes
place in branches, and every developer typically has a full copy of the branch history. Branches can be
merged into one another in a decentralized manner, but Bazaar can also be configured to work in a cen-
tralized way. Bazaar started out as a fork of GNU Arch, but was rewritten from scratch and now has no
direct relation to GNU Arch.

SVK — http://svk.elixus.org/
Although it is built on top of Subversion, SVK probably resembles some of the decentralized systems
below more than it does Subversion. SVK supports distributed development, local commits, sophisticat-

http://en.wikipedia.org/wiki/List_of_revision_control_software
http://subversion.tigris.org/
http://git.or.cz/
http://www.selenic.com/mercurial/
http://bazaar-vcs.org/
http://svk.elixus.org/

Free Version Control Systems

186

ed change merging, and the ability to mirror trees from non-SVK version control systems. See its web
site for details.

Veracity — http://veracity-scm.com/
Veracity is a distributed version control system; as with Git, Mercurial, Bazaar, et al, every developer
works with a full local repository, and changes are pushed and pulled between repositories as needed.
Command-wise, it is fairly similar to those systems, However, in addition to versioning files, Veracity
includes a distributed bug tracking database and wiki, versioned along with the rest of the project files.
In other words, Veracity tries to take every artifact you need to actually do development — not just the
source code tree, but the bug reports too — and make them available locally via the version control sys-
tem. It's an ambitious vision, and while I haven't had a chance to use it, I'd certainly be interested in re-
ports from anyone who has. It's written mainly by SourceGear, Inc, a company with a long history in
version control and software configuration management.

See also Fossil for a similar system.

Fossil — http://www.fossil-scm.org/
Fossil is similar to Veracity in that it is a distributed version control system that versions more than just
the code files: it versions the bug tracking database, and a distributed wiki, and a distributed blog. Oth-
er features include a default "autosync" mode, to do automated merging of non-conflicting changes (i.e.,
Fossil can operate in a centralized fashion or a decentralized fashion, which is in theory true of other dis-
tributed systems as well, but it appears that Fossil makes more of an effort to actually support the cen-
tralized workflow). It also ships with a web interface so people can browse the code repository.

Fossil is mainly written by Dr. Richard Hipp, perhaps better known as the author of the SQLite database
engine. Like Veracity, I have not used Fossil; if you do, let me know how it goes.

CVS — http://www.nongnu.org/cvs/
CVS has been around for a long time, and many developers are already familiar with it. In its day it was
revolutionary: it was the first open source version control system with wide-area network access for
developers (as far as I know), and the first to offer anonymous read-only checkouts, which gave new
developers an easy way to get involved in projects. CVS versions files only, not directories; it offers
branching, tagging, and good client-side performance, but doesn't handle large files or binary files very
well. It also does not support atomic commits.[Disclaimer: I was active in CVS development for about
five years, before helping to start the Subversion project to replace it.]

Darcs — http://darcs.net
"David's Advanced Revision Control System is yet another replacement for CVS. It is written in
Haskell, and has been used on Linux, MacOS X, FreeBSD, OpenBSD and Microsoft Windows. Darcs
includes a cgi script, which can be used to view the contents of your repository."

Arch — http://www.gnu.org/software/gnu-arch/
GNU Arch supports both distributed and centralized development. Developers commit their changes
to an "archive", which may be local, and the changes can be pushed and pulled to other archives as the
managers of those archives see fit. As such a methodology implies, Arch has more sophisticated merge
support than CVS. Arch also allows one to easily make branches of archives to which one does not have
commit access. This is only a brief summary; see the Arch web pages for details.

http://veracity-scm.com/
http://www.fossil-scm.org/
http://www.nongnu.org/cvs/
http://darcs.net
http://www.gnu.org/software/gnu-arch/

Free Version Control Systems

187

monotone — http://www.venge.net/monotone/
"monotone is a free distributed version control system. it provides a simple, single-file transactional ver-
sion store, with fully disconnected operation and an efficient peer-to-peer synchronization protocol. it
understands history-sensitive merging, lightweight branches, integrated code review and 3rd party test-
ing. it uses cryptographic version naming and client-side RSA certificates. it has good internationaliza-
tion support, has no external dependencies, runs on linux, solaris, OSX, and windows, and is licensed
under the GNU GPL."

Codeville — http://codeville.org/
"Why yet another version control system? All other version control systems require that you keep care-
ful track of the relationships between branches so as not have to repeatedly merge the same conflicts.
Codeville is much more anarchic. It allows you to update from or commit to any repository at any time
with no unnecessary re-merges."

"Codeville works by creating an identifier for each change which is done, and remembering the list of
all changes which have been applied to each file and the last change which modified each line in each
file. When there's a conflict, it checks to see if one of the two sides has already been applied to the other
one, and if so makes the other side win automatically. When there's an actual not automatically merge-
able version conflict, Codeville behaves in almost exactly the same way as CVS."

Vesta — http://www.vestasys.org/
"Vesta is a portable SCM [Software Configuration Management] system targeted at supporting develop-
ment of software systems of almost any size, from fairly small (under 10,000 source lines) to very large
(10,000,000 source lines)."

"Vesta is a mature system. It is the result of over 10 years of research and development at the Com-
paq/Digital Systems Research Center, and it was in production use by Compaq's Alpha microprocessor
group for over two and a half years. The Alpha group had over 150 active developers at two sites thou-
sands of miles apart, on the east and west coasts of the United States. The group used Vesta to manage
builds with as much as 130 MB of source data, each producing 1.5 GB of derived data. The builds done
at the eastern site in an average day produced about 10-15 GB of derived data, all managed by Vesta.
Although Vesta was designed with software development in mind, the Alpha group demonstrated the
system's flexibility by using it for hardware development, checking their hardware description language
files into Vesta's source code control facility and building simulators and other derived objects with
Vesta's builder. The members of the former Alpha group, now a part of Intel, are continuing to use Vesta
today in a new microprocessor project."

Aegis — http://aegis.sourceforge.net/
"Aegis is a transaction-based software configuration management system. It provides a framework with-
in which a team of developers may work on many changes to a program independently, and Aegis coor-
dinates integrating these changes back into the master source of the program, with as little disruption as
possible."

CVSNT — http://cvsnt.org/
"CVSNT is an advanced multiplatform version control system. Compatible with the industry standard
CVS protocol it now supports many more features. ... CVSNT is Open Source, Free software licensed
under the GNU General Public License." Its feature list includes authentication via all standard CVS
protocols, plus Windows specific SSPI and Active Directory; secure transport support, via sserver or

http://www.venge.net/monotone/
http://codeville.org/
http://www.vestasys.org/
http://aegis.sourceforge.net/
http://cvsnt.org/

Free Version Control Systems

188

encrypted SSPI; cross platform (runs in Windows or Unix environments); NT version is fully integrat-
ed with Win32 system; MergePoint processing means no more tagging to merge; under active develop-
ment.

META-CVS — http://common-lisp.net/project/meta-cvs/
"Meta-CVS is a version control system built around CVS. Although it retains most of the features of
CVS, including all of the networking support, it is more capable than CVS, and easier to use." The fea-
tures listed on META-CVS's web site include: directory structure versioning, improved file type han-
dling, simpler and more user-friendly branching and merging, support for symbolic links, property lists
attached to versioned data, improved third-party data importing, and easy upgrading from stock CVS.

OpenCM — http://www.opencm.org/
"OpenCM is designed as a secure, high-integrity replacement for CVS. A list of the key features can be
found on the features page. While not as 'feature rich' as CVS, it supports some useful things that CVS
lacks. Briefly, OpenCM provides first-class support for renames and configuration, cryptographic au-
thentication and access control, and first-class branches."

PRCS — http://prcs.sourceforge.net/
"PRCS, the Project Revision Control System, is the front end to a set of tools that (like CVS) provide
a way to deal with sets of files and directories as an entity, preserving coherent versions of the entire
set. ... Its purpose is similar to that of SCCS, RCS, and CVS, but (according to its authors, at least), it is
much simpler than any of those systems."

ArX — http://www.nongnu.org/arx/
ArX is a distributed version control system offering branching and merging features, cryptographic data
integrity verification, and the ability to publish archives easily on any HTTP server.

SourceJammer — http://www.sourcejammer.org/
"SourceJammer is a source control and versioning system written in Java. It consists of a server-side
component that maintains the files and version history, and handles check-in, check-out, etc. and other
commands; and a client-side component that makes requests of the server and manages the files on the
client-side file system."

FastCST — http://www.zedshaw.com/projects/fastc-
st/index.html

"A 'modern' system that uses changesets over file revisions and distributed operation rather than central-
ized control. As long as you have an e-mail account you can use FastCST. For larger distribution you
only need an FTP server and/or an HTTP server or use the built in 'serve' command to serve your stuff
up directly. All changesets are universally unique and have tons of meta-data so you can reject anything
you don't [want] before you try it. Merging is done by comparing a merged changeset against the current
directory contents, rather than trying to merge it with another changeset."

Superversion — http://www.superversion.org/
"Superversion is a multi-user distributed version control system based on change sets. It aims to be an
industrial-strength, open source alternative to commercial solutions that is equally easy to use (or even

http://common-lisp.net/project/meta-cvs/
http://www.opencm.org/
http://prcs.sourceforge.net/
http://www.nongnu.org/arx/
http://www.sourcejammer.org/
http://www.zedshaw.com/projects/fastcst/index.html
http://www.zedshaw.com/projects/fastcst/index.html
http://www.superversion.org/

Free Version Control Systems

189

easier) and similarly powerful. In fact, intuitive and efficient usability has been one of the top priorities
in Superversion's development from the very beginning."

190

Appendix C. Free Bug Trackers
No matter what bug tracker a project uses, some developers always like to complain about it. This seems
to be more true of bug trackers than of any other standard development tool. I think it's because bug
trackers are so visual and so interactive that it's easy to imagine the improvements one would make (if
one only had the time), and to describe those improvements out loud. Take the inevitable complaints
with a grain of salt—many of the trackers below are pretty good.

Throughout these listings, the word "issue" is used to refer to the items the trackers track. But remem-
ber that each system may have its own terminology, in which the corresponding term might be "artifact",
"bug", "ticket", or something else.

Note: This survey was first done in 2005, and some new open source bug trackers have been written
since then. As of late 2011, I've made a few updates to the material below, but I haven't done a broad
update of the entire survey. You might also want to look at the Wikipedia Comparison of Issue Track-
ing Systems [http://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems], the DMOZ Bug
Tracker survey [http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/
Free/], the article (and attached comments) Ask Slashdot: How do you track bugs for personal software
projects? [http://ask.slashdot.org/story/12/07/12/1431210/ask-slashdot-how-do-you-track-bugs-for-per-
sonal-software-projects], or this list at WebResourcesDepot [http://www.webresourcesdepot.com/9-
free-and-open-source-bug-tracking-softwares/].

Redmine — http://www.redmine.org/
Redmine is a relatively recent (as of 2011) and pretty polished project tracking system. It's somewhat
more than a bug tracker, since it also offers wikis, message forums, and other features, but bug-track-
ing seems to be the core of what it does. It has a fairly intuitive Web-based user interface, flexible con-
figuration (multiple projects, role-based access control, custom fields, etc), Gantt charting, calendaring,
bidirectional email interaction, and more. If you're setting up a new project and you can choose any bug
tracker you want, Redmine is a good choice.

Bugzilla — http://www.bugzilla.org/
Bugzilla is very popular, actively maintained, and seems to make its users pretty happy. I've been using
a modified variant of it in my work for four years now, and like it. It's not highly customizable, but in a
odd way, that may be one of its features: Bugzilla installations tend to look pretty much the same wher-
ever they are found, which means many developers are already accustomed to its interface and will feel
they are in familiar territory.

GNATS — http://www.gnu.org/software/gnats/
GNU GNATS is one of the oldest open source bug trackers, and is widely used. Its biggest strengths
are interface diversity (it can be used not just through a web browser, but also through email or com-
mand-line tools), and plaintext issue storage. The fact that all issue data is stored in text files on disk
makes it easier to write custom tools to trawl and parse the data (for example, to generate statistical re-
ports). GNATS can also absorb emails automatically by various means, and add them to the appropriate
issues based on patterns in the email headers, which makes logging user/developer conversations very
easy.

RequestTracker (RT) — http://www.bestpractical.com/rt/
RT's web site says "RT is an enterprise-grade ticketing system which enables a group of people to intel-
ligently and efficiently manage tasks, issues, and requests submitted by a community of users," and that

http://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/Free/
http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/Free/
http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/Free/
http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/Free/
http://ask.slashdot.org/story/12/07/12/1431210/ask-slashdot-how-do-you-track-bugs-for-personal-software-projects
http://ask.slashdot.org/story/12/07/12/1431210/ask-slashdot-how-do-you-track-bugs-for-personal-software-projects
http://ask.slashdot.org/story/12/07/12/1431210/ask-slashdot-how-do-you-track-bugs-for-personal-software-projects
http://ask.slashdot.org/story/12/07/12/1431210/ask-slashdot-how-do-you-track-bugs-for-personal-software-projects
http://www.webresourcesdepot.com/9-free-and-open-source-bug-tracking-softwares/
http://www.webresourcesdepot.com/9-free-and-open-source-bug-tracking-softwares/
http://www.webresourcesdepot.com/9-free-and-open-source-bug-tracking-softwares/
http://www.redmine.org/
http://www.bugzilla.org/
http://www.gnu.org/software/gnats/
http://www.bestpractical.com/rt/

Free Bug Trackers

191

about sums it up. RT has a fairly polished web interface, and seems to have a pretty wide installed base.
The interface is a bit visually complex, but that becomes less distracting as you get used to it. RT is li-
cenced under the GNU GPL (for some reason, their web site doesn't make this clear).

Trac — http://trac.edgewall.com/
Trac is a bit more than a bug tracker: it's really an integrated wiki and bug tracking system. It uses wiki
linking to connect issues, files, version control changesets, and plain wiki pages. It's fairly simple to set
up, and integrates with Subversion (see Appendix B, Free Version Control Systems).

Roundup — http://roundup.sourceforge.net/
Roundup is pretty easy to install (only Python 2.1 or higher is required), and simple to use. It has web,
email, and command-line interfaces. The issue data templates and web interface are customizable, as is
some of its state-transition logic.

Mantis — http://www.mantisbt.org/
Mantis is a web-based bug tracking system, written in PHP, and using MySQL database for storage. It
has the features you'd expect. Personally, I find the web interface clean, intuitive, and easy on the eyes.

Flyspray — http://www.flyspray.org/
Flyspray is a web-based bug tracking system written in PHP. Its web pages describe it as "uncomplicat-
ed", and the list of features includes: multiple database support (currently MySQL and PGSQL); multi-
ple projects; 'watching' tasks, with notification of changes (via email or Jabber); comprehensive task his-
tory; CSS theming; file attachments; advanced search features (though easy to use); RSS/Atom feeds;
wiki and plaintext input; voting; dependency graphs.

Scarab — http://scarab.tigris.org/
Scarab is meant to be a highly customizable, full-featured bug tracker, offering more or less the union of
the features offered by other bug trackers: data entry, queries, reports, notifications to interested parties,
collaborative accumulation of comments, and dependency tracking.

It is customizable through administrative web pages. You can have multiple "modules" (projects) active
in a single Scarab installation. Within a given module, you can create new issue types (defects, enhance-
ments, tasks, support requests, etc.), and add arbitrary attributes, to tune the tracker to your project's spe-
cific requirements.

As of late 2004, Scarab was getting close to its 1.0 release.

Debian Bug Tracking System (DBTS) — http://
www.chiark.greenend.org.uk/~ian/debbugs/

The Debian Bug Tracking System is unusual in that all input and manipulation of issues is done
via email: each issue gets its own dedicated email address. The DBTS scales pretty well: http://
bugs.debian.org/ has 277,741 issues, for example.

Since interaction is done via regular mail clients, an environment which is familiar and easily accessible
to most people, the DBTS is good for handling high volumes of incoming reports that need quick clas-

http://trac.edgewall.com/
http://roundup.sourceforge.net/
http://www.mantisbt.org/
http://www.flyspray.org/
http://scarab.tigris.org/
http://www.chiark.greenend.org.uk/~ian/debbugs/
http://www.chiark.greenend.org.uk/~ian/debbugs/
http://bugs.debian.org/
http://bugs.debian.org/

Free Bug Trackers

192

sification and response. There are disadvantages too, of course. Developers must invest the time needed
to learn the email command system, and users must write their bug reports without a web form to guide
them in choosing what information to write. There are tools available to help users send better bug re-
ports, such as the command-line reportbug program or the debbugs-el package for Emacs. But most
people won't use these tools; they'll just write email manually, and they may or may not follow the bug
reporting guidelines posted by your project.

The DBTS has a read-only web interface, for viewing and querying issues.

Trouble-Ticket Trackers
These are more oriented toward help desk ticket tracking than software bug tracking. You'll probably
do better with a regular bug tracker, but these are listed for the sake of completeness, and because there
could conceivably be unusual projects for which a trouble-ticket system might be more appropriate than
a traditional bug tracker.

• WebCall — http://myrapid.com/webcall/

Bluetail Ticket Tracker (BTT) — http://
btt.sourceforge.net/

BTT is somewhere between a standard trouble-ticket tracker and a bug tracker. It offers privacy features
that are somewhat unusual among open source bug trackers: users of the system are categorized as Staff,
Friend, Customer, or Anonymous, and more or less data is available depending on one's category. It of-
fers some email integration, a command-line interface, and mechanisms for converting emails into tick-
ets. It also has features for maintaining information not associated with any specific ticket, such as inter-
nal documentation or FAQs.

http://myrapid.com/webcall/
http://btt.sourceforge.net/
http://btt.sourceforge.net/

193

Appendix D. Why Should I Care What
Color the Bikeshed Is?

You shouldn't; it doesn't really matter, and you have better things to spend your time on.

Poul-Henning Kamp's famous "bikeshed" post (an excerpt from which appears in Chapter 6, Com-
munications) is an eloquent disquisition on what tends to go wrong in group discussions. It is
reprinted here with his permission. The orginal URL is http://www.freebsd.org/cgi/getmsg.cgi?
fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers; for
easy linking, you can also point people to bikeshed.com [http://bikeshed.com].

Subject: A bike shed (any colour will do) on greener grass...
From: Poul-Henning Kamp <phk@freebsd.org>
Date: Sat, 02 Oct 1999 16:14:10 +0200
Message-ID: <18238.938873650@critter.freebsd.dk>
Sender: phk@critter.freebsd.dk
Bcc: Blind Distribution List: ;
MIME-Version: 1.0

[bcc'ed to committers, hackers]

My last pamphlet was sufficiently well received that I was not
scared away from sending another one, and today I have the time
and inclination to do so.

I've had a little trouble with deciding on the right distribution
of this kind of stuff, this time it is bcc'ed to committers and
hackers, that is probably the best I can do. I'm not subscribed
to hackers myself but more on that later.

The thing which have triggered me this time is the "sleep(1) should
do fractional seconds" thread, which have pestered our lives for
many days now, it's probably already a couple of weeks, I can't
even be bothered to check.

To those of you who have missed this particular thread: Congratulations.

It was a proposal to make sleep(1) DTRT if given a non-integer
argument that set this particular grass-fire off. I'm not going
to say anymore about it than that, because it is a much smaller
item than one would expect from the length of the thread, and it
has already received far more attention than some of the *problems*
we have around here.

The sleep(1) saga is the most blatant example of a bike shed
discussion we have had ever in FreeBSD. The proposal was well
thought out, we would gain compatibility with OpenBSD and NetBSD,
and still be fully compatible with any code anyone ever wrote.

Yet so many objections, proposals and changes were raised and

http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers
http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers
http://bikeshed.com
http://bikeshed.com

Why Should I Care What
Color the Bikeshed Is?

194

launched that one would think the change would have plugged all
the holes in swiss cheese or changed the taste of Coca Cola or
something similar serious.

"What is it about this bike shed ?" Some of you have asked me.

It's a long story, or rather it's an old story, but it is quite
short actually. C. Northcote Parkinson wrote a book in the early
1960'ies, called "Parkinson's Law", which contains a lot of insight
into the dynamics of management.

You can find it on Amazon, and maybe also in your dads book-shelf,
it is well worth its price and the time to read it either way,
if you like Dilbert, you'll like Parkinson.

Somebody recently told me that he had read it and found that only
about 50% of it applied these days. That is pretty darn good I
would say, many of the modern management books have hit-rates a
lot lower than that, and this one is 35+ years old.

In the specific example involving the bike shed, the other vital
component is an atomic power-plant, I guess that illustrates the
age of the book.

Parkinson shows how you can go in to the board of directors and
get approval for building a multi-million or even billion dollar
atomic power plant, but if you want to build a bike shed you will
be tangled up in endless discussions.

Parkinson explains that this is because an atomic plant is so vast,
so expensive and so complicated that people cannot grasp it, and
rather than try, they fall back on the assumption that somebody
else checked all the details before it got this far. Richard P.
Feynmann gives a couple of interesting, and very much to the point,
examples relating to Los Alamos in his books.

A bike shed on the other hand. Anyone can build one of those over
a weekend, and still have time to watch the game on TV. So no
matter how well prepared, no matter how reasonable you are with
your proposal, somebody will seize the chance to show that he is
doing his job, that he is paying attention, that he is *here*.

In Denmark we call it "setting your fingerprint". It is about
personal pride and prestige, it is about being able to point
somewhere and say "There! *I* did that." It is a strong trait in
politicians, but present in most people given the chance. Just
think about footsteps in wet cement.

I bow my head in respect to the original proposer because he stuck
to his guns through this carpet blanking from the peanut gallery,
and the change is in our tree today. I would have turned my back
and walked away after less than a handful of messages in that
thread.

Why Should I Care What
Color the Bikeshed Is?

195

And that brings me, as I promised earlier, to why I am not subscribed
to -hackers:

I un-subscribed from -hackers several years ago, because I could
not keep up with the email load. Since then I have dropped off
several other lists as well for the very same reason.

And I still get a lot of email. A lot of it gets routed to /dev/null
by filters: People like [omitted] will never make it onto my
screen, commits to documents in languages I don't understand
likewise, commits to ports as such. All these things and more go
the winter way without me ever even knowing about it.

But despite these sharp teeth under my mailbox I still get too much
email.

This is where the greener grass comes into the picture:

I wish we could reduce the amount of noise in our lists and I wish
we could let people build a bike shed every so often, and I don't
really care what colour they paint it.

The first of these wishes is about being civil, sensitive and
intelligent in our use of email.

If I could concisely and precisely define a set of criteria for
when one should and when one should not reply to an email so that
everybody would agree and abide by it, I would be a happy man, but
I am too wise to even attempt that.

But let me suggest a few pop-up windows I would like to see
mail-programs implement whenever people send or reply to email
to the lists they want me to subscribe to:

 +--+
 | Your email is about to be sent to several hundred thousand |
 | people, who will have to spend at least 10 seconds reading |
 | it before they can decide if it is interesting. At least |
 | two man-weeks will be spent reading your email. Many of |
 | the recipients will have to pay to download your email. |
 | |
 | Are you absolutely sure that your email is of sufficient |
 | importance to bother all these people ? |
 | |
 | [YES] [REVISE] [CANCEL] |
 +--+

 +--+
 | Warning: You have not read all emails in this thread yet. |
 | Somebody else may already have said what you are about to |
 | say in your reply. Please read the entire thread before |
 | replying to any email in it. |
 | |
 | [CANCEL] |

Why Should I Care What
Color the Bikeshed Is?

196

 +--+

 +--+
 | Warning: Your mail program have not even shown you the |
 | entire message yet. Logically it follows that you cannot |
 | possibly have read it all and understood it. |
 | |
 | It is not polite to reply to an email until you have |
 | read it all and thought about it. |
 | |
 | A cool off timer for this thread will prevent you from |
 | replying to any email in this thread for the next one hour |
 | |
 | [Cancel] |
 +--+

 +--+
 | You composed this email at a rate of more than N.NN cps |
 | It is generally not possible to think and type at a rate |
 | faster than A.AA cps, and therefore you reply is likely to |
 | incoherent, badly thought out and/or emotional. |
 | |
 | A cool off timer will prevent you from sending any email |
 | for the next one hour. |
 | |
 | [Cancel] |
 +--+

The second part of my wish is more emotional. Obviously, the
capacities we had manning the unfriendly fire in the sleep(1)
thread, despite their many years with the project, never cared
enough to do this tiny deed, so why are they suddenly so enflamed
by somebody else so much their junior doing it ?

I wish I knew.

I do know that reasoning will have no power to stop such "reactionaire
conservatism". It may be that these people are frustrated about
their own lack of tangible contribution lately or it may be a bad
case of "we're old and grumpy, WE know how youth should behave".

Either way it is very unproductive for the project, but I have no
suggestions for how to stop it. The best I can suggest is to refrain
from fuelling the monsters that lurk in the mailing lists: Ignore
them, don't answer them, forget they're there.

I hope we can get a stronger and broader base of contributors in
FreeBSD, and I hope we together can prevent the grumpy old men
and the [omitted]s of the world from chewing them up, spitting
them out and scaring them away before they ever get a leg to the
ground.

For the people who have been lurking out there, scared away from
participating by the gargoyles: I can only apologise and encourage

Why Should I Care What
Color the Bikeshed Is?

197

you to try anyway, this is not the way I want the environment in
the project to be.

Poul-Henning

198

Appendix E. Example Instructions for
Reporting Bugs

This is a lightly-edited copy of the Subversion project's online instructions to new users on how to report
bugs. See the section called “Treat Every User as a Potential Volunteer” in Chapter 8, Managing Vol-
unteers for why it is important that a project have such instructions. The original document is located at
http://svn.collab.net/repos/svn/trunk/www/bugs.html.

 Reporting Bugs in Subversion

This document tells how and where to report bugs. (It is not a list of
all outstanding bugs — you can get that here instead.)

Where To Report A Bug

 * If the bug is in Subversion itself, send mail to
 users@subversion.tigris.org. Once it's confirmed as a bug,
 someone, possibly you, can enter it into the issue tracker. (Or
 if you're pretty sure about the bug, go ahead and post directly
 to our development list, dev@subversion.tigris.org. But if
 you're not sure, it's better to post to users@ first; someone
 there can tell you whether the behavior you encountered is
 expected or not.)

 * If the bug is in the APR library, please report it to both of
 these mailing lists: dev@apr.apache.org, dev@subversion.tigris.org.

 * If the bug is in the Neon HTTP library, please report it to:
 neon@webdav.org, dev@subversion.tigris.org.

 * If the bug is in Apache HTTPD 2.0, please report it to both of
 these mailing lists: dev@httpd.apache.org,
 dev@subversion.tigris.org. The Apache httpd developer mailing
 list is high-traffic, so your bug report post has the
 possibility to be overlooked. You may also file a bug report at
 http://httpd.apache.org/bug_report.html.

 * If the bug is in your rug, please give it a hug and keep it snug.

How To Report A Bug

First, make sure it's a bug. If Subversion does not behave the way you
expect, look in the documentation and mailing list archives for
evidence that it should behave the way you expect. Of course, if it's
a common-sense thing, like Subversion just destroyed your data and
caused smoke to pour out of your monitor, then you can trust your
judgement. But if you're not sure, go ahead and ask on the users
mailing list first, users@subversion.tigris.org, or ask in IRC,

http://svn.collab.net/repos/svn/trunk/www/bugs.html

Example Instructions
for Reporting Bugs

199

irc.freenode.net, channel #svn.

Once you've established that it's a bug, the most important thing you
can do is come up with a simple description and reproduction
recipe. For example, if the bug, as you initially found it, involves
five files over ten commits, try to make it happen with just one file
and one commit. The simpler the reproduction recipe, the more likely a
developer is to successfully reproduce the bug and fix it.

When you write up the reproduction recipe, don't just write a prose
description of what you did to make the bug happen. Instead, give a
literal transcript of the exact series of commands you ran, and their
output. Use cut-and-paste to do this. If there are files involved, be
sure to include the names of the files, and even their content if you
think it might be relevant. The very best thing is to package your
reproduction recipe as a script, that helps us a lot.

Quick sanity check: you *are* running the most recent version of
Subversion, right? :-) Possibly the bug has already been fixed; you
should test your reproduction recipe against the most recent
Subversion development tree.

In addition to the reproduction recipe, we'll also need a complete
description of the environment in which you reproduced the bug. That
means:

 * Your operating system
 * The release and/or revision of Subversion
 * The compiler and configuration options you built Subversion with
 * Any private modifications you made to your Subversion
 * The version of Berkeley DB you're running Subversion with, if any
 * Anything else that could possibly be relevant. Err on the side
 of too much information, rather than too little.

Once you have all this, you're ready to write the report. Start out
with a clear description of what the bug is. That is, say how you
expected Subversion to behave, and contrast that with how it actually
behaved. While the bug may seem obvious to you, it may not be so
obvious to someone else, so it's best to avoid a guessing game. Follow
that with the environment description, and the reproduction recipe. If
you also want to include speculation as to the cause, and even a patch
to fix the bug, that's great — see
http://subversion.apache.org/docs/community-guide/#patches for
instructions on sending patches.

Post all of this information to dev@subversion.tigris.org, or if you
have already been there and been asked to file an issue, then go to
the Issue Tracker and follow the instructions there.

Thanks. We know it's a lot of work to file an effective bug report,
but a good report can save hours of a developer's time, and make the
bug much more likely to get fixed.

200

Appendix F. Copyright

This work is licensed under the Creative Commons
Attribution-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA. A summary of the license is given below, followed by the full
legal text. If you wish to distribute some or all of this work under
different terms, please contact the author, Karl Fogel
<kfogel@red-bean.com>.

-*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*-

You are free:

 * to Share — to copy, distribute and transmit the work
 * to Remix — to adapt the work

Under the following conditions:

 * Attribution. You must attribute the work in the manner specified
 by the author or licensor (but not in any way that suggests that
 they endorse you or your use of the work).

 * Share Alike. If you alter, transform, or build upon this work,
 you may distribute the resulting work only under the same,
 similar or a compatible license.

 * For any reuse or distribution, you must make clear to others the
 license terms of this work. The best way to do this is with a
 link to this web page.

 * Any of the above conditions can be waived if you get permission
 from the copyright holder.

 * Nothing in this license impairs or restricts the author's moral
 rights.

-*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*-

 Creative Commons Legal Code: Attribution-ShareAlike 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License:

Copyright

201

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
TERMS AND CONDITIONS.

1. Definitions

 a. "Adaptation" means a work based upon the Work, or upon the Work
 and other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and
 includes cinematographic adaptations or any other form in which
 the Work may be recast, transformed, or adapted including in any
 form recognizably derived from the original, except that a work
 that constitutes a Collection will not be considered an
 Adaptation for the purpose of this License. For the avoidance of
 doubt, where the Work is a musical work, performance or
 phonogram, the synchronization of the Work in timed-relation
 with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.

 b. "Collection" means a collection of literary or artistic works,
 such as encyclopedias and anthologies, or performances,
 phonograms or broadcasts, or other works or subject matter other
 than works listed in Section 1(f) below, which, by reason of the
 selection and arrangement of their contents, constitute
 intellectual creations, in which the Work is included in its
 entirety in unmodified form along with one or more other
 contributions, each constituting separate and independent works
 in themselves, which together are assembled into a collective
 whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of
 this License.

 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has
 been approved by Creative Commons as being essentially
 equivalent to this License, including, at a minimum, because
 that license: (i) contains terms that have the same purpose,
 meaning and effect as the License Elements of this License; and,
 (ii) explicitly permits the relicensing of adaptations of works
 made available under that license under this License or a
 Creative Commons jurisdiction license with the same License
 Elements as this License.

 d. "Distribute" means to make available to the public the original
 and copies of the Work or Adaptation, as appropriate, through

Copyright

202

 sale or other transfer of ownership.

 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of
 this License: Attribution, ShareAlike.

 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.

 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who
 created the Work or if no individual or entity can be
 identified, the publisher; and in addition (i) in the case of a
 performance the actors, singers, musicians, dancers, and other
 persons who act, sing, deliver, declaim, play in, interpret or
 otherwise perform literary or artistic works or expressions of
 folklore; (ii) in the case of a phonogram the producer being the
 person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of
 broadcasts, the organization that transmits the broadcast.

 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any
 production in the literary, scientific and artistic domain,
 whatever may be the mode or form of its expression including
 digital form, such as a book, pamphlet and other writing; a
 lecture, address, sermon or other work of the same nature; a
 dramatic or dramatico-musical work; a choreographic work or
 entertainment in dumb show; a musical composition with or
 without words; a cinematographic work to which are assimilated
 works expressed by a process analogous to cinematography; a work
 of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of
 applied art; an illustration, map, plan, sketch or
 three-dimensional work relative to geography, topography,
 architecture or science; a performance; a broadcast; a
 phonogram; a compilation of data to the extent it is protected
 as a copyrightable work; or a work performed by a variety or
 circus performer to the extent it is not otherwise considered a
 literary or artistic work.

 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this
 License with respect to the Work, or who has received express
 permission from the Licensor to exercise rights under this
 License despite a previous violation.

 j. "Publicly Perform" means to perform public recitations of the
 Work and to communicate to the public those public recitations,
 by any means or process, including by wire or wireless means or
 public digital performances; to make available to the public
 Works in such a way that members of the public may access these
 Works from a place and at a place individually chosen by them;

Copyright

203

 to perform the Work to the public by any means or process and
 the communication to the public of the performances of the Work,
 including by public digital performance; to broadcast and
 rebroadcast the Work by any means including signs, sounds or
 images.

 k. "Reproduce" means to make copies of the Work by any means
 including without limitation by sound or visual recordings and
 the right of fixation and reproducing fixations of the Work,
 including storage of a protected performance or phonogram in
 digital form or other electronic medium.

2. Fair Dealing Rights.

 Nothing in this License is intended to reduce, limit, or restrict
 any uses free from copyright or rights arising from limitations or
 exceptions that are provided for in connection with the copyright
 protection under copyright law or other applicable laws.

3. License Grant.

 Subject to the terms and conditions of this License, Licensor
 hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:

 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;

 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes
 reasonable steps to clearly label, demarcate or otherwise
 identify that changes were made to the original Work. For
 example, a translation could be marked "The original work was
 translated from English to Spanish," or a modification could
 indicate "The original work has been modified.";

 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,

 d. to Distribute and Publicly Perform Adaptations.

 e. For the avoidance of doubt:

 i. Non-waivable Compulsory License Schemes. In those
 jurisdictions in which the right to collect royalties
 through any statutory or compulsory licensing scheme
 cannot be waived, the Licensor reserves the exclusive
 right to collect such royalties for any exercise by You of
 the rights granted under this License;

 ii. Waivable Compulsory License Schemes. In those
 jurisdictions in which the right to collect royalties

Copyright

204

 through any statutory or compulsory licensing scheme can
 be waived, the Licensor waives the exclusive right to
 collect such royalties for any exercise by You of the
 rights granted under this License; and,

 iii. Voluntary License Schemes. The Licensor waives the right
 to collect royalties, whether individually or, in the
 event that the Licensor is a member of a collecting
 society that administers voluntary licensing schemes, via
 that society, from any exercise by You of the rights
 granted under this License.

 The above rights may be exercised in all media and formats whether
 now known or hereafter devised. The above rights include the right
 to make such modifications as are technically necessary to exercise
 the rights in other media and formats. Subject to Section 8(f), all
 rights not expressly granted by Licensor are hereby reserved.

4. Restrictions.

 The license granted in Section 3 above is expressly made subject to
 and limited by the following restrictions:

 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the
 Uniform Resource Identifier (URI) for, this License with every
 copy of the Work You Distribute or Publicly Perform. You may not
 offer or impose any terms on the Work that restrict the terms of
 this License or the ability of the recipient of the Work to
 exercise the rights granted to that recipient under the terms of
 the License. You may not sublicense the Work. You must keep
 intact all notices that refer to this License and to the
 disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of
 the Work from You to exercise the rights granted to that
 recipient under the terms of the License. This Section 4(a)
 applies to the Work as incorporated in a Collection, but this
 does not require the Collection apart from the Work itself to be
 made subject to the terms of this License. If You create a
 Collection, upon notice from any Licensor You must, to the
 extent practicable, remove from the Collection any credit as
 required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the
 extent practicable, remove from the Adaptation any credit as
 required by Section 4(c), as requested.

 b. You may Distribute or Publicly Perform an Adaptation only under
 the terms of: (i) this License; (ii) a later version of this
 License with the same License Elements as this License; (iii) a
 Creative Commons jurisdiction license (either this or a later
 license version) that contains the same License Elements as this
 License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative

Copyright

205

 Commons Compatible License. If you license the Adaptation under
 one of the licenses mentioned in (iv), you must comply with the
 terms of that license. If you license the Adaptation under the
 terms of any of the licenses mentioned in (i), (ii) or (iii)
 (the "Applicable License"), you must comply with the terms of
 the Applicable License generally and the following provisions:
 (I) You must include a copy of, or the URI for, the Applicable
 License with every copy of each Adaptation You Distribute or
 Publicly Perform; (II) You may not offer or impose any terms on
 the Adaptation that restrict the terms of the Applicable License
 or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the
 Applicable License; (III) You must keep intact all notices that
 refer to the Applicable License and to the disclaimer of
 warranties with every copy of the Work as included in the
 Adaptation You Distribute or Publicly Perform; (IV) when You
 Distribute or Publicly Perform the Adaptation, You may not
 impose any effective technological measures on the Adaptation
 that restrict the ability of a recipient of the Adaptation from
 You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to
 the Adaptation as incorporated in a Collection, but this does
 not require the Collection apart from the Adaptation itself to
 be made subject to the terms of the Applicable License.

 c. If You Distribute, or Publicly Perform the Work or any
 Adaptations or Collections, You must, unless a request has been
 made pursuant to Section 4(a), keep intact all copyright notices
 for the Work and provide, reasonable to the medium or means You
 are utilizing: (i) the name of the Original Author (or
 pseudonym, if applicable) if supplied, and/or if the Original
 Author and/or Licensor designate another party or parties (e.g.,
 a sponsor institute, publishing entity, journal) for attribution
 ("Attribution Parties") in Licensor's copyright notice, terms of
 service or by other reasonable means, the name of such party or
 parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does
 not refer to the copyright notice or licensing information for
 the Work; and (iv) , consistent with Ssection 3(b), in the case
 of an Adaptation, a credit identifying the use of the Work in
 the Adaptation (e.g., "French translation of the Work by
 Original Author," or "Screenplay based on original Work by
 Original Author"). The credit required by this Section 4(c) may
 be implemented in any reasonable manner; provided, however, that
 in the case of a Adaptation or Collection, at a minimum such
 credit will appear, if a credit for all contributing authors of
 the Adaptation or Collection appears, then as part of these
 credits and in a manner at least as prominent as the credits for
 the other contributing authors. For the avoidance of doubt, You
 may only use the credit required by this Section for the purpose
 of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or
 explicitly assert or imply any connection with, sponsorship or

Copyright

206

 endorsement by the Original Author, Licensor and/or Attribution
 Parties, as appropriate, of You or Your use of the Work, without
 the separate, express prior written permission of the Original
 Author, Licensor and/or Attribution Parties.

 d. Except as otherwise agreed in writing by the Licensor or as may
 be otherwise permitted by applicable law, if You Reproduce,
 Distribute or Publicly Perform the Work either by itself or as
 part of any Adaptations or Collections, You must not distort,
 mutilate, modify or take other derogatory action in relation to
 the Work which would be prejudicial to the Original Author's
 honor or reputation. Licensor agrees that in those jurisdictions
 (e.g. Japan), in which any exercise of the right granted in
 Section 3(b) of this License (the right to make Adaptations)
 would be deemed to be a distortion, mutilation, modification or
 other derogatory action prejudicial to the Original Author's
 honor and reputation, the Licensor will waive or not assert, as
 appropriate, this Section, to the fullest extent permitted by
 the applicable national law, to enable You to reasonably
 exercise Your right under Section 3(b) of this License (right to
 make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations
 or Collections from You under this License, however, will not
 have their licenses terminated provided such individuals or
 entities remain in full compliance with those licenses. Sections
 1, 2, 5, 6, 7, and 8 will survive any termination of this
 License.

 b. Subject to the above terms and conditions, the license granted

Copyright

207

 here is perpetual (for the duration of the applicable copyright
 in the Work). Notwithstanding the above, Licensor reserves the
 right to release the Work under different license terms or to
 stop distributing the Work at any time; provided, however that
 any such election will not serve to withdraw this License (or
 any other license that has been, or is required to be, granted
 under the terms of this License), and this License will continue
 in full force and effect unless terminated as stated above.

8. Miscellaneous

 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to
 the Work on the same terms and conditions as the license granted
 to You under this License.

 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work
 on the same terms and conditions as the license granted to You
 under this License.

 c. If any provision of this License is invalid or unenforceable
 under applicable law, it shall not affect the validity or
 enforceability of the remainder of the terms of this License,
 and without further action by the parties to this agreement,
 such provision shall be reformed to the minimum extent necessary
 to make such provision valid and enforceable.

 d. No term or provision of this License shall be deemed waived and
 no breach consented to unless such waiver or consent shall be in
 writing and signed by the party to be charged with such waiver
 or consent.

 e. This License constitutes the entire agreement between the
 parties with respect to the Work licensed here. There are no
 understandings, agreements or representations with respect to
 the Work not specified here. Licensor shall not be bound by any
 additional provisions that may appear in any communication from
 You. This License may not be modified without the mutual written
 agreement of the Licensor and You.

 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the
 WIPO Copyright Treaty of 1996, the WIPO Performances and
 Phonograms Treaty of 1996 and the Universal Copyright Convention
 (as revised on July 24, 1971). These rights and subject matter
 take effect in the relevant jurisdiction in which the License
 terms are sought to be enforced according to the corresponding
 provisions of the implementation of those treaty provisions in
 the applicable national law. If the standard suite of rights
 granted under applicable copyright law includes additional
 rights not granted under this License, such additional rights

Copyright

208

 are deemed to be included in the License; this License is not
 intended to restrict the license of any rights under applicable
 law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

	Producing Open Source Software
	Table of Contents
	Preface
	Why Write This Book?
	Who Should Read This Book?
	Sources
	Acknowledgments
	Disclaimer

	Chapter 1. Introduction
	History
	The Rise of Proprietary Software and Free Software
	Conscious resistance
	Accidental resistance

	"Free" Versus "Open Source"

	The Situation Today

	Chapter 2. Getting Started
	But First, Look Around
	Starting From What You Have
	Choose a Good Name
	Own the name in the important namespaces

	Have a Clear Mission Statement
	State That the Project is Free
	Features and Requirements List
	Development Status
	Development status should always reflect reality.

	Downloads
	Version Control and Bug Tracker Access
	Communications Channels
	Developer Guidelines
	Documentation
	Availability of documentation
	Developer documentation

	Demos, Screenshots, Videos, and Example Output
	Hosting

	Choosing a License and Applying It
	The "Do Anything" Licenses
	The GPL
	How to Apply a License to Your Software

	Setting the Tone
	Avoid Private Discussions
	Nip Rudeness in the Bud
	Practice Conspicuous Code Review
	Case study

	Be Open From Day One
	Waiting Just Creates an Exposure Event

	When Opening a Formerly Closed Project, be Sensitive to the Magnitude of the Change

	Announcing

	Chapter 3. Technical Infrastructure
	What a Project Needs
	Web Site
	Canned Hosting
	Choosing a canned hosting site
	Hosting on fully open source infrastructure
	Anonymity and involvement

	Mailing Lists / Message Forums
	Choosing the Right Forum Management Software
	Spam Prevention
	Filtering posts
	Address hiding in archives

	Identification and Header Management
	The Great Reply-to Debate
	Two fantasies

	Archiving
	Mailing List / Message Forum Software

	Version Control
	Version Control Vocabulary
	Choosing a Version Control System
	Using the Version Control System
	Version everything
	Browsability
	Use branches to avoid bottlenecks
	Singularity of information
	Authorization

	Tools for commit review
	Pull requests
	TBD (Gerrit et al)
	Commit emails

	Bug Tracker
	Interaction with Mailing Lists
	Pre-Filtering the Bug Tracker

	IRC / Real-Time Chat Systems
	Bots
	Archiving IRC

	RSS Feeds
	Wikis
	Social Networking Services

	Chapter 4. Social and Political Infrastructure
	Forkability
	Benevolent Dictators
	Who Can Be a Good Benevolent Dictator?

	Consensus-based Democracy
	Version Control Means You Can Relax
	When Consensus Cannot Be Reached, Vote
	When To Vote
	Who Votes?
	Polls Versus Votes
	Vetoes

	Writing It All Down
	Joining or Creating a Non-Profit Organization

	Chapter 5. Money
	Crowdfunding: Kickstarter, etc
	Types of Corporate Involvement
	Hire for the Long Term
	Appear as Many, Not as One
	Be Open About Your Motivations
	Money Can't Buy You Love
	Contracting
	Review and Acceptance of Changes
	Case study: the CVS password-authentication protocol

	Funding Non-Programming Activities
	Quality Assurance (i.e., Professional Testing)
	Legal Advice and Protection
	Documentation and Usability
	Providing Hosting/Bandwidth

	Marketing
	Remember That You Are Being Watched
	Don't Bash Competing Open Source Products

	Hiring Open Source Developers
	Bounties

	Chapter 6. Communications
	You Are What You Write
	Structure and Formatting
	Content
	Tone
	Recognizing Rudeness
	Face

	Avoiding Common Pitfalls
	Don't Post Without a Purpose
	Productive vs Unproductive Threads
	The Softer the Topic, the Longer the Debate
	Avoid Holy Wars
	The "Noisy Minority" Effect

	Difficult People
	Handling Difficult People
	Case study

	Handling Growth
	Conspicuous Use of Archives
	Treat all resources like archives

	Codifying Tradition

	No Conversations in the Bug Tracker
	Publicity
	Announcing Security Vulnerabilities
	Receive the report
	Develop the fix quietly
	CAN/CVE numbers
	Pre-notification
	Distribute the fix publicly

	Chapter 7. Packaging, Releasing, and Daily Development
	Release Numbering
	Release Number Components
	The Simple Strategy
	The Even/Odd Strategy

	Release Branches
	Mechanics of Release Branches

	Stabilizing a Release
	Dictatorship by Release Owner
	Change Voting
	Managing collaborative release stabilization
	Release manager

	Packaging
	Format
	Name and Layout
	To capitalize or not to capitalize
	Pre-releases

	Compilation and Installation
	Binary Packages

	Testing and Releasing
	Candidate Releases
	Announcing Releases

	Maintaining Multiple Release Lines
	Security Releases

	Releases and Daily Development
	Planning Releases

	Chapter 8. Managing Volunteers
	Getting the Most Out of Volunteers
	Delegation
	Distinguish clearly between inquiry and assignment
	Follow up after you delegate
	Notice what people are interested in

	Praise and Criticism
	Prevent Territoriality
	The Automation Ratio
	Automated testing

	Treat Every User as a Potential Volunteer
	Meeting In Person (Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats)

	Share Management Tasks as Well as Technical Tasks
	Patch Manager
	Translation Manager
	Documentation Manager
	Issue Manager
	FAQ Manager

	Transitions
	Committers
	Choosing Committers
	Revoking Commit Access
	Partial Commit Access
	Dormant Committers
	Avoid Mystery

	Credit
	Forks
	Handling a Fork
	Initiating a Fork

	Chapter 9. Governments and Open Source
	Being Open Source From Day One is Especially Important for Government Projects
	Review Your RFI, RFP and Contract Language
	Get the Lawyers Involved Very Early or Very Late
	Dispel Myths Within Your Organization
	Foster Pools of Expertise in Multiple Places
	Decouple Publicity Events from Project Progress
	Establish Contact Early with Relevant External Communities
	Have a Plan to Handle Negative Reactions
	The Open Government / Open Data Community

	Chapter 10. Licenses, Copyrights, and Patents
	Terminology
	Aspects of Licenses
	The GPL and License Compatibility
	Choosing a License
	The MIT / X Window System License
	The GNU General Public License
	Is the GPL free or not free?

	What About The BSD License?

	Contributor Agreements
	Doing Nothing
	Contributor License Agreements
	Transfer of Copyright

	Dual Licensing Schemes
	Patents
	Further Resources

	Appendix A. Canned Hosting Sites
	GitHub —
	Google Code Hosting —
	SourceForge —
	Launchpad.net —
	Gitorious —
	fooo —
	fooo —
	TBD —

	Appendix B. Free Version Control Systems
	Subversion —
	GIT —
	Mercurial —
	Bazaar —
	SVK —
	Veracity —
	Fossil —
	CVS —
	Darcs —
	Arch —
	monotone —
	Codeville —
	Vesta —
	Aegis —
	CVSNT —
	META-CVS —
	OpenCM —
	PRCS —
	ArX —
	SourceJammer —
	FastCST —
	Superversion —

	Appendix C. Free Bug Trackers
	Redmine —
	Bugzilla —
	GNATS —
	RequestTracker (RT) —
	Trac —
	Roundup —
	Mantis —
	Flyspray —
	Scarab —
	Debian Bug Tracking System (DBTS) —
	Trouble-Ticket Trackers
	Bluetail Ticket Tracker (BTT) —

	Appendix D. Why Should I Care What Color the Bikeshed Is?
	Appendix E. Example Instructions for Reporting Bugs
	Appendix F. Copyright

